首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Theory predicts that in more stressful environments, positive plant-plant interactions should be more important than negative ones. For instance, in arid and semiarid regions, amelioration of soil drought produced by the shade of established plants could facilitate establishment of other species, in spite of light reduction. However, this theory has not been tested widely in the context of plant invasion. In this paper we evaluated the hypothesis that in a semiarid ecosystem of central Chile, the native tree, Lithrea caustica, should facilitate through positive shading effects, the seedling establishment of two widely planted and invasive forestry species, Pinus radiata and Eucalyptus globulus. We assessed the seedling establishment examining two processes: seedling recruitment (including germination) and subsequent seedling survival. We sowed seeds (to assess recruitment) and planted 8 months old seedlings (to assess seedling survival) of each exotic species under Lithrea patches, open sites and under an artificial shade mimicking Lithrea shading. The study was repeated in a north-facing and a south-facing slope in the study area located in a xeric zone within the distribution range of plantations of these species in central Chile. Our results show that in a north-facing slope Lithrea had positive effects on recruitment of both species, which was produced by shading. These effects were counteracted by negative effects on seedling survival but through a different mechanism, which suggests that Lithrea would have no significant effect on the whole seedling establishment process of Pinus radiata nor Eucalyptus globulus in this habitat. In turn, in a south-facing slope Lithrea had no significant effect on recruitment but had a negative effect on seedling survival, which was not produced by shading. This suggests that in this habitat Lithrea has a negative effect on the seedling establishment of these exotic species. Our results suggest that the effect of the native Lithrea caustica on the seedling establishment of these exotic species is dependent upon the life-cycle phase (recruitment or seedling survival) and habitat even within the same semiarid ecosystem. In contrast to the expected positive effects Lithrea is unlikely to facilitate seedling establishment of these exotic species in this area, and in fact in some habitats this effect could be negative. However, our results also suggest that a common mechanism proposed to resist invasion in forest ecosystems such as shading, probably is not sufficient to inhibit invasion in a semiarid region.  相似文献   

3.
Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co‐occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.  相似文献   

4.
Many tropical regions show one distinct dry season. Often, this seasonality induces cambial dormancy of trees, particularly if these belong to deciduous species. This will often lead to the formation of annual rings. The aim of this study was to determine whether tree species in the Bolivian Amazon region form annual rings and to study the influence of the total amount and seasonal distribution of rainfall on diameter growth. Ring widths were measured on stem discs of a total of 154 trees belonging to six rain forest species. By correlating ring width and monthly rainfall data we proved the annual character of the tree rings for four of our study species. For two other species the annual character was proved by counting rings on trees of known age and by radiocarbon dating. The results of the climate–growth analysis show a positive relationship between tree growth and rainfall in certain periods of the year, indicating that rainfall plays a major role in tree growth. Three species showed a strong relationship with rainfall at the beginning of the rainy season, while one species is most sensitive to the rainfall at the end of the previous growing season. These results clearly demonstrate that tree ring analysis can be successfully applied in the tropics and that it is a promising method for various research disciplines.  相似文献   

5.
Precipitation pulses play an important role in regulating ecosystem carbon exchange and balance of semiarid steppe ecosystems. It has been predicted that the frequency of extreme rain events will increase in the future, especially in the arid and semiarid regions. We hypothesize that large rain pulses favor carbon sequestration, while small ones cause more carbon release in the semiarid steppes. To understand the potential response in carbon sequestration capacity of semiarid steppes to the changes in rain pulse size, we conducted a manipulative experiment with five simulated rain pulse sizes (0, 5, 10, 25, and 75 mm) in Inner Mongolia steppe. Our results showed that both gross ecosystem productivity (GEP) and ecosystem respiration (Re) responded rapidly (within 24 h) to rain pulses and the initial response time was independent of pulse size. However, the time of peak GEP was 1–3 days later than that of Re, which depended on pulse size. Larger pulses caused greater magnitude and longer duration of variations in GEP and Re. Differences in the response time of microbes and plants to wetting events constrained the response pattern of heterotrophic (Rh) and autotrophic (Ra) components of Re following a rain event. Rh contributed more to the increase of Re in the early stage of rain pulse response, while Ra played an more important role later, and determined the duration of pulse response, especially for large rain events of >10 mm. The distinct responses of ecosystem photosynthesis and respiration to increasing pulse sizes led to a threshold in rain pulse size between 10 and 25 mm, above which post wetting responses favored carbon sequestration. The disproportionate increase of the primary productivity of higher plants, compared with those in the activities of microbial decomposers to larger pulse events suggests that the carbon sequestration capacity of Inner Mongolia steppes will be sensitive to changes in precipitation size distribution rather than just precipitation amount.  相似文献   

