首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor protein p53 plays a central role in the multiple response pathways activated by DNA damage. In particular, p53 is involved in both the pro-survival response of cell cycle arrest and DNA repair, and the pro-death response of apoptosis. How does the p53 network coordinate the different pathways that lead to the opposite cell fates and what is its strategy in making the life-death decisions? To address these questions, we develop an integrated mathematical model that embraces three key modules of the p53 network: p53 core regulation, p53-induced cell cycle arrest and p53-dependent apoptosis initiation. Our analyses reveal that different aspects of the nuclear p53 dynamic profile are being used to differentially regulate the pro-survival and the pro-death modules. While the activation of the pro-survival module is dependent on the current or recent status of the DNA damage, the activation of the pro-death module relies on the accumulation or integration of the damage level over time. Thus, the cell will take the death fate if it cannot recover from the damage within a time period that is inversely proportional to the damage level. This “adaptive timer” strategy is likely to be adopted in other stress response systems.  相似文献   

2.
3.
Caspase activation is the 'point of no return' commitment to cell death. Synthesized as inactive zymogens, it is essential that the caspases remain inactive until the death signal is received. It is known for the downstream executioner caspases-3 and -7 that the activation event is proteolytic cleavage, and this had been assumed to apply to the initiator caspases as well. However, recent studies conducted on caspases-2, -8 and -9 have challenged this tenet of caspase activation. In this review we focus on the molecular details of caspase activation, with emphasis on recent work that provides a pleasing explanation for the differential requirements for the activation of executioner and initiator caspases.  相似文献   

4.
In Drosophila, the APAF-1 homolog ARK is required for the activation of the initiator caspase DRONC, which in turn cleaves the effector caspases DRICE and DCP-1. While the function of ARK is important in stress-induced apoptosis in Drosophila S2 cells, as its removal completely suppresses cell death, the decision to undergo apoptosis appears to be regulated at the level of caspase activation, which is controlled by the IAP proteins, particularly DIAP1. Here, we further dissect the apoptotic pathways induced in Drosophila S2 cells in response to stressors and in response to knock-down of DIAP1. We found that the induction of apoptosis was dependent in each case on expression of ARK and DRONC and surviving cells continued to proliferate. We noted a difference in the effects of silencing the executioner caspases DCP-1 and DRICE; knock-down of either or both of these had dramatic effects to sustain cell survival following depletion of DIAP1, but had only minor effects following cellular stress. Our results suggest that the executioner caspases are essential for death following DIAP1 knock-down, indicating that the initiator caspase DRONC may lack executioner functions. The apparent absence of mitochondrial outer membrane permeabilization (MOMP) in Drosophila apoptosis may permit the cell to thrive when caspase activation is disrupted.  相似文献   

5.
4-Hydroxynonenal (HNE), a reactive and cytotoxic end-product of lipid peroxidation, has been suggested to be a key mediator of oxidative stress-induced cell death and in various cell types has been shown to induce apoptosis. We have demonstrated that HNE, at micromolar concentrations, induces dose- and time-dependent apoptosis in a leukemic cell line (CEM-C7). Interestingly, much higher concentrations of HNE (> 15-fold) were required to induce apoptosis in leukocytes obtained from normal individuals. We also demonstrate that HNE causes a decrease in clonogenicity of CEM-C7 cells. Furthermore, our data characterize the caspase cascade involved in HNE-induced apoptosis in CEM-C7 cells. Using specific fluorogenic substrates and irreversible peptide inhibitors, we demonstrate that caspase 2, caspase 3, and caspase 8 are involved in HNE-induced apoptosis, and that caspase 2 is the first initiator caspase that activates the executioner caspase 3, either directly or via activation of caspase 8. Our studies also suggest the involvement of another executioner caspase, which appears to be similar to caspase 8 but not caspases 2 and 3, in its specificity. The demonstration of decreased clonogenicity by HNE in the leukemic cells, and their higher susceptibility to HNE-induced apoptosis as compared to the normal cells, suggests that such compounds may have potential for leukemia chemotherapy.  相似文献   

6.
The actin cytoskeleton is a well-known player in most vital cellular processes, but comparably little is understood about how the actin assembly machinery impacts programmed cell death pathways. In the current study, we explored roles for the human Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation factors in DNA damage-induced apoptosis. Inactivation of each WASP-family gene revealed that two of them, JMY and WHAMM, are necessary for rapid apoptotic responses. JMY and WHAMM participate in a p53-dependent cell death pathway by enhancing mitochondrial permeabilization, initiator caspase cleavage, and executioner caspase activation. JMY-mediated apoptosis requires actin nucleation via the Arp2/3 complex, and actin filaments are assembled in cytoplasmic territories containing clusters of cytochrome c and active caspase-3. The loss of JMY additionally results in significant changes in gene expression, including upregulation of the WHAMM-interacting G-protein RhoD. Depletion or deletion of RHOD increases cell death, suggesting that RhoD normally contributes to cell survival. These results give rise to a model in which JMY and WHAMM promote intrinsic cell death responses that can be opposed by RhoD.  相似文献   

7.
Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells.  相似文献   

8.
9.
Caspase 的活化机制   总被引:10,自引:1,他引:9       下载免费PDF全文
Caspase是一类与凋亡密切相关的蛋白水解酶家族,以Caspase前体酶原的形式存在大多后生动物的细胞中。Caspase在凋亡信号的作用下首先激活启动型Caspase引发Caspase级联反应,然后通过活化的执行型Caspase裂解特异性底物导致细胞凋亡。Caspase的活化是导致细胞凋亡的中心环节,位于Caspase级联反应上游的启动型Caspase的和下游的执行型Caspase有着明显不同的活化机制。  相似文献   

10.
11.
The p53 protein is well-known for its tumour suppressor function. The p53-MDM2 negative feedback loop constitutes the core module of a network of regulatory interactions activated under cellular stress. In normal cells, the level of p53 proteins is kept low by MDM2, i.e. MDM2 negatively regulates the activity of p53. In the case of DNA damage, the p53-mediated pathways are activated leading to cell cycle arrest and repair of the DNA. If repair is not possible due to excessive damage, the p53-mediated apoptotic pathway is activated bringing about cell death. In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective. We discuss a number of key predictions, related to some specific aspects of cell cycle arrest and cell death, which could be tested in experiments.  相似文献   

12.
The p53-MDM2 network: from oscillations to apoptosis   总被引:3,自引:0,他引:3  
The p53 protein is well-known for its tumour suppressor function. The p53-MDM2 negative feedback loop constitutes the core module of a network of regulatory interactions activated under cellular stress. In normal cells, the level of p53 proteins is kept low by MDM2, i.e. MDM2 negatively regulates the activity of p53. In the case of DNA damage, the p53-mediated pathways are activated leading to cell cycle arrest and repair of the DNA. If repair is not possible due to excessive damage, the p53-mediated apoptotic pathway is activated bringing about cell death. In this paper, we give an overview of our studies on the p53-MDM2 module and the associated pathways from a systems biology perspective.We discuss a number of key predictions, related to some specific aspects of cell cycle arrest and cell death, which could be tested in experiments.  相似文献   

13.
Mitochondria play a central role in maintaining cells alive, but are also important mediators of cell death. The main event in mitochondrial signalling and control of apoptosis is the permeabilisation of the outer mitochondrial membrane and the release of pro-apoptotic proteins into the cytosol from the mitochondrial intermembrane space. With respect to death receptor-mediated apoptosis, the activation of the mitochondrial pathway is required for apoptosis induction in cells which are described as “type II” cells whereas “type I” cells do not require it. In type I cells, activation of the extrinsic pathway is sufficient to induce apoptosis. This review deals with the events that enable cell death in type II cells, i.e., the signals that lead from death receptor stimulation to permeabilisation of the outer mitochondrial membrane. Caspase-8 and Bid are the known procurers of the death signal in this part of the apoptotic pathway. Currently many exciting new findings are emerging concerning the regulation of caspase-8 and Bid function and activation. We will take you on a journey through these new developments and point out what we consider the major unknowns in this field. We end our review on an up-to-date discussion of the determinants of the type I-type II cell distinction. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.  相似文献   

