首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The molecular heterogeneity of repolarizing currents produces significant spatial heterogeneity and/or dispersion of repolarization in many mammalian cardiac tissues. Transgenic mice are prominent experimental models for the study of the molecular basis of repolarization and arrhythmias. However, it is debated whether the small mouse heart can sustain physiologically relevant heterogeneity of repolarization. We used a comprehensive model of the mouse action potential (AP) to predict how small a region of the cardiac tissue can maintain spatial gradients of repolarization due to differential expression of channels. Our simulations of a one-dimensional multicellular ring or cable predict that substantial gradients in repolarization and intracellular Ca(2+) concentration transients can be maintained through heterogeneity of expression of K(+) channels in distances of approximately 10 cells that are sufficient to block propagation. The abruptness of expression gradients and the site of stimulation can cause Ca(2+) transient oscillations and affect the stability of Ca(2+) dynamics and AP propagation. Two different mechanisms of instability of AP propagation in one-dimensional cable occur at fast pacing rates. Transitions from periodic activity to alternans or to irregular behavior were observed. Abrupt gradients of channel expression can cause alternans at slower pacing rates than gradual changes. Our simulations demonstrate the importance of incorporating realistic Ca(2+) dynamics and current densities into models of propagated AP. They also emphasize that microscopic aspects of tissue organization are important for predicting large-scale propagation phenomena. Finally, our results predict that the mouse heart should be able to sustain substantial molecularly based heterogeneity of repolarization.  相似文献   

2.
Mathematical models are a repository of knowledge as well as research and teaching tools. Although action potential models have been developed for most regions of the heart, there is no model for the atrioventricular node (AVN). We have developed action potential models for single atrio-nodal, nodal, and nodal-His cells. The models have the same action potential shapes and refractoriness as observed in experiments. Using these models, together with models for the sinoatrial node (SAN) and atrial muscle, we have developed a one-dimensional (1D) multicellular model including the SAN and AVN. The multicellular model has slow and fast pathways into the AVN and using it we have analyzed the rich behavior of the AVN. Under normal conditions, action potentials were initiated in the SAN center and then propagated through the atrium and AVN. The relationship between the AVN conduction time and the timing of a premature stimulus (conduction curve) is consistent with experimental data. After premature stimulation, atrioventricular nodal reentry could occur. After slow pathway ablation or block of the L-type Ca2+ current, atrioventricular nodal reentry was abolished. During atrial fibrillation, the AVN limited the number of action potentials transmitted to the ventricle. In the absence of SAN pacemaking, the inferior nodal extension acted as the pacemaker. In conclusion, we have developed what we believe is the first detailed mathematical model of the AVN and it shows the typical physiological and pathophysiological characteristics of the tissue. The model can be used as a tool to analyze the complex structure and behavior of the AVN.  相似文献   

3.
Ionically based cardiac action potential (AP) models are based on equations with singular Jacobians and display time-dependent AP and ionic changes (transients), which may be due to this mathematical limitation. The present study evaluated transients during long-term simulated activity in a mathematical model of the canine atrial AP. Stimulus current assignment to a specific ionic species contributed to stability. Ionic concentrations were least disturbed with the K(+) stimulus current. All parameters stabilized within 6-7 h. Inward rectifier, Na(+)/Ca(2+) exchanger, L-type Ca(2+), and Na(+)-Cl(-) cotransporter currents made the greatest contributions to stabilization of intracellular [K(+)], [Na(+)], [Ca(2+)], and [Cl(-)], respectively. Time-dependent AP shortening was largely due to the outward shift of Na(+)/Ca(2+) exchange related to intracellular Na(+) (Na) accumulation. AP duration (APD) reached a steady state after approximately 40 min. AP transients also occurred in canine atrial preparations, with the APD decreasing by approximately 10 ms over 35 min, compared with approximately 27 ms in the model. We conclude that model APD and ionic transients stabilize with the appropriate stimulus current assignment and that the mathematical limitation of equation singularity does not preclude meaningful long-term simulations. The model agrees qualitatively with experimental observations, but quantitative discrepancies highlight limitations of long-term model simulations.  相似文献   

4.
This paper analyzes a new semiphysiological ionic model, used recently to study reexitations and reentry in cardiac tissue [I.R. Cantalapiedra et al, PRE 82 011907 (2010)]. The aim of the model is to reproduce action potencial morphologies and restitution curves obtained, either from experimental data, or from more complex electrophysiological models. The model divides all ion currents into four groups according to their function, thus resulting into fast-slow and inward-outward currents. We show that this simplified model is flexible enough as to accurately capture the electrical properties of cardiac myocytes, having the advantage of being less computational demanding than detailed electrophysiological models. Under some conditions, it has been shown to be amenable to mathematical analysis. The model reproduces the action potential (AP) change with stimulation rate observed both experimentally and in realistic models of healthy human and guinea pig myocytes (TNNP and LRd models, respectively). When simulated in a cable it also gives the right dependence of the conduction velocity (CV) with stimulation rate. Besides reproducing correctly these restitution properties, it also gives a good fit for the morphology of the AP, including the notch typical of phase 1. Finally, we perform simulations in a realistic geometric model of the rabbit’s ventricles, finding a good qualitative agreement in AP propagation and the ECG. Thus, this simplified model represents an alternative to more complex models when studying instabilities in wave propagation.  相似文献   