6.
7.
Distribution patterns of tree species in a Malaysian tropical rain forest   总被引:5,自引:0,他引:5  
Abstract. Spatial patterns of tree species were studied in a 50-ha tropical rain forest plot in the Pasoh forest, Malaysia. This forest is characterized by a high diversity and very high number of rare species. Out of the 745 species occurring with > five individuals, 80.4 % had an aggregated distribution, 19.5% were randomly distributed and one species had a regular distribution. The spatial patterns of rare vs. common species, juvenile vs. adult trees, and coarse vs. fine scales were compared. Rare species are generally less aggregated than common ones and most of the randomly distributed species are rare. Spatial patterns shift from high clumping to looser intensity or random distribution when moving from juveniles to adults for the same species. No adult tree species display a regular pattern, however. Regular distributions were rarely found; this is probably due to intraspecific competition at a local scale. There is a negative correlation between per capita death rate and population density. This study suggests that the Pasoh forest and its high diversity are subjected to multiple controlling factors, e.g., topography, spacing effect, density-dependent processes and species rarity. The importance of any factor changes across spatial and temporal scales.  相似文献   

8.
为科学筛选提升南亚热带人工林生产力的树种配置模式,选择南亚热带8个乡土树种,采用随机区组的试验设计,建立了树种多样性梯度(1、2、4、6个树种)人工新造林试验平台,研究树种多样性及不同功能特性树种混交对人工林早期树木生长的影响。结果表明: 在树木生长第5年,树木生长并没有随树种多样性增加而增加;速生树种马尾松和米老排纯林生长量是珍贵树种红椎和格木纯林的2.5~4.5倍;2个树种混交和4个树种混交情况下,针阔树种混交、速生树种与固氮树种混交显著提高树木生长量51.5%~132.8%,而当6个树种混交时,不同树种组配对生长量没有显著影响。不同树种配置模式下土壤氮、磷养分是影响树木早期生长的主要因素。针阔树种混交、速生和固氮树种混交能显著提高南亚热带人工林树木的早期生长。  相似文献   

9.
北方四种城市树木蒸腾耗水的环境响应   总被引:1,自引:1,他引:1  
2008年6-8月,以大连市劳动公园内雪松、大叶榉、水杉和丝棉木4种树木作为研究对象,采用热扩散探针(TDP)法对其树干边材液流进行了连续动态测定,并同步测定了土壤水分与小气候等环境因子.结果表明:观测季节内,树木所处立地条件下不存在水分胁迫,树木液流与土壤湿度相关性不显著(R2<0.05,P>0.211,n=1296).4种样木白天液流速率与太阳辐射变化存在“时滞”现象,液流速率的相关系数(R2)在0.624~0.773(P=0.00,n=1296),其影响主要集中在5:00-8:00和18:00-20:00辐射骤变期间(R2 >0.700,P<0.05).水汽压亏缺(VPD)是影响样木夜间蒸腾的主要因子(R2>0.660,P<0.05,n=1872),与全天液流速率的R2值在0.650.~0.823(P=0.00,n=1296),以VPD建立的统计模型可以解释90%以上全天液流的变化(P=0.00).风速与树木液流呈极显著相关关系,但R2值 小于前两者(R2<0.380,P=0.00,n=1296).此外,树木液流的环境响应存在饱和现象.  相似文献   

10.
Sudden but transient changes in the fraction or illuminated foliage area in a well-watered 7-year-old Pinus radiata D. Don tree were imposed by completely covering either the upper 22% or the lower 78% of the foliage for periods of up to 36 h. Measurements of transpiration flux density (E), tree conductance (gt), stomatal conductance (gs) and net photosynthesis (A) were made to test the hypothesis that compensatory responses would occur in the remaining illuminated foliage when the cover was installed. When the lower foliage was covered there was an immediate decrease in gt. However, when tree conductance was normalized with respect to the illuminated leaf area (gt'), it increased between 50 and 75%, depending on the value of air saturation deficit (D). The effect was also apparent from concurrent measurements of increases in gs and A up to 59 and 24%, respectively, for needles in the top third of (he crown. When the cover was removed these effects were reversed. The changes in the lower foliage when the upper foliage was covered were much smaller. Changes in bulk needle water potential were small. It is suggested that the observed responses occurred because of a perturbation to the hydraulic pathway in the xylem that could have triggered the action of a chemical signal to regulate stomatal conductance and photosynthesis.  相似文献   

