首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.  相似文献   

2.
Lipid rafts and the regulation of exocytosis   总被引:13,自引:0,他引:13  
Exocytosis is the process whereby intracellular fluid-filled vesicles fuse with the plasma membrane, incorporating vesicle proteins and lipids into the plasma membrane and releasing vesicle contents into the extracellular milieu. Exocytosis can occur constitutively or can be tightly regulated, for example, neurotransmitter release from nerve endings. The last two decades have witnessed the identification of a vast array of proteins and protein complexes essential for exocytosis. SNARE proteins fill the spotlight as probable mediators of membrane fusion, whereas proteins such as munc18/nsec1, NSF and SNAPs function as essential SNARE regulators. A central question that remains unanswered is how exocytic proteins and protein complexes are spatially regulated. Recent studies suggest that lipid rafts, cholesterol and sphingolipid-rich microdomains, enriched in the plasma membrane, play an essential role in regulated exocytosis pathways. The association of SNAREs with lipid rafts acts to concentrate these proteins at defined sites of the plasma membrane. Furthermore, cholesterol depletion inhibits regulated exocytosis, suggesting that lipid raft domains play a key role in the regulation of exocytosis. This review examines the role of lipid rafts in regulated exocytosis, from a passive role as spatial coordinator of exocytic proteins to a direct role in the membrane fusion reaction.  相似文献   

3.
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.  相似文献   

4.
Since the 1970s, much effort was been expended researching mechanisms of regulated exocytosis. Early work focused mainly on the role of proteins. Most notably the discovery of SNARE proteins in the 1980s and the zippering hypothesis brought us much closer to understanding the complex interactions in membrane fusion between vesicle and plasma membranes, a pivotal component of regulated exocytosis. However, most likely due to the predictions of the Singer-Nicholson fluid mosaic membrane model, the lipid components of the exocytotic machinery remained largely overlooked. Lipids were considered passive constituents of cellular membranes, not contributing much, if anything, to the process of exocytosis and membrane fusion. Since the 1990s, this so-called proteocentric view has been gradually giving way to the new perspective best described with the term proteolipidic. Many lipids were found to be of great importance in the regulation of exocytosis. Here we highlight the role of cholesterol. Furthermore, by using high-resolution cell-attached membrane capacitance measurements, we have monitored unitary exocytotic events in cholesterol-depleted membranes. We show that the frequency of these events is attenuated, providing evidence at the single vesicle level that cholesterol directly influences the merger of the vesicle and the plasma membranes.  相似文献   

5.
Regulated exocytosis of neurotransmitter- and hormone-containing vesicles underpins neuronal and hormonal communication and relies on a well-orchestrated series of molecular interactions. This in part involves the upstream formation of a complex of SNAREs and associated proteins leading to the eventual fusion of the vesicle membrane with the plasma membrane, a process that enables content release. Although the role of lipids in exocytosis is intuitive, it has long been overlooked at least compared to the extensive work on SNAREs. Here, we will present the latest advances in this rapidly developing field revealing that lipids actually play an active role in exocytosis by focusing on cholesterol, 3′-phosphorylated phosphoinositides and phosphatidic acid.  相似文献   

6.
SNARE proteins catalyze many forms of biological membrane fusion, including Ca2+-triggered exocytosis. Although fusion mediated by SNAREs generally involves proteins anchored to each fusing membrane by a transmembrane domain (TMD), the role of TMDs remains unclear, and previous studies diverge on whether SNAREs can drive fusion without a TMD. This issue is important because it relates to the question of the structure and composition of the initial fusion pore, as well as the question of whether SNAREs mediate fusion solely by creating close proximity between two membranes versus a more active role in transmitting force to the membrane to deform and reorganize lipid bilayer structure. To test the role of membrane attachment, we generated four variants of the synaptic v-SNARE synaptobrevin-2 (syb2) anchored to the membrane by lipid instead of protein. These constructs were tested for functional efficacy in three different systems as follows: Ca2+-triggered dense core vesicle exocytosis, spontaneous synaptic vesicle exocytosis, and Ca2+-synaptotagmin-enhanced SNARE-mediated liposome fusion. Lipid-anchoring motifs harboring one or two lipid acylation sites completely failed to support fusion in any of these assays. Only the lipid-anchoring motif from cysteine string protein-α, which harbors many lipid acylation sites, provided support for fusion but at levels well below that achieved with wild type syb2. Thus, lipid-anchored syb2 provides little or no support for exocytosis, and anchoring syb2 to a membrane by a TMD greatly improves its function. The low activity seen with syb2-cysteine string protein-α may reflect a slower alternative mode of SNARE-mediated membrane fusion.  相似文献   

