首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Resting, daytime, thermal conductances and metabolic rates of mice conditioned to winter (10:14LD) and summer (14:10LD) photoperiods were reduced by social huddling; huddling resulted in group size related elevations in core temperature during summer, but not with winter light-dark cycle exposures. 2. Core temperatures of resting, solitary winter animals were lower than those of summer; both summer and winter animals' core temperatures were further reduced by increased thermal conductance resulting from (phentolamine) alpha receptor blockade. 3. Social huddling reduction of the heat loss from phentolamine treatment was more effective for winter (10:14LD) animals. 4. While phentolamine treatment resulted in increased thermal conductance and lower core temperatures of the mice, propranalol treatment resulted in lower core temperatures and resting metabolic rates, with a resulting decrease in thermal conductance. 5. Since adrenergic blockade was less dose-effective on winter animals, we reasoned that winter animals display higher levels of endogenous adrenergic capacity than summer animals and that lower winter thermoregulatory set points provide for energy conservation with enhanced capacity for meeting cold challenge.  相似文献   

2.
Heat stress has detrimental effects on livestock via diverse immune and physiological changes; heat-stressed animals are rendered susceptible to diverse diseases. However, there is relatively little information available regarding the altered immune responses of domestic animals in heat stress environments, particularly in cattle steers. This study aimed to determine the changes in the immune responses of Holstein and Jersey steers under heat stress. We assessed blood immune cells and their functions in the steers of two breeds under normal and heat stress conditions and found that immune cell proportions and functions were altered in response to different environmental conditions. Heat stress notably reduced the proportions of CD21+MHCII+ B cell populations in both breeds. We also observed breed-specific differences. Under heat stress, in Holstein steers, the expression of myeloperoxidase was reduced in the polymorphonuclear cells, whereas heat stress reduced the WC1+ γδ T cell populations in Jersey steers. Breed-specific changes were also detected based on gene expression. In response to heat stress, the expression of IL-10 and IL-17A increased in Holstein steers alone, whereas that of IL-6 increased in Jersey steers. Moreover, the mRNA expression pattern of heat shock protein genes such as Hsp70 and Hsp90 was significantly increased in only Holstein steers. Collectively, these results indicate that altered blood immunological profiles may provide a potential explanation for the enhanced susceptibility of heat-stressed steers to disease. The findings of this study provide important information that will contribute to developing new strategies to alleviate the detrimental effects of heat stress on steers.  相似文献   

3.
The effects of long-term starvation on the body composition of the isopod Porcellio scaber (Latreille) and the collembolan Orchesella cincta (L.) were studied, by determining the body composition in starved and fed animals. A period under summer conditions (19 degrees C, 75% RH and L/D 16/8 photoperiod), was followed by a period under winter conditions (5 degrees C, 75% RH and LD 6/18 photoperiod). O. cincta was held under summer conditions for 3weeks, during which its protein and lipid content decreased, while its water content increased. In P. scaber, the same occurred during the 6weeks they were kept under summer conditions. During subsequent weeks under winter conditions, changes in cold tolerance of the animals were investigated. Cold tolerance and haemolymph osmolality were measured once a week. Starved animals had lower cold tolerance than fed ones. For P. scaber a decreased haemolymph osmolality was found in starved animals compared to fed ones. This is assumed to be caused by a combination of the consumption of carbohydrates out of the haemolymph and of protein reserves and the accumulation of body water. O. cincta appeared to be capable of osmoregulation, as haemolymph osmolality did not differ between starved and fed animals, despite differences in body water content. Decreased cold tolerance in starved animals of both species may be caused by increased water content or, more probably, by the decrease in reserves needed to produce cryoprotective substances.  相似文献   

4.
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental (Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature (T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature (T a), and black globe temperatures (T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core (R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.  相似文献   

5.
All organisms must maintain body temperature within a suitable range and be able to sense the environmental temperature variations. However, it remains largely unknown how thermal sensing systems have evolved in animals. The transient receptor potential cation channel (TRP) protein family acts as warm/heat or cool/cold receptors by changing the probability of channel opening in response to thermal stimulation. Here, we examined the selective pressures acting on the transmembrane region of six segments (S1~S6) of thermo-TRP family members. Our results showed that there exist positive selection sites in heat receptors, but not in cold receptors. When all sequences of thermal TRP channels were pooled together, more significant selection pressures were found in the linker region between the transmembrane segments at the external side of the cellular membrane. Moreover, the P-loop region between S5 and S6 contains the most selected sites, indicating their importance in the thermal sense. Our study suggests that the heat receptor is more evolutionarily diverse than the cold receptor. This is consistent with the idea that hot environments usually have high heterogeneity, and that it is of great biological importance for animals to choosewarm basking places or escape harsh environments which are hot and dangerous such as forest fires.  相似文献   

6.
In this study body temperature (BT, °C) and panting score (PS, 0–4.5; where 0?=?no panting/no stress and 4.5?=?catastrophic stress) data were obtained from 30 Angus steers housed outside over 120 days Steers were implanted with a BT transmitter on day ?31, BT was recorded at 30-min intervals to a data logger and downloaded each day to a database. The cattle were housed in ten outdoor un-shaded pens with an earthen floor, eight of which had a pen floor area of 144 m2 (three transmitter steers plus five non-transmitter steers; 18 m2/steer) and two had an area of 168 m2 (three transmitter steers and six non-transmitter steers; 18.7 m2/steer). Only data from the transmitter steers were used in this study. The PS of the steers was obtained daily (± 15 min) at 0600 hours (AM), 1200 hours (MD) and 1600 hours (PM). At the same times climate variables (ambient temperature, black globe temperature, solar radiation, relative humidity, wind speed and rainfall) were obtained from an on-site weather station. PS observations were made from outside the pens so as not to influence cattle responses. The two closest BT values to the time when PS was obtained were downloaded retrospectively from a logger and averaged. A total of 8,352 observations were used to generate second order polynomial response curves: (AM) y?=?39.08?+?0.009?x +?0.137x 2 (R 2?=?0.94; P? y?=?39.09?+?0.914x ? 0.080x 2 (R 2?=?0.89; P? y?=?39.52?+?0.790x ? 0.068x 2 (R 2?=?0.83; P?x?PS. These data suggest that PS is a good indicator of body temperature. The BT at MD corresponded to slightly lower PS compared with PM, e.g., for PS 1; BT at MD?=?39.1?±?0.05 °C whereas BT at PM?=?39.5?±?0.05 °C. However during AM, BT was lower (P?相似文献   

7.
Climate change is producing an increase on extreme weather events around the world such as flooding, drought and extreme ambient temperatures impacting animal production and animal welfare. At present, there is a lack of studies addressing the effects of climatic conditions associated with energy intake in finishing cattle in South American feed yards. Therefore, two experiments were conducted to assess the effects of environmental variables and level of metabolizable energy intake above maintenance requirements (MEI) on performance and carcass quality of steers. In each experiment (winter and summer), steers were fed with 1.85 or 2.72 times of their requirements of metabolizable energy of maintenance. A total of 24 crossbred steers per experiment were used and located in four pens (26.25 m2/head) equipped with a Calan Broadbent Feeding System. Animals were fed with the same diet within each season, varying the amount offered to adjust the MEI treatments. Mud depth, mud scores, tympanic temperature (TT), environmental variables, average daily gain, respiration rates and carcass characteristics plus three thermal comfort indices were collected. Data analysis considered a factorial arrangement (Season and MEI). In addition, a repeated measures analysis was performed for TT and respiration rate. Mean values of ambient temperature, solar radiation and comfort thermal indices were greater in the summer experiment as expected (P<0.005). The mean values of TT were higher in steers fed with higher MEI and also in the summer season. The average daily gain was greater during summer v. winter (1.10±0.11 v. 0.36±0.06) kg/day, also when steers were fed 2.72 v. 1.85 MEI level (0.89±0.12 v. 0.57±0.10) kg/day. In summer, respiration rate increased in 41.2% in the afternoon. In winter, muddy conditions increased with time of feeding, whereas wind speed and rainfall had significant effects on TT and average daily gain. We conclude that MEI and environmental variables have direct effects on the physiology and performance of steers, including TT and average daily gain, particularly during the winter. In addition, carcass characteristics were affected by season but not by the level of MEI. Finally, due to the high variability of data as well as the small number of animals assessed in these experiments, more studies on carcass characteristics under similar conditions are required.  相似文献   

8.
Monarch butterflies (Danaus plexippus) collected during winter in central California are reproductively inactive. Oögenesis is stimulated in such animals by environments simulating summer conditions. Allatectomized or neck-ligatured winter animals do not normally undergo oögenesis when placed in summer conditions, but apparently normal oögenesis occurs if they are injected with juvenile hormone isomers. Injections of such isomers into winter animals held in environments simulating winter also promote oögenesis, even though winter conditions typically inhibit ovarian development. Reproductive dormany in winter Monarchs of central California therefore appears to be due (at least partially) to environmentally induced inactivity of the corpora allata.  相似文献   

9.
10.
Two young male Caucasians volunteered for a study on the effects of cold exposure during night sleep in winter in the Arctic. The 14-day experiment was divided in three consecutive periods, baseline (2 nights), cold exposure (10 night) and recovery (2 nights). Both baseline and recovery data were obtained in neutral thermal conditions in a laboratory. The subjects slept in a sleeping bag under an unheated tent during the cold exposure. Apart from polysomnographic and body temperature recordings, electrocardiograms were taken through a telemetric system for safety purposes. Heart rates were noted at 5-min intervals and averaged hourly. In both environmental conditions, heart rate decreased within the first two hours of sleep. Comparison of the data obtained during cold exposure vs. thermal neutrality revealed lower values of heart rate in the cold, while body temperatures remained within normal range. This cold-induced bradycardia supervening during night sleep is discussed in terms of the occurrence of a vagal reflex preventing central blood pressure to rise.  相似文献   

11.
Pouched mice (Saccostomus campestris) were born in captivity during January and March and subsequently maintained under long photoperiod (14 h light: 10 h dark) at 25°C. During their first winter (July) and the following summer (January) the pouched mice were exposed to natural photoperiod in an unheated laboratory for 3 weeks prior to measurement. The pouched mice continued to grow during the study, and were significantly heavier after summer exposure than after winter exposure 6 months earlier. Although this increase in body mass would result in a decline in their surface area to volume ratio there was no significant decline in minimal thermal conductance (C m) and winter-exposed pouched mice had a relatively lowerC m than expected. Meanwhile the smaller, winter-exposed animals displayed a significantly higher capacity for non-shivering thermogenesis, together with higher levels of basal metabolism than summer individuals. These differences were not solely attributable to the contrasting body mass of each group and it is therefore clear thatS. campestris can increase thermoregulatory heat production, and modify heat loss following exposure to short photoperiod and cold during their first winter. Despite the significant increase in metabolism, the overall energy requirements of small, winter-exposed animals were significantly lower than those for heavier pouched mice following exposure to summer conditions. These results suggest that growing pouched mice can effectively adapt to lower temperature conditions during their first winter, yet accrue considerable overall savings in total energy requirements as a result of their smaller body mass.  相似文献   

12.
The objectives of the two experiments were to determine the respective effects and interactions of diet type (grass v. maize diets) and physical activity (grazing v. zero grazing) on lipogenic enzyme activities and adipose cell size in subcutaneous, perirenal and intermuscular adipose tissues and on plasma metabolites and hormones in Charolais steers. After weaning, the steers were assigned to two (Experiment 1, n = 24) or three (Experiment 2, n = 24) groups, with steers in Experiment 1 grazed grass or indoors maize-silage-fed and steers in Experiment 2 grazed grass, indoors cut grass- or indoors maize-silage-fed. Both experiments lasted for 23 months. All grass-fed animals were fed grass silage during the two winter seasons. During the two summer seasons, steers fed on grass were rotationally grazed on a perennial rye-grass pasture while steers fed on cut grass were fed indoors on freshly cut grass alone. Steers fed on maize silage were fed maize silage indoors during the entire experiment. All animals were reared for similar body weight and growth rates and slaughtered at the same age (31 to 32 months). Activities of lipogenic enzymes were significantly lower in the three adipose tissue sites of steers fed cut grass compared with maize silage, although there were less-marked effects in intermuscular adipose tissue. Plasma insulin and glucose concentrations were also lower in steers fed cut grass whereas plasma leptin concentration was similar. As body fat content was not affected by nutritional treatment, it is suggested that the decrease in potential lipogenic activity was associated with the nature of the diet and not to differences in available net energy. In other respects, grazed grass compared with eating cut grass did not affect lipogenic enzyme activities but decreased plasma leptin concentrations in the older steers and increased plasma non-esterified fatty acids and glucose concentrations without affecting adipose tissue weight and adipose cell size.  相似文献   

13.
A novel molecular technique was used to measure blubber testosterone (BT) in 114 male short-beaked common dolphins, Delphinus delphis , collected from incidental fishery bycatch and strandings. When these concentrations were compared across maturity states, the mean (± SEM) BT levels of mature D. delphis (14.3 ± 3.0 ng/g) were significantly higher than those of pubertal (2.5 ± 0.5 ng/g, P = 0.006) and immature animals (2.2 ± 0.3 ng/g, P < 0.0001). BT concentrations in mature males were significantly higher in summer months (53.9 ± 2.0 ng/g) than during the rest of the year (7.9 ± 0.69 ng/g, P < 0.0001), indicating reproductive seasonality. An analysis of BT in different anatomical locations showed that hormone concentrations were not homogenous throughout the body; the levels in the dorsal fin were significantly lower than in most other areas ( F = 5.39, P = 0.043). Conversely, we found no significant differences in BT concentration with respect to subepidermal depth ( F = 2.09, P = 0.146). Finally, testosterone levels in biopsies from 138 free-swimming male D. delphis , of unknown maturity state, sampled off California were found to be of concentrations similar to those from the fishery bycatch and stranding samples and revealed an analogous trend with respect to ordinal date.  相似文献   

14.
In nature, seasons may be more reliably announced by changes in photoperiod than in temperature. To evaluate the role of day length in setting oxidative capacities of trout muscle mitochondria, we acclimated trout to summer (15 °C, 16L:8D), winter (5 °C, 8L:16D) and mixed conditions (15 °C, 8L:16D). Maximal oxidative capacities of isolated mitochondria at 5 and 15 °C were higher in mixed than summer conditions and higher again in winter conditions. At 5 °C, state 4 rates changed little with acclimation state whereas at 15 °C state 4 rates were lower in summer than in mixed or winter conditions. Using concentrations of the adenylate nucleotide translocase as the denominator for these rates gave much the same conclusions. By using inhibitors to block flux at specific points in the electron transport chain, we found that flux through Complexes II–IV was lowest in summer acclimated trout, increased upon acclimation to mixed and to winter conditions. Flux through complex IV was similar in trout acclimated to summer and mixed conditions, but increased significantly with acclimation to winter conditions. Flux through complex IV was 1.5 fold higher than state 3 rates for summer-acclimated trout but was similar to state 3 rates in trout acclimated to mixed or winter conditions. Our results indicate that a reduction in day length initiates increases in mitochondrial oxidative capacity typically associated with cold acclimation and that acclimation to both cold temperatures and short day lengths enhanced these changes. The overall similarity of the responses of state 3, of flux through complexes II–IV and of flux through complex IV suggests that a generalised mechanism such as changes in the phospholipid composition of the inner mitochondrial membrane may coordinate these changes.  相似文献   

15.
Environmental factors play an important role in the seasonal adaptation of body mass and thermogenesis in small, wild mammals. To determine the contributions of photoperiod and cold on seasonal changes in energy metabolism and body mass, the resting metabolic rates (RMR), nonshivering thermogenesis (NST), energy intake and gut morphology of the tree shrews were determined in winter and summer and in laboratory acclimated animals. Body mass, RMR and NST increased in winter, and these changes were mimicked by exposing animals to short-day photoperiod or cold in the animal house. Energy intake and digested energy also increased significantly in winter, and also during exposure of housed animals to both short-day photoperiod and cold. The lengths and weights of small intestine increased in winter. These results indicated that Tupaia belangeri overcomes winter thermoregulatory challenges by increasing energy intake and thermogenesis, and adjusted gut morphology to balance the total energy requirements. Short-day photoperiod and cold can serve as environmental cues during seasonal acclimatization.  相似文献   

16.
This study investigated patterns of heat loss in bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay, FL, USA, where water temperatures vary seasonally from 11 to 33°C. Simultaneous measurements of heat flux (HF) and skin surface temperature were collected at the body wall and appendages of dolphins during health-monitoring events in summer (June 2002–2004) and winter (February 2003–2005). Integument thickness was measured and whole body conductance (W/m2 °C) was estimated using HF and colonic temperature measurements. Across seasons, HF values were similar at the appendages, but their distribution differed significantly at the flipper and fluke. In summer, these appendages displayed uniformly high values, while in winter they most frequently displayed very low HF values with a few high HF values. In winter, blubber thickness was significantly greater and estimated conductance significantly lower, than in summer. These results suggest that dolphins attempt to conserve heat in winter. In winter, though, HF values across the body wall were similar to (flank) or greater than (caudal keel) summer values. It is likely that higher winter HF values are due to the steep temperature gradient between the body core and colder winter water, which may limit the dolphin’s ability to decrease heat loss across the body wall.  相似文献   

17.
Cold hardiness and biochemical changes were investigated in winter and summer pupae of the cabbage armyworm Mamestra brassicae at the diapause and post-diapause stages under temperature acclimation. Diapause pupae were successively acclimated to 25, 20 and then 10 degrees C (warm-acclimated group). Pupae at the diapause and post-diapause stages were successively acclimated to 5, 0, -5 and then -10 degrees C (cold-acclimated groups). Supercooling point values in winter and summer pupae remained constant regardless of the diapause stages and acclimated temperatures. Warm-acclimated pupae at the diapause stage did not survive the subzero temperature exposure, whereas, cold-acclimated pupae achieved cold hardiness to various degrees. Winter pupae were more cold hardy than summer pupae, and pupae at the post-diapause stage were more cold hardy than those at the diapause stage. Trehalose contents in winter pupae rose under cold acclimation. Summer pupae accumulated far lower trehalose contents than winter pupae, with the maximal level occurring in winter pupae at the post-diapause stage. Glycogen content remained at a high level in diapause pupae after warm acclimation, whereas it decreased after cold acclimation. Alanine, the main free amino acid in haemolymph after cold acclimation, increased at lower temperatures in both diapause and post-diapause pupae, but the increase was greater in the diapause pupae. These results suggest that cold hardiness is more fully developed in winter pupae than in summer pupae, and cold acclimation provides higher cold hardiness in winter pupae at the post-diapause stage than at the diapause stage.  相似文献   

18.

Background

The purpose of this study was to elucidate the interaction between mtDNA haplogroup and seasonal variation that contributes to cold adaptation.

Methods

There were 15 subjects (seven haplotype D subjects and eight haplotype non-D subjects). In summer and winter, the subjects were placed in an environment where the ambient temperature dropped from 27 °C to 10 °C in 30 minutes. After that, they were exposed to cold for 60 minutes.

Results

In summer, the decrease in rectal temperature and increase in oxygen consumption was smaller and cold tolerance was higher in the haplotype non-D group than in the haplotype D group. In winter, no significant differences were seen in rectal temperature or oxygen consumption, but the respiratory exchange ratio decreased in the haplotype D group.

Conclusions

The results of the present study suggest that haplogroup D subjects are a group that changes energy metabolism more, and there appears to be a relationship between differences in cold adaptability and mtDNA polymorphism within the population. Moreover, group differences in cold adaptability seen in summer may decrease in winter due to supplementation by seasonal cold acclimatization.  相似文献   

19.
In organisms with complex life cycles, the adaptive value of thermotolerance depends on life-history timing and seasonal temperature profiles. We illustrate this concept by examining variation in annual thermal environments and thermal acclimation among four geographic populations of the pitcher plant mosquito. Only diapausing larvae experience winter, whereas both postdiapause and nondiapause adults occur only during the growing season. Thus, adults experience transient cold stress primarily during the spring. We show that adult cold tolerance (chill coma recovery) is enhanced in spring-like conditions via thermal acclimation but is unaffected by diapause state. Moreover, adult mosquitoes from northern populations were more cold tolerant than those from southern populations largely because acclimation responses were steeper in the north. In contrast to cold tolerance, there was no significant acclimation of heat tolerance (heat knockdown), and no significant differences in heat tolerance between northern and southern populations. Field temperature data show that because of evolved differences in diapause timing, adult exposure to cold stress is remarkably consistent across geography. This suggests that geographic variation in cold tolerance may not be the result of direct selection on adults. Our results illustrate the importance of the interplay between phenological and thermal adaptation for understanding variation along climatic gradients.  相似文献   

20.
The monthly patterns of aboveground biomass allocation were studied in the branches of six Mediterranean sub-shrubs with different leaf phenology. Four of them were seasonally dimorphic species, and the remaining two were a winter deciduous and a cushion plant with photosynthetic stems. By the analysis of these species we aimed to identify different aboveground biomass allocation patterns within seasonally dimorphic species and to understand the role of seasonal dimorphism as a strategy to avoid the main stresses of mediterranean climate: summer drought and winter cold. The biomass allocation to the different living and photosynthetic fractions of 3-year-old branches was studied monthly for a minimum of 13 months per species. Leaf area (LA, mm2) and leaf mass per area (LMA, mg cm−2) measurements were used to characterize the diverse types of leaves of each species. Standing dead and senescent tissues accounted for a great percentage of the branch biomass of seasonally dimorphic species both during summer and winter. Different patterns of photosynthetic biomass allocation were found within the seasonally dimorphic species analysed. These patterns ranged from the moderate photosynthetic biomass oscillation of Salvia lavandulifolia to the almost deciduousness of Lepidium subulatum, and they were achieved by keeping alive, drying out or shedding different types of branches and leaves throughout the year. The formation of stress tolerant leaves and the reduction in the amount of photosynthetic biomass responded both to the occurrence of summer drought and winter cold. These results demonstrate that seasonal dimorphism is a flexible ecological strategy, as it comprises very different leaf phenologies and enables plants to escape both summer drought and winter cold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号