5.
6.
Several stimuli are proposed in the bone remodeling theory. It is not clear, if a unique solution exists and if the result is convergent using a certain stimulus. In this study, the strain stimulus, strain energy stimulus and the von Mises stress stimulus for bone remodeling are compared and applied to a square plate model using the finite element method. In the plane stress state, the remodeling equilibrium equations are transformed into functions of only the principal strains and the graphs of these functions are drawn in a diagram using the principal strains as the variables of two coordinate axes. The equation of the sum of principal strain squared equal to a constant is a circle in the diagram. The remodeling equilibrium equation of the strain stimulus is a quadrangle fitting into the circle, the remodeling equilibrium equation of the strain energy stimulus is an ellipse and the remodeling equilibrium equation of the von Mises stress stimulus is also an ellipse close to the principal strains circle when we take the same constants in the above equations. Using the finite element method, two models are performed with the uniform initial elastic properties and with the semi-random initial distribution of the elastic properties. The principal strains as the final finite element results converge within 2% of the objective constant for all the different stimuli. The obtained Young's moduli of two models as the adaptation object are different but in equilibrium, i.e. the equilibrium solution of adaptation model is not unique. The principal strains can not be used to examine the uniqueness of solution, since two different solutions can have the same results of principal strains. Using a certain stimulus, certain initial properties and a certain iterative equation, the solution is unique in equilibrium. The results using the model in this study show also that the same results can be obtained using any of the three stimuli when a proper constant in each remodeling equilibrium equation is chosen.  相似文献   

7.
Interrelations between the action of acetylcholine (ACh) and cadmium ions (Cd2+) on bioelectrogenesis of Nitellopsis obtusa cells were investigated. We analyzed repetitively triggered action potentials (AP), their reproducibility, shape and dynamics of membrane potential after AP induction. ACh significantly increased membrane permeability only at high concentrations (1 mM and 5 mM). Repolarisation level of action potential after the first stimulus was much more positive in all cells treated with ACh as compared to the control. Differences of membrane potentials between points just before the first and the second stimuli were 23.4±.0 mV (control); 40.4±5.9 mV (1 mM ACh solution) and 57.7 ± 8.5 mV (5 mM ACh solution). Cd2+ at 20 μM concentration was examined as a possible inhibitor of acetylcholinesterase (AChE) in vivo. We found that cadmium strengthens depolarizing effect of acetylcholine after the first stimulus. The highest velocity of AP repolarization was reduced after ACh application and Cd2+strengthened this effect. There were no differences in dynamics of membrane potential after repetitively triggered action potentials in ACh or ACh and Cd2+ solutions. This shows that cadmium in small concentration acts as inhibitor of acetylcholinesterase.  相似文献   

8.
We model electrical wave propagation in a ring of cardiac tissue using an mth-order difference equation, where m denotes the number of cells in the ring. Under physiologically reasonable assumptions, the difference equation has a unique equilibrium solution. Applying Jury’s stability test, we prove a theorem concerning the local asymptotic stability of this equilibrium solution. Our results yield conditions for sustained reentrant tachycardia, a type of cardiac arrhythmia.   相似文献   

9.
The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.  相似文献   

10.
The heart has the ability to respond to long-term changes in its environment through changes in mass (growth), shape (morphogenesis) and tissue properties (remodeling). For improved quantitative understanding of cardiac growth and remodeling (G&R) experimental studies need to be complemented by mathematical models. This paper reviews models for cardiac growth and remodeling of myofiber orientation, as induced by mechanical stimuli. A distinction is made between optimization models, that focus on the end stage of G&R, and adaptation models, that aim to more closely describe the mechanistic relation between stimulus and effect. While many models demonstrate qualitatively promising results, a lot of questions remain, e.g. with respect to the choice of the stimulus for G&R or the long-term stability of the outcome of the model. A continued effort combining information on mechanotransduction at the cellular level, experimental observations on G&R at organ level, and testing of hypotheses on stimulus-effect relations in mathematical models is needed to answer these questions on cardiac G&R. Ultimately, models of cardiac G&R seem indispensable for patient-specific modeling, both to reconstruct the actual state of the heart and to assess the long-term effect of potential interventions.  相似文献   

11.