7.
Myosin II contributes to fusion pore expansion during exocytosis   总被引:3,自引:0,他引:3  
During exocytosis, the fusion pore expands to allow release of neurotransmitters and hormones to the extracellular space. To understand the process of synaptic transmission, it is of outstanding importance to know the properties of the fusion pore and how these properties affect the release process. Many proteins have been implicated in vesicle fusion; however, there is little evidence for proteins involved in fusion pore expansion. Myosin II has been shown to participate in the transport of vesicles and, surprisingly, in the final phases of exocytosis, affecting the kinetics of catecholamine release in adrenal chromaffin cells as measured by amperometry. Here, we have studied single vesicle exocytosis in chromaffin cells overexpressing an unphosphorylatable form (T18AS19A RLC-GFP) of myosin II that produces an inactive protein by patch amperometry. This method allows direct determination of fusion pore expansion by measuring its conductance, whereas the release of catecholamines is recorded simultaneously by amperometry. Here we demonstrated that the fusion pore is of critical importance to control the release of catecholamines during single vesicle secretion in chromaffin cells. We proved that myosin II acts as a molecular motor on the fusion pore expansion by hindering its dilation when it lacks the phosphorylation sites.  相似文献   

8.
The focus of this special issue (SI) »Membrane Merger in Conventional and Unconventional Vesicle Secretion« is regulated exocytosis, a universally conserved mechanism, consisting of a merger between the vesicle and the plasma membranes. Although this process evolved with eukaryotic organisms some three billion years ago (Spang et al., 2015), the understanding of physiology and patobiology of this process, especially at elementary vesicle level, remains unclear. Exocytotic fusion consists of several stages, starting by vesicle delivery to the plasma membrane, initially establishing a very narrow and stable fusion pore, that can reversibly open and close several times before it can fully widen. This allows vesicle cargo to be completely discharged from the vesicle lumen and permits vesicle-membrane resident proteins including channels, transporters, receptors and other signalling molecules, to be incorporated into the plasma membrane. The contributions in this SI bring new insights on the complexity of vesicle–based secretion, including discussion that vesicle anatomy appears to modulate exocytotic fusion pore properties and that the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor proteins (SNARE-proteins), not only facilitate pre- and post-fusion stages of exocytosis, but also serve in vesicle navigation within the cytoplasm.  相似文献   

9.
Exocytosis in plants   总被引:1,自引:0,他引:1  
Thiel  Gerhard  Battey  Nick 《Plant molecular biology》1998,38(1-2):111-125
Exocytosis is the final event in the secretory pathway and requires the fusion of the secretory vesicle membrane with the plasma membrane. It results in the release to the outside of vesicle cargo from the cell interior and also the delivery of vesicle membrane and proteins to the plasma membrane. An electrophysiological assay that measures changes in membrane capacitance has recently been used to monitor exocytosis in plants. This complements information derived from earlier light and electron microscope studies, and allows both transient and irreversible fusion of single exocytotic vesicles to be followed with high resolution in protoplasts. It also provides a tool to investigate bulk exocytotic activity in single protoplasts under the influence of cytoplasmic modulators. This research highlights the role of intracellular Ca2+, GTP and pressure in the control of exocytosis in plants.In parallel to these functional studies, plant proteins with the potential to regulate exocytosis are being identified by molecular analysis. In this review we describe these electrophysiological and molecular advances, and emphasise the need for parallel biochemical work to provide a complete picture of the mechanisms controlling vesicle fusion at the plasma membrane of plant cells.  相似文献   

10.
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.  相似文献   

11.
CAPS (aka CADPS) is required for optimal vesicle exocytosis in neurons and endocrine cells where it functions to prime the exocytic machinery for Ca2+-triggered fusion. Fusion is mediated by trans complexes of the SNARE proteins VAMP-2, syntaxin-1, and SNAP-25 that bridge vesicle and plasma membrane. CAPS promotes SNARE complex formation on liposomes, but the SNARE binding properties of CAPS are unknown. The current work revealed that CAPS exhibits high affinity binding to syntaxin-1 and SNAP-25 and moderate affinity binding to VAMP-2. CAPS binding is specific for a subset of exocytic SNARE protein isoforms and requires membrane integration of the SNARE proteins. SNARE protein binding by CAPS is novel and mediated by interactions with the SNARE motifs in the three proteins. The C-terminal site for CAPS binding on syntaxin-1 does not overlap the Munc18-1 binding site and both proteins can co-reside on membrane-integrated syntaxin-1. As expected for a C-terminal binding site on syntaxin-1, CAPS stimulates SNARE-dependent liposome fusion with N-terminal truncated syntaxin-1 but exhibits impaired activity with C-terminal syntaxin-1 mutants. Overall the results suggest that SNARE complex formation promoted by CAPS may be mediated by direct interactions of CAPS with each of the three SNARE proteins required for vesicle exocytosis.  相似文献   