11.
Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.  相似文献   

12.
The elemental composition of the deposit formed on the bark of ash-trees was studied over several months on stems ranging from 3 months to 10 years. For this purpose (1) the total elemental composition of the deposit, (2) the structure and composition of the solid particles and (3) the deposit dry weight per dm2 were studied. Concurrently the part of this superficial deposit washed out by rain during 3.5 months was sampled at each rain event and its elemental composition analyzed. This study shows that the deposit was submitted to an intense turnover, with an average leaching-out flux reaching approximately 27 mg dm−2 month−1 and a very low increase of the deposit weight per dm2 during the first five years and almost null afterwards. The origin of this superficial deposit was investigated. The main part (78 ± 10%) was organic matter originating from the atmospheric deposition or from the tree. The inorganic content originated partly from the atmosphere, with geogenic and anthropogenic particles, and also from the tree, in which it was demonstrated by scanning electron microscopy - energy dispersive X-ray that a non-negligible part was obtained from bark transpiration, inducing a superficial deposit, mainly of Ca or K in the area surrounding the lenticels. All those results demonstrate that this bark superficial deposit is a complex matrix which must not be considered as a simple cumulative archive but which seems to be the source of interesting information targeting mostly recent atmospheric pollution pressures, when compared to the bulk of suber integrated particles.  相似文献   

13.
Quercus infectoria and Quercus libani are two important species distributed across most of the Kurdistan Region of Iraq's mountain ranges (KRI). They have significant ecological, medicinal, and socioeconomic values. Recent studies have documented how plant distributions have been impacted by climate change. This study's goal is to establish the existing distributions of both species, measure the consequences of prospective environmental conditions on their distributions, predict possible habitat distributions, map the overlapped habitat ranges for the species in the KRI, and identify the key factors influencing their distributions. For these aims, distribution data points of the species, different environmental factors, including the existing climate, three emission predictions for the 2050s, 2070s, and 2090s of two general circulation models (GCMs), a machine learning approach, and geospatial techniques were used. Modeling revealed that the total magnitude of the habitat increase for the species would be less than the overall magnitude of the habitat contraction. The yearly mean temperature, yearly precipitation, and minimum temperature during the coldest period mostly alter the target species' geographic dispersion. Across the three emission scenarios of the both models, Q. infectoria habitat would contract by 2760.9–2856.9 km2 (5.36–5.55%), 2856.9–3357.2 km2 (5.55–6.52%) and 2822.1–3400.2 km2 (5.48–6.60%), whereas it would expand by 1153.3–1638.9 km2 (2.24–3.18%), 761.0–1556.8 km2 (1.48–3.02%), and 721.5–1547.1 km2 (1.40–3.00%) for the 2050s, 2070s, and 2090s, respectively. A similar pattern was also noted for Q. libani. The two species' habitat ranges in KRI would be considerably reduced due to climate change. The species' estimated area would extend mostly to the east and southeast of the KRI at high altitudes. The mountain areas, notably those where the species overlap by 1767.2–1807.5 km2 (3.43–3.51%) for the two GCMs, must be the primary objective of conservation efforts. This research presents new baseline data for future research on mountain forest ecosystems and the techniques of biodiversity conservation to reduce climate change's effects in Iraq.  相似文献   

14.
15.
Sap flow measurements have long been used to measure transpiration in individual trees and there exist some well established methods for upscaling individual tree volumetric transpiration to areal transpiration in plantation and forest plots. However, where edge effects are significant, such as in tree belts, the area the volumetric transpiration is to be projected upon is unknown. This paper provides a methodology for estimating the area that a tree belt hydrologically occupies by using either measurements of tree root density or soil moisture distribution. An application of the proposed methodology shows that simply assuming that the area of the tree belt is the crown projected area could lead to an overestimation of the areal transpiration of 100%. The online version of the original article can be found at .  相似文献   