Background

Cardiac arrhythmias are becoming one of the major health care problem in the world, causing numerous serious disease conditions including stroke and sudden cardiac death. Furthermore, cardiac arrhythmias are intimately related to the signaling ability of cardiac cells, and are caused by signaling defects. Consequently, modeling the electrical activity of the heart, and the complex signaling models that subtend dangerous arrhythmias such as tachycardia and fibrillation, necessitates a quantitative model of action potential (AP) propagation. Yet, many electrophysiological models, which accurately reproduce dynamical characteristic of the action potential in cells, have been introduced. However, these models are very complex and are very time consuming computationally. Consequently, a large amount of research is consecrated to design models with less computational complexity.

Results

This paper is presenting a new model for analyzing the propagation of ionic concentrations and electrical potential in space and time. In this model, the transport of ions is governed by Nernst-Planck flux equation (NP), and the electrical interaction of the species is described by a new cable equation. These set of equations form a system of coupled partial nonlinear differential equations that is solved numerically. In the first we describe the mathematical model. To realize the numerical simulation of our model, we proceed by a finite element discretization and then we choose an appropriate resolution algorithm.

Conclusions

We give numerical simulations obtained for different input scenarios in the case of suicide substrate reaction which were compared to those obtained in literature. These input scenarios have been chosen so as to provide an intuitive understanding of dynamics of the model. By accessing time and space domains, it is shown that interpreting the electrical potential of cell membrane at steady state is incorrect. This model is general and applies to ions of any charge in space and time domains. The results obtained show a complete agreement with literature findings and also with the physical interpretation of the phenomenon. Furthermore, various numerical experiments are presented to confirm the accuracy, efficiency and stability of the proposed method. In particular, we show that the scheme is second-order accurate in space.
  相似文献   

12.
Transgenic mice overexpressing tumor necrosis factor-α (TNF-α mice) possess many of the features of human heart failure, such as dilated cardiomyopathy, impaired Ca(2+) handling, arrhythmias, and decreased survival. Although TNF-α mice have been studied extensively with a number of experimental methods, the mechanisms of heart failure are not completely understood. We created a mathematical model that reproduced experimentally observed changes in the action potential (AP) and Ca(2+) handling of isolated TNF-α mice ventricular myocytes. To study the contribution of the differences in ion currents, AP, Ca(2+) handling, and intercellular coupling to the development of arrhythmias in TNF-α mice, we further created several multicellular model tissues with combinations of wild-type (WT)/reduced gap junction conductance, WT/prolonged AP, and WT/decreased Na(+) current (I(Na)) amplitude. All model tissues were examined for susceptibility to Ca(2+) alternans, AP propagation block, and reentry. Our modeling results demonstrated that, similar to experimental data in TNF-α mice, Ca(2+) alternans in TNF-α tissues developed at longer basic cycle lengths. The greater susceptibility to Ca(2+) alternans was attributed to the prolonged AP, resulting in larger inactivation of I(Na), and to the decreased SR Ca(2+) uptake and corresponding smaller SR Ca(2+) load. Simulations demonstrated that AP prolongation induces an increased susceptibility to AP propagation block. Programmed stimulation of the model tissues with a premature impulse showed that reduced gap junction conduction increased the vulnerable window for initiation reentry, supporting the idea that reduced intercellular coupling is the major factor for reentrant arrhythmias in TNF-α mice.  相似文献   

13.
Connective tissue growth factor (CTGF) is a secreted protein that is strongly induced in human and experimental heart failure. CTGF is said to be profibrotic; however, the precise function of CTGF is unclear. We generated transgenic mice and rats with cardiomyocyte-specific CTGF overexpression (CTGF-TG). To investigate CTGF as a fibrosis inducer, we performed morphological and gene expression analyses of CTGF-TG mice and rat hearts under basal conditions and after stimulation with angiotensin II (Ang II) or isoproterenol, respectively. Surprisingly, cardiac tissues of both models did not show increased fibrosis or enhanced gene expression of fibrotic markers. In contrast to controls, Ang II treated CTGF-TG mice displayed preserved cardiac function. However, CTGF-TG mice developed age-dependent cardiac dysfunction at the age of 7 months. CTGF related heart failure was associated with Akt and JNK activation, but not with the induction of natriuretic peptides. Furthermore, cardiomyocytes from CTGF-TG mice showed unaffected cellular contractility and an increased Ca2+ reuptake from sarcoplasmatic reticulum. In an ischemia/reperfusion model CTGF-TG hearts did not differ from controls.Our data suggest that CTGF itself does not induce cardiac fibrosis. Moreover, it is involved in hypertrophy induction and cellular remodeling depending on the cardiac stress stimulus. Our new transgenic animals are valuable models for reconsideration of CTGF''s profibrotic function in the heart.  相似文献   

14.
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.  相似文献   

15.
The levels of indole-acetic acid (IAA), gibberellic acid1 (GA1), trans-zeatin (Z) and trans-zeatin riboside (ZR) in seedless fruits of parthenocarpic tomato (Lycopersicon esculentum Mill. cv. Rarkuna First) were analysed using 13C6-IAA, 2H2-GA1, 2H5-Z and 2H5-ZR, as internal standards by liquid chromatography–mass spectrometry. Fruits were sampled at 6 cm in diameter (referred to as 6-cm-fruit) and 8 cm (8-cm-fruit, mature green stage) and separated into pericarps, partitions and locule tissues. The pericarps and partitions were centrifuged for the collection of apoplast (AP) solution (sap outside a cell) and symplast (SP) solution (sap within a cell). IAA concentrations of the pericarps and partitions were higher in 8-cm-fruit than in 6-cm-fruit. In the partitions, IAA concentrations of SP solution were higher than those of AP solution in both 6- and 8-cm-fruit. The SP solution of the partitions in 6-cm-fruit had the highest concentration of Z (4.6 pmol/g fresh weight) and was 2.7 times than the AP solution, while in the pericarps Z concentrations were the same level in AP and SP solution. The ZR concentration in locule tissues in 6-cm-fruit (55 pmol/g fresh weight ) was the highest of all parts. The results suggest that the sites of synthesis may be the SP of partitions for IAA and Z, and locules for ZR.  相似文献   

16.
Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP), and phosphocreatine (CrP) have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 μmol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 μmol min−1 g−1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded hypoperfusion. These findings suggest that the observed stability of energy metabolites emerges as a property of a properly constructed model of cardiac substrate transport and mitochondrial metabolism. In addition, the validated model provides quantitative predictions of changes in phosphate metabolites during cardiac ischemia.  相似文献   

17.
The pig is commonly used as an experimental model of human heart disease, including for the study of mechanisms of arrhythmia. However, there exist differences between human and porcine cellular electrophysiology: The pig action potential (AP) has a deeper phase-1 notch, a longer duration at 50% repolarization, and higher plateau potentials than human. Ionic differences underlying the AP include larger rapid delayed-rectifier and smaller inward-rectifier K+-currents (IKr and IK1 respectively) in humans. AP steady-state rate-dependence and restitution is steeper in pigs. Porcine Ca2+ transients can have two components, unlike human. Although a reliable computational model for human ventricular myocytes exists, one for pigs is lacking. This hampers translation from results obtained in pigs to human myocardium. Here, we developed a computational model of the pig ventricular cardiomyocyte AP using experimental datasets of the relevant ionic currents, Ca2+-handling, AP shape, AP duration restitution, and inducibility of triggered activity and alternans. To properly capture porcine Ca2+ transients, we introduced a two-step process with a faster release in the t-tubular region, followed by a slower diffusion-induced release from a non t-tubular subcellular region. The pig model behavior was compared with that of a human ventricular cardiomyocyte (O’Hara-Rudy) model. The pig, but not the human model, developed early afterdepolarizations (EADs) under block of IK1, while IKr block led to EADs in the human but not in the pig model. At fast rates (pacing cycle length = 400 ms), the human cell model was more susceptible to spontaneous Ca2+ release-mediated delayed afterdepolarizations (DADs) and triggered activity than pig. Fast pacing led to alternans in human but not pig. Developing species-specific models incorporating electrophysiology and Ca2+-handling provides a tool to aid translating antiarrhythmic and arrhythmogenic assessment from the bench to the clinic.  相似文献   

18.
Cardiovascular modelling has been a major research subject for the last decade. Different cardiac models have been developed at a cellular level as well as at the whole organ level. Most of these models are defined by a comprehensive cellular modelling using continuous formalisms or by a tissue-level modelling often based on discrete formalisms. Nevertheless, both views still suffer from difficulties that reduce their clinical applications: the first approach requires heavy computational resources while the second one is not able to reproduce certain pathologies. This paper presents an original methodology trying to gather advantages from both approaches, by means of a hybrid model mixing discrete and continuous formalisms. This method has been applied to define a hybrid model of cardiac action potential propagation on a 2D grid of endocardial cells, combining cellular automata and a set of cells defined by the Beeler-Reuter model. For simulations under physiological and ischemic conditions, results show that the action potential propagation as well as electrogram reconstructions are consistent with clinical diagnosis. Finally, the advantage of the proposed approach is discussed within the frame of cardiac modelling and simulation.  相似文献   

19.
We study the existence and uniqueness of traveling wave solutions of the discrete buffered bistable equation. Buffered excitable systems are used to model, among other things, the propagation of waves of increased calcium concentration, and discrete models are often used to describe the propagation of such waves across multiple cells. We derive necessary conditions for the existence of waves, and, under some restrictive technical assumptions, we derive sufficient conditions. When the wave exists it is unique and stable.   相似文献   

20.
NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号