12.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

13.
SNAP receptor (SNARE)-mediated fusion is regarded as a core event in exocytosis. Exocytosis is supported by other proteins that set up SNARE interactions between secretory vesicle and plasma membranes or facilitate fusion pore formation. Secretory carrier membrane proteins (SCAMPs) are candidate proteins for functioning in these events. In neuroendocrine PC12 cells, SCAMP2 colocalizes on the cell surface with three other proteins required for dense-core vesicle exocytosis: phospholipase D1 (PLD1), the small GTPase Arf6, and Arf6 guanine nucleotide exchange protein ARNO. Arf6 and PLD1 coimmunoprecipitate (coIP) with SCAMP2. These associations have been implicated in exocytosis by observing enhanced coIP of Arf6 with SCAMP2 after cell depolarization and in the presence of guanosine 5'-O-(3-thio)triphosphate and by inhibition of coIP by a SCAMP-derived peptide that inhibits exocytosis. The peptide also suppresses PLD activity associated with exocytosis. Using amperometry to analyze exocytosis, we show that expression of a point mutant of SCAMP2 that exhibits decreased association with Arf6 and of mutant Arf6 deficient in activating PLD1 have the same inhibitory effects on early events in membrane fusion. However, mutant SCAMP2 also uniquely inhibits fusion pore dilation. Thus, SCAMP2 couples Arf6-stimulated PLD activity to exocytosis and links this process to formation of fusion pores.  相似文献   

14.
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca2+-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca2+-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.  相似文献   

15.
Regulated exocytosis is thought to occur either by "full fusion," where the secretory vesicle fuses with the plasma membrane (PM) via a fusion pore that then dilates until the secretory vesicle collapses into the PM; or by "kiss-and-run," where the fusion pore does not dilate and instead rapidly reseals such that the secretory vesicle is retrieved almost fully intact. Here, we describe growing evidence for a third form of exocytosis, dubbed "kiss-and-coat," which is characteristic of a broad variety of cell types that undergo regulated exocytosis. Kiss-and-coat exocytosis entails prolonged maintenance of a dilated fusion pore and assembly of actin filament (F-actin) coats around the exocytosing secretory vesicles followed by direct retrieval of some fraction of the emptied vesicle membrane. We propose that assembly of the actin coats results from the union of the secretory vesicle membrane and PM and that this compartment mixing represents a general mechanism for generating local signals via directed membrane fusion.  相似文献   

16.
The SNARE proteins, syntaxin, SNAP-25, and VAMP, form part of the core machinery for membrane fusion during regulated exocytosis. Additional proteins are required to account for the speed, spatial restriction, and tight control of exocytosis and a key role is played by members of the Sec1/Munc18 family of proteins that have been implicated either in vesicle docking or fusion itself through their interactions with the corresponding syntaxin. Using amperometry to assay the kinetics of single vesicle fusion/release events in adrenal chromaffin cells, the effect of expression of syntaxin 1A mutants was examined. Overexpression of wild-type syntaxin or its cytoplasmic domain had no effect on the kinetics of release during single exocytotic events although the cytoplasmic domain reduced the frequency of exocytosis. In contrast, expression of either an open syntaxin 1A or the I233A mutant resulted in increased quantal size and a slowing of the kinetics of release. The wild-type and mutant syntaxins were overexpressed to a similar extent and the only common defect shown by the syntaxin 1A mutants was reduced binding to Munc18-1. These results are consistent with a role for Munc18-1 in controlling the late stages of exocytosis by binding to and limiting the availability of syntaxin in its open conformation. Modification of the Munc18-1/syntaxin 1A interaction would therefore be a key mechanism for the regulation of quantal size.  相似文献   

17.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

18.
Zhen Zhang 《Biophysical journal》2010,98(11):2524-2534
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca2+-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca2+-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca2+-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.  相似文献   

19.
Membrane fusion is a central event in the process of exocytosis. It occurs between secretory vesicle membranes and the plasma membrane and also among secretory vesicle membranes themselves during compound exocytosis. In many cells the fusion event is regulated by calcium. Since the relevant membranes do not undergo fusion in vitro when highly purified, much attention has been paid to possible protein mediators of these calcium-dependent fusion events. The annexins comprise a group of calcium-dependent membrane-aggregating proteins, of which synexin is the prototype, which can initiate contacts between secretory vesicle membranes which will then fuse if the membranes are further perturbed by the addition of exogenous free fatty acids. This review discusses the secretory pathway and the evidence obtained fromin vitro studies that suggests the annexins may be mediators or regulators of membrane fusion in exocytosis.  相似文献   

20.
The envelope lipid composition of influenza virus differs from that of the cellular plasma membrane from which it buds. Viruses also appear to fuse preferentially to specific membrane compartments, suggesting that the lipid environment may influence permissiveness for fusion. Here, we investigated the influence of the membrane environment on fusion, focusing on cholesterol composition. Strikingly, manipulating cholesterol levels in the viral membrane had different effects on fusion kinetics compared with analogous changes to the target membrane. Increasing cholesterol content in target vesicles increased lipid- and contents-mixing rates. Moderate cholesterol depletion from the viral membrane sped fusion rates, whereas severe depletion slowed the process. The pleiotropic effects of cholesterol include alterations in both membrane-bending moduli and lateral organization. Because influenza virions have demonstrated cholesterol-dependent lateral organization, to separate these effects, we deliberately selected a target vesicle composition that does not support lateral heterogeneity. We therefore postulate that the monotonic response of fusion kinetics to target membrane cholesterol reflects bending and curvature effects, whereas the multiphasic response to viral cholesterol levels reflects the combined effects of lateral organization and material properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号