14.
Caspases are a family of cysteine proteases that are expressed as inactive zymogens and undergo proteolytic maturation in a sequential manner in which initiator caspases cleave and activate the effector caspases 3, 6 and 7. Effector caspases cleave structural proteins, signaling molecules, DNA repair enzymes and proteins which inhibit apoptosis. Activation of effector, or executioner, caspases has historically been viewed as a terminal event in the process of programmed cell death. Emerging evidence now suggests a broader role for activated caspases in cellular maturation, differentiation and other non-lethal events. The importance of activated caspases in normal cell development and signaling has recently been extended to the CNS where these proteases have been shown to contribute to axon guidance, synaptic plasticity and neuroprotection. This review will focus on the adaptive roles activated caspases in maintaining viability, the mechanisms by which caspases are held in check so as not produce apoptotic cell death and the ramifications of these observations in the treatment of neurological disorders.  相似文献   

15.
Caspases are cysteine proteases that are key effectors in apoptotic cell death. Currently, there is a lack of tools that can be used to monitor the regulation of specific caspases in the context of distinct apoptotic programs. We describe the development of highly selective inhibitors and active site probes and their applications to directly monitor executioner (caspase-3 and -7) and initiator (caspase-8 and -9) caspase activity. Specifically, these reagents were used to dissect the kinetics of caspase activation upon stimulation of apoptosis in cell-free extracts and intact cells. These studies identified a full-length caspase-7 intermediate that becomes catalytically activated early in the pathway and whose further processing is mediated by mature executioner caspases rather than initiator caspases. This form also shows distinct inhibitor sensitivity compared to processed caspase-7. Our data suggest that caspase-7 activation proceeds through a previously uncharacterized intermediate that is formed without cleavage of the intact zymogen.  相似文献   

16.
17.
The p53 tumor suppressor is activated in the cellular response to genotoxic stress. Transactivation of p53 target genes dictates cell cycle arrest and DNA repair or induction of apoptosis; however, a molecular mechanism responsible for these distinct functions remains unclear. Recent studies revealed that phosphorylation of p53 on Ser(46) was associated with induction of p53AIP1 expression, resulting in the commitment of the cell fate into apoptotic cell death. Moreover, upon exposure to genotoxic stress, p53DINP1 was expressed and recruited a kinase(s) to p53 that specifically phosphorylated Ser(46). Here, we show that the pro-apoptotic kinase, protein kinase C delta (PKCdelta), is involved in phosphorylation of p53 on Ser(46). PKCdelta-mediated phosphorylation is required for the interaction of PKCdelta with p53. The results also demonstrate that p53DINP1 associates with PKCdelta upon exposure to genotoxic agents. Consistent with these results, PKCdelta potentiates p53-dependent apoptosis by Ser(46) phosphorylation in response to genotoxic stress. These findings indicate that PKCdelta regulates p53 to induce apoptotic cell death in the cellular response to DNA damage.  相似文献   

18.
Caspase-8 is the prototypic initiator of the death domain receptor pathway of apoptosis. Here, we report that caspase-8 not only triggers and amplifies the apoptotic process at cytoplasmic sites but can also act as an executioner at nuclear levels. In a murine model of acute ischemia, caspase-8 is relocated into the nucleus of apoptotic neurons, where it cleaves PARP-2, a member of the poly(ADP-ribose) polymerase family involved in DNA repair. As indicated by site-directed mutagenesis, PARP-2 cleavage occurs preferentially at the LQMD sequence mapped between the DNA binding and the catalytic domains of the protein. This is close to the cleavage sequence found in Bid, the cytoplasmic target of caspase-8. Activity assays confirm that cleavage of PARP-2 results in inactivation of its poly(ADP-ribosylation) property, proportional to the efficiency of the cleavage. Our findings add to the complexity of proteolytic caspase networks by demonstrating that caspase-8 is in turn an initiator, amplifier, and effector caspase.  相似文献   

19.
Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis. [BMB Reports 2013; 46(12): 588-593]  相似文献   

20.
Mechanisms of caspase activation   总被引:37,自引:0,他引:37  
The core effectors of apoptosis encompass proteolytic enzymes of the caspase family, which reside as latent precursors in most nucleated metazoan cells. A majority of studies on apoptosis are based on the assumption that caspase precursors are activated by cleavage, a common mechanism for most protease zymogen activations. Although this appears to be true for the executioner caspases, recent research points to a distinct activation mechanism for the initiator caspases that trigger the apoptotic pathways. This mechanism is proximity-induced dimerization without cleavage, and its elucidation has led to the revision of concepts of feedback regulation of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号