首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoptosis and necrosis need to be differentiated in order to distinguish drug-induced cell death from spontaneous cell death due to hