首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is presented for the study of the entrance of in vitro stimulated cells into their first poststimulation S phase. PHA-stimulated lymphocytes were incubated continuously with 14C-TdR. This isotope was then removed at different intervals and the cells were incubated for 8 h in medium containing 3H-TdR. Cells which had incorporated 3H-TdR but not 14C-TdR were considered to have entered their first post-stimulation S phase during the 8 h incubation with 3H-TdR. These cells were identified by double-layer autoradiography.The majority of PHA-stimulated lymphocytes entered their first period of DNA synthesis between 48 and 72 h after the addition of PHA. However, the variability was pronounced, some cells entering their first S phase at about 24 h and others some 100 h later. Cells entering their first S phase accounted for a considerable part of the population of cells in DNA synthesis still as late as 72 h after the addition of PHA.Calculation of the total number of cells that entered their first S phase during the 6 day culture period showed that DNA synthesis was initiated in some 40 % of the cells of the initial population.  相似文献   

2.
Summary Peripheral blood samples from Sprague-Dawley rats gave successful lymphocyte growth in GIBCO: IA, RPMI 1640, and Eagle's minimum essential medium (MEM) culture media. Various growth conditions, cytokinetics, and sister chromatic exchange (SCE) induction were studied using reconstituted GIBCO 1A only. Neither methoxyflurane anesthesia of the rats before sampling nor washing of the cells with phosphate buffered saline affected the mitotic index. Cultures treated with [3H]thymidine showed the lymphocytes entering into DNA synthesis after approximately 24 h. The time at which BUdR (5-bromo-2′ deoxyuridine) was added, i.e. 0 vs. 24 h incubation, had minimal effect on the mitotic index of cultures harvested at 48 h. However, when harvest was extended to 72 h, mitotic activity was greater in the cultures treated with BUdR at 24 h. No significant differences in mitotic index and the number of average lymphocyte division were detected in cultures exposed to 0.3 to 0.5 μg/ml BUdR at 24 h and harvested at 72 h. Although SCE frequencies increased in the presence of BUdR, the baseline level of SCEs was estimated to be 5 to 6/cell. Average generation time of the lymphocytes dividing between 48 and 72 h was 16.5 h. Because of its simplicity of culture and the reproducible nature of its in vitro growth kinetics, the Sprague-Dawley rat lymphocyte is a suitable model for cytogenetic investigations.  相似文献   

3.
The response of thymic lymphocytes of the pig to phytohemagglutinin was studied with H3 thymidine in cultures, from 0–72 hours. At the beginning of the culture period 6–18% of lymphocytes were in DNA synthesis. during the first 24 hours a sharp decrease in the number of DNA synthesizing cells was observed in both pha and control cultures, although pha cultures consistently showed small but significantly greater numbers of DNA synthesizing cells. this was followed by a definite peak in DNA synthesis and mitotic response of a minority of the cells in pha cultures between 48–54 hours, whereas in control cultures activity ceased. in addition, a small proportion of the progeny of initially DNA synthesizing medium sized lymphocytes was apparently stimulated by pha and found in mitosis by 48 hours. It was concluded that the thymus contains a fraction of lymphocytes, not in the mitotic cycle, which are capable of being transformed by pha to mitotic activity. the data also suggests some stimulation of cells already in the mitotic cycle.  相似文献   

4.
The ultrastructural distribution of T lymphocyte surface membrane receptors for phytohemag-glutinin (PHA) during blast transformation is examined using PHA covalently coupled to ferritin (PHA-Fe). Human peripheral blood lymphocytes from normal donors were enriched for T cells by nylon wool elution and cultured in vitro with PHA-Fe at a concentration known to cause maximal stimulation of DNA synthesis as measured by [3H]thymidine incorporation. Over the course of a 72 h incubation period, cell samples were harvested at regular intervals and examined by transmission electron microscopy. Within several minutes of culture at 37 °C the majority of the ferritin (Fe)-labeled PHA surface receptors on almost all cells undergo rapid endocytosis; some Fe label remains at the cell surface. After several hours, endocytotic vesicles containing Fe-labeled receptors coalesce and undergo condensation. Within 36–48 h, most endocytotic vesicles transform into multivesicular bodies (MVBs). After 48–72 h, 70–80% of the cells had the ultrastructural appearance of blast transformation as characterized by increased size, euchromatic nuclei, nucleolonema and polyribosomes. In 40 % of the blast cells the Fe-labeled MVBs are exocytosed to the cell surface; cytoplasmic MVBs in the remaining portion of the blasts and non-blast lymphocytes do not appear to undergo exocytosis. Although endocytosis and exocytosis of lymphocyte surface receptors during mitogen-induced blast transformation are observed, the role and significance of receptor redistribution to cell activation remains unclear.  相似文献   

5.
Multiple rounds of cell division were induced in primary cultured rat hepatocytes in serum-free, modified L-15 medium supplemented with 20 mM NaHCO3 and 10 ng/ml EGF in a 5% CO2/95% air incubator. A 150% increase in cell number and DNA content was observed between day 1 and day 5. The time course of DNA synthesis of hepatocytes cultured in L-15 medium differed from that in DMEM/F12 medium in that there were four peaks of 3H-thymidine incorporation in the L-15 medium, at 60 h, 82 h, 96 h, and 120 h, but only one peak at 48 h in modified DMEM/F12 medium. Labeling studies of the hepatocytes indicated that more than 60% of the cells were stained with antibromodeoxyuridine (BrdU) antibody in the periods of 48-72 h and 72-96 h after plating at densities between 1.5 x 10(5) and 6.0 x 10(5) cells per 35-mm dish. Even at a density of 9.0 x 10(5) cells/dish, about 40% of the cell nuclei were stained with BrdU in the periods of 48-72 h and 72-96 h. In addition, about 20% of the hepatocytes in culture initiated a second round of the cell cycle between 48 and 96 h in culture. Proliferating cells, which were mononucleate with a little cytoplasm, appeared in small clusters or colonies in the culture from day 4. These proliferating cells produced albumin. The addition of essential amino acids to the DMEM/F12 medium enhanced the DNA synthesis of hepatocytes, thus indicating that the higher level of amino acids in L-15 medium may be an important factor in its enhanced ability to support the proliferation of primary cultured rat hepatocytes.  相似文献   

6.
We conducted a series of experiments designed to determine whether DNA damage induced in G0 lymphocytes by mitomycin C (MMC) would be expressed as sister-chromatid exchanges during the second and third post-treatment cell cycles. Lymphocytes from normal donors were exposed to MMC for 2 h prior to culture in the presence of phytohemagglutinin. MMC-treated and control cells were subsequently exposed to bromodeoxyuridine (BrdUrd) for the entire culture period (i.e. 48 h or 72 h) or for the terminal 24 h of 72-h cultures. We observed a 3–4-fold increase in SCEs in MII metaphases from lymphocytes treated with MMC and cultured in the presence of BrdUrd for the entire culture period. In contrast, in replicate cultures of MMC-treated lymphocytes that were exposed to BrdUrd for the terminal 24 h only, the SCE frequency in uniformly harlequinized metaphases was not significantly different from that observed in control cultures. We interpret these data as providing evidence that MMC-induced lesions (or alterations) in the DNA of G0 lymphocytes are probably expressed as SCEs during the first period of mitogeninduced DNA synthesis, and that these lesions do not persist and give rise to SCEs in subsequent cell divisions.  相似文献   

7.
The number of dividing and DNA-synthesizing cells in excised pea roots can be regulated by eliminating the carbohydrate normally supplied in the culture medium. When the excised roots were allowed to remain for 24 hr in a medium lacking carbohydrate, the number of mitotic figures and tritiated thymidine (H3-T) labeled cells was reduced almost to zero. After an additional 24 hr in the incomplete culture medium, 15% of the interphase cells were H3-T labeled, the percentage of the cells that were dividing never exceeded 1.4, and 30% of these were H3-T labeled. When the roots remained in the deficient medium for 72 hr, neither cell division nor cells synthesizing DNA were observed. Upon addition of 2% sucrose, cell division and DNA synthesis were resumed in the roots that were maintained for 24 or 72 hr without an exogenous carbohydrate supply. It has been hypothesized that some proliferative systems consist of two cellular subpopulations which selectively stop or remain in either the pre-DNA synthetic (G1) or post-DNA synthetic (G2) periods of the mitotic cycle. The addition of sucrose, H3-T, and 5-aminouracil to the medium, after the roots had been maintained for 24 hr without a carbohydrate, indicated that most of the proliferative cells in the roots had accumulated in either G1, a quasi-G1 condition, i.e., DNA synthesis stopped sometime before completion, or G2 periods of interphase; the majority, however, were in G1 or quasi-G1 conditions. The results suggested that DNA synthesis (S period) and mitosis or the onset of these processes have the highest metabolic requirements in the mitotic cycle and that G1 and G2 were the most probable states for proliferative cells in a meristem with a low metabolic level.  相似文献   

8.
Summary Mesophyll protoplasts isolated fromPetunia hybrida were subjected to UV radiation (280–360 nm) in an attempt to assess whether (a) UV radiation has an effect on cortical microtubule organization, (b) UV radiation affects the progression of protoplasts through the cell cycle, and (c) there is a connection between the effect of UV radiation on cell division and the polymerization state of the microtubules. The proto plasts were irradiated with the following UV doses: 4, 8, 12, and 24mmol photons/m2, 30 min after isolation. Cell cycle analysis and immuno-localization of microtubules were carried out 0, 24, 48, and 72 h after irradiation. The length of cortical microtubules was determined after irradiation and in corresponding controls. We found that UV radiation induced breaks in cortical microtubules resulting in shorter fragments with increasing dose. Also, the protoplasts were delayed in their progression through the cell cycle, with G1 and G2 phases being affected as well as the S phase. The commencement of DNA synthesis in the irradiated protoplasts followed the re-establishment of a microtubule network. At 48 h after irradiation the protoplasts in all treatments, except for the 24 mmol/m2, had cortical microtubules of similar length, and at 72 h after irradiation only the protoplasts that had received 24 mmol photons/m2 had not started dividing.Abbreviations BSA bovine serum albumin - DMSO dimethyl sulfoxide - FDA fluorescein diacetate - MT microtubules - MTSB microtubule stabilizing buffer - PAR photosynthetically active radiation (400–700 nm) - PBS phosphate buffered saline - UV ultraviolet  相似文献   

9.
DNA synthesis, cell survival, and cyclic AMP (cAMP) levels were compared in whole and purified lymph node cells (LNC) cultured with optimal (5 μg/ml) and excess (200 μg/ml) concentrations of native (N) or succinyl (S) concanavalin A (Con A) as possible models for antigen-induced lymphocyte activation and “high-dose” tolerance. Whole LNC cultured with optimal N-Con A or S-Con A showed continuing DNA synthesis and cell viability between 30 and 50% at 48 hr. In contrast, with excess N-Con A, they showed virtually no [3H]TdR uptake at this time and there was progressive loss of cell viability beginning at 8 hr; by 48 hr almost no viable cells remained. Excess S-Con A induced little cell death up to 24 hr, but by 48 hr only 20% of the cells initially placed in culture remained alive and sythesized DNA. Intracellular cAMP showed a transient rise in cultures stimulated with optimal N-Con A, peaking at 15 min, then returning to normal levels, to rise again between 24 and 48 hr. With excess N-Con A, cAMP rose within 15 min and continued to increase to a peak at 24 hr. cAMP levels in the presence of excess S-Con A remained at control levels for the first 24 hr and increased between 24 and 48 hr. LNC depleted of macrophages and B cells, when cultured in excess N-Con A, had an inhibition of DNA synthesis, elevated cAMP levels, and cell death comparable to whole LNC. It seems unlikely, however, that the increase in cAMP mediates cell killing since cAMP was not elevated yet cell death occurred in nylon wool-purified T cells exposed to excess N-Con A. Dibutyryl cAMP, and prostaglandin E1, which markedly increase cAMP levels, failed to kill LNC at doses which totally inhibited DNA synthesis, and cells of the mouse T-lymphoma S49 and its cAMP-dependent protein kinase-deficient variant were killed equally by excess N-Con A. It is suggested that a sustained elevation of either cAMP or Ca2+ after early commitment may provide a significant mechanism of tolerogenesis.  相似文献   

10.
C6 glioma cells in culture were treated with 1 mM dibutyryl cyclic AMP (Db-cAMP) for 5, 8, 24 and 72 h. The cells were labelled with [3H]-thymidine before either the end, or the beginning, of the Db-cAMP treatment. The cell cycle passage was monitored by the simultaneous determination of DNA content and DNA synthesis in propidium iodide stained autoradiograms. The data revealed an early (t less than or equal to 3-8 h) and moderate inhibitory effect of Db-cAMP on all phases of the cell cycle except mitosis; some cells (2%) were completely blocked in the S phase. Later (8 less than t less than 24-72 h), the cycling of a substantial part of the population became inhibited in G1 phase. Microdensitometric texture analysis of Feulgen-stained nuclei, performed 24 h after administration of Db-cAMP, showed a higher inhomogeneity of the DNA distribution in cell nuclei, caused by the condensation of a part of the chromatin. This may reflect either changes in genome expression taking part in the process of cAMP induced differentiation or transit of some cells into quiescent G0 or S0 phases.  相似文献   

11.
The epidermal cell cycle of the pupal mesonotum of Galleria was investigated by the determination of mitotic indices, [3H]thymidine incorporation and flow-cytophotometric analysis during the first 48 h after pupation.Immediately after the pupal ecdysis nearly all epidermal cells are arrested in G2. Thereafter only a few mitoses occur, leading to a slow increase in the number of G1 nuclei. With the onset of a mitotic wave at a pupal age of 21 h this increase becomes more rapid. On day 2, the cell population reaches a plateau in the number of G1 (resp. G2) cells, reflecting a steady state between mitotic activity and DNA synthesis.A comparison of these cell cycle changes with known data of the time course of reprogramming and ecdysteroid titre leads to the conclusion that there is no causal relationship between DNA synthesis and cellular determination in the sense of a quantal cell cycle, and that DNA synthesis can precede the definite rise in ecdysteroid titre.  相似文献   

12.
The inhibitory action of transforming growth factor beta (TGF beta) on DNA synthesis in hepatocytes isolated from the liver of normal rats or from the liver remnant of rats 18 h following partial hepatectomy was compared. Continuous exposure to TGF beta inhibited DNA synthesis of cultured hepatocytes to a similar degree in both groups when labelled with 3H thymidine from 24-48 h or 48-72 h. At 20 pM TGF beta, 3H-thymidine incorporation was reduced by 64-78% in hepatocytes from normal liver and by 60-73% in cells from 18 h regenerating liver. The nuclear labelling index was reduced by 70-80% in all cells. Exposure to TGF beta at concentrations up to 500 pM from 0-24 h had no effect on 3H-thymidine incorporation, but exposure at 20 pM for 24 h periods thereafter was uniformally effective. These results indicate that there is no change in sensitivity of hepatocytes from 18 h regenerating liver to TGF beta, compared with normal cells, and that TGF beta may act at some point in the G1 phase of the cell cycle to inhibit hepatocyte growth.  相似文献   

13.
Summary Late gestation fetal rat hepatocytes can proliferate under defined in vitro conditions in the absence of added mitogens. However, this capacity declines with advancing gestational age of the fetus from which the hepatocytes are derived. The present studies were undertaken to investigate this change in fetal hepatocyte growth regulation. Examination of E19 fetal hepatocyte primary cultures using immunocytochemistry for 5-bromo-2′-deoxyuridine (BrdU) incorporation showed that approximately 80% of these cells traverse S-phase of the cell cycle over the first 48 h in culture. Similarly, 65% of E19 hepatocytes maintained in culture under defined mitogen-free conditions for 24 h showed nuclear expression of proliferating cell nuclear antigen (PCNA). These in vitro findings correlated with a high level of immunoreactive PCNA in immunofluorescent analyses of E19 liver. In contrast, E21 (term) liver showed little immunoreactive PCNA. The in vivo finding was recapitulated by in vitro studies showing that E21 hepatocytes had low levels of BrdU incorporation during the first day in culture and were PCNA negative shortly after isolation. However, within 12 h of plating, E21 hepatocytes showed cytoplasmic staining for PCNA. Although maintained under mitogen-free conditions, PCNA expression progressed synchronously to a nucleolar staining pattern at 24 to 48 h in culture followed by intense, diffuse nuclear staining at 60 h which disappeared by 72 h. This apparently synchronous cell cycle progression was confirmed by studies showing peak BrdU incorporation on the third day in culture. Whereas DNA synthesis by both E19 and E21 hepatocytes was potentiated by transforming growth factor α (TGFα), considerable mitogen-independent DNA synthesis was seen in hepatocytes from both gestational ages. These results may indicate that fetal hepatocytes come under the influence of an exogenous, in vivo growth inhibitory factor as term approaches and that this effect is relieved when term fetal hepatocytes are cultured.  相似文献   

14.
Lymphocyte cell cycle time was measured by the BUdR-Giemsa method for demonstrating sister chromatid differential staining. All 48 h cultures showed metaphases which were in their second division. This finding indicates that the recommended culture time of between 48–54 h for the analysis of 1st division metaphases in lymphocyte cultures is too long, and that a culture time of 38–40 h would be preferable. The 48 h cultures also showed a significantly higher mitotic index than the 72 h cultures suggesting that the continuous incorporation of BUdR may have a toxic effect. The majority of 72 h cultures showed 1st, 2nd and 3rd division metaphases, but there was considerable variation among donors. There was a positive correlation between the number of 2nd division metaphases and the mitotic index.  相似文献   

15.
16.
Summary Testicular cells were prepared from neonatal (48 h after birth) mice by enzymatic dissociation and were cultured in serum-supplemented medium to investigate cell proliferation in vitro. The cultured cells were composed mostly of germ cells, identified by immunocytochemistry using a germ cell-specific antiserum, and supporting (immature Sertoli) cells. After 36 h in culture, the cells were pulse-labeled with 3H-thymidine and fixed at 2-h intervals for 36 h after labeling. Numbers of labeled and unlabeled metaphases of germ cells and supporting cells were counted, and percent labeled metaphases for both cell types were determined for cell-cycle analysis. The results indicate that germ cells, as well as supporting cells, incorporate 3H-thymidine and progress through the cell cycle in vitro. From the curve of the percent labeled metaphases for the supporting cells, the total cell cycle and intervals of DNA synthesis were estimated to be 27.2 h and 13.2 h, respectively.  相似文献   

17.
When exponentially growing KB cells were deprived of arginine, cell multiplication ceased after 12 h but viability was maintained throughout the experimental period (42-48 h). Although tritiated thymidine ([(3)H]TdR) incorporation into acid-insoluble material declined to 5 percent of the initial rate, the fraction of cells engaged in DNA synthesis, determined by autoradiography, remained constant throughout the starvation period and approximately equal to the synthesizing fraction in exponentially growing controls (40 percent). Continous [(3)H]TdR-labeling indicated that 80 percent of the arginine-starved cells incorporated (3)H at some time during a 48-h deprivation period. Thus, some cells ceased DNA synthesis, whereas some initially nonsynthesizing cells initiated DNA synthesis during starvation. Flow microfluorometric profiles of distribution of cellular DNA contents at the end of the starvation period indicated that essentially no cells had a 4c or G2 complement. If arginine was restored after 30 h of starvation, cultures resumed active, largely asynchronous division after a 16-h lag. Autoradiographs of metaphase figures from cultures continuously labeled with [(3)H]TdR after restoration indicated that all cells in the culture underwent DNA synthesis before dividing. It was concluded that the majority of cells in arginine-starved cultures are arrested in neither a normal G1 nor G2. It is proposed that for an exponential culture, i.e. from most positions in the cell cycle, inhibition of cell growth after arginine with withdrawal centers on the ability of cells to complete replication of their DNA.  相似文献   

18.
Summary Previous studies from our laboratory indicate that the adaptive response of the exocrine pancreas of the rat to prolonged stimulation with optimal doses of caerulein (0.25 g × kg-1 × h-1) follows a characteristic time course in which each step in the secretory pathway is activated. The immediate response is the depletion of zymogen-granule stores followed by coordinate and anticoordinate changes in individual rates of (pro-)enzyme synthesis after a lag period of 2 h. The sum of such changes leads to an increase in total rate of protein synthesis by 3 h which is combined with acceleration of intracellular transport packaging and granule discharge. In the present study the time course of DNA synthesis and the labeling index of five populations of pancreatic cells have been analyzed after caerulein stimulation for periods ranging from 6 to 72 h, using in vivo labeling with 1 Ci/g 3H-thymidine 1 h prior to sacrifice of the animals. DNA synthesis did not change during the initial 18 h in spite of persistent stimulation indicated by a 80% reduction of enzyme content. Following this lag period a sharp rise in DNA synthesis 20- to 25-fold above control levels was observed, which decreased by 48 h to reach control levels by 72 h. Increase in DNA synthesis was most pronounced in animals with lowest enzyme content in the pancreas. From the five cell populations studied by autoradiography interlobular duct cells and islet cells had no significant increase in labeling index at any time of stimulation. Acinar cells, intralobular duct cells and interstitial cells showed a marked increase in labeling index after a latent period of 18 h with peak values at 36 h 30 to 50 times higher in intralobular duct and acinar cells, respectively, and 4 times higher in interstitial cells. The increased labeling indices in all three cell populations reverted to lower values at 48 h and reached control values by 72 h. The data indicate a phasic and limited growth response of the rat exocrine pancreas to persistent stimulation with acinar cells as the major contributing cell population.Supported by a grant from Deutsche Forschungsgemeinschaft (SFB215-C 3)  相似文献   

19.
The processes of hepatocyte multinucleation were studied in rats exposed to N-nitrosodimethylamine (NDMA). Using the immunohistochemical reaction to γ-tubulin, it was established that the number of cells containing three or more centrosomes increased 48 h after the NDMA injection. The formation of additional centrosomes in hepatocytes was shown to be based on the oxidative stress induced by NDMA metabolism with the participation of the cytochrome P450 superfamily. The administration of NDMA led to a sharp increase in the cytochrome P450 content in liver, especially 24 and 48 h (3.3 and 2.8 times, respectively) after the NDMA injection. The immunohistochemical reaction for cytochrome P4502E1 revealed an intensive staining of the cytoplasm of centrilobular hepatocytes 24 and 48 h after the NDMA action. In the same time period, a 1.1-2.0-fold increase occurs in the concentration of malonic dialdehyde (MDA) (a derivative of lipid peroxidation) and a 1.1-1.3-fold decrease in catalase activity (an enzyme of the cell antioxidative system). At a later time (72–120 h) after the NDMA action, the number of cells with three or more centrosomes, the intensity of cell cytoplasmic staining for cytochrome P450 2E1, and the concentrations of P450 and MDA in the liver decreased, whereas catalase activity increased. After 48 h of NDMA treatment, the incorporation of binuclear hepatocytes with various 3H-thymidines into nuclei occured, which indicates asynchronous DNA synthesis. The immunohistochemical reaction for pKi-67, nuclear protein that is a marker of cell proliferation, has established that the asynchronicity of nuclear proliferative activity in binuclear cells is not only characteristic of the S phase, but also of other cell cycle phases, including G1, G2, and M. Thus, the main mechanisms of hepatocyte multinucleation under the influence of NDMA are as follows: (1) increased hyperamplification of centrosomes as a consequence of oxidative stress and (2) asynchronous DNA synthesis in nuclei of binuclear hepatocytes with subsequent asynchronous acytokinetic mitosis.  相似文献   

20.
Baby hamster kidney cells (BHK-21) were exposed to culture filtrates of 4 Fusarium moniliforme isolates containing varying levels of fumonisin B1 (FMB1) and the effects upon RNA, DNA and protein synthesis were monitored. Cells were also grown on medium amended with FMB1 only for comparison. After 24 h incubation FMB1 (100 μg/100 ml medium) reduced protein synthesis by 4% and by 18% after 48 h. Culture filtrates containing the highest levels of FMB1 also caused the greatest inhibition in protein synthesis after 24 h but after 48 h protein synthesis levels were the same as controls even though the FMB1 level was 360 μg/100 ml. Only FMB1 reduced DNA synthesis, by 8% after 24 h but after 48 h DNA levels had increased by 40 % over controls. The culture filtrates containing the highest levels of FMB1 (360 μg/100 ml) reduced DNA synthesis more than 50% after 24 h and 48 h. Culture filtrates containing lesser amounts of FMB1 in some instances stimulated DNA synthesis and inhibited it in others. There was also no correlation in the level of FMB1 with the inhibition of RNA synthesis by BHK cells. It appears that metabolites other than fumonisin produced by F. moniliforme in culture can affect and both stimulate and inhibit RNA, DNA and protein synthesis by BHK cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号