16.
17.
Sap flow measurements have long been used to measure transpiration in individual trees and there exist some well established methods for upscaling individual tree volumetric transpiration to areal transpiration in plantation and forest plots. However, where edge effects are significant, such as in tree belts, the area the volumetric transpiration is to be projected upon is unknown. This paper provides a methodology for estimaing the area that a tree belt hydrologically occupies by using either measurements of tree root density or soil moisture distribution. An application of the proposed methodology shows that simply assuming that the area of the tree belt is the crown projected area could lead to an overestimation of the areal transpiration of 100%. An erratum to this article can be found at  相似文献   

18.
Herrera  Bernal  Finegan  Bryan 《Plant and Soil》1997,191(2):259-267
A 28 yr old secondary lowland rain forest in Costa Rica was dominated by two tree species of contrasting ecologies, Vochysia ferruginea - a species typical of well-drained but infertile soils of high Al saturation, and Cordia alliodora, a species requiring soils of at least moderate fertility. The two species exhibited markedly different spatial distributions in the forest and we sought to determine whether or not these different distributions were related to variation in substrate conditions and the nutrient requirements of the two species. Two soil types were present: Ultisols (Typic Haplohumults) and Inceptisols (Typic Dystropepts) and topography was of low hills. The study formed part of an analysis of site quality for timber production in the two species and therefore used standard forestry methods for such analyses. 36 plots of 20 m×20 m were established using predetermined criteria of site uniformity, presence of at least four dominant trees of at least one of the study species, and absence of disturbance. The abundance (number of individuals 10 cm dbh) of each species was determined in each plot. Soil samples were taken in 27 of the 36 plots, 9 plots being considered to replicate conditions already sampled, and 14 soil chemical and physical variables were measured using standard methods. Foliar nutrient analyses were carried out for trees of both species with crowns fully exposed to sunlight, distributed across the gradient of soil conditions. Variations in species abundances were not related to soil type, but plots in which Vochysia ferruginea was more abundant tended to be on steeper slopes with soils of higher exchangeable acidity and lower concentrations of Mn; Cordia alliodora was more abundant on gentler topography where soils had much lower exchangeable acidity but higher Mn. Differences between the two species in foliar nutrient concentrations were marked and supported previous interpretations of their nutrient requirements; foliar nutrients of Vochysia ferruginea were typical of tree species of moist tropical forest on infertile soils, and those of Cordia alliodora typical of a species requiring more fertile soils. Factors such as the distributions of seed trees at site abandonment may affect the spatial distributions of tree species in secondary forests such as that studied. The relationships of the distributions of the two species to substrate variation, however, and their evidently different nutrient requirements, support the hypothesis that variation in the composition and structure of the forest studied is at least partially related to exchangeable acidity and its dominant cation, Al.  相似文献   

19.
20.
两种木兰科植物叶片光合作用的光驯化   总被引:9,自引:3,他引:6  
孙谷畴  赵平  曾小平 《生态学报》2004,24(6):1111-1117
测定了生长在全日、54%和21%日光强下需光植物火力楠(Michelia meachurei)和耐荫植物华东拟单性木兰(Parakmerialotungensis)叶片气体交换参数,用以估测降低光强对光合作用的限制和对低光的光驯化.生长在全日光强下火力楠的光饱和光合速率较华东拟单性木兰高.当日光强降低到54%,火力楠叶片光合速率降低幅度较华东拟单性木兰大.当日光降低至21%,华东拟单性木兰的表观量子产率和光能转换率较火力楠高.在全日光强下,火力楠的Vcmax较华东拟单性木兰高.随着日光强降低,两种木兰植物的Vcmax降低,当日光强降低至54%和21%,火力楠的Vcmax降幅较华东拟单性木兰大,火力楠Vcmax对光强降低较华东拟单性木兰敏感.生长光强降低,两种木兰植物内部CO2传导度(gi)降低.在低光强下火力楠仍保持较华东拟单性木兰高的gi.生长光强降低到全日光强的54%,火力楠gi对光合速率限制(Li)与在全日光强的条件下没有区别(p>0.05),表现火力楠gi对54%日光强的驯化;在54%的光条件下,华东拟单性木兰的呼吸速率对光合速率的限制(Lr)与全日光照无差别(p>0.05),显示呼吸速率对低光的驯化.两种木兰植物气孔导度对光合速率的限制(Ls)随光强降低而增大.在遮荫条件下种间叶特性差别明显,这亦反映出两种植物物种光合驯化的差异.火力楠gi对低光驯化,而华东拟单性木兰叶片对较高光强驯化更甚于对低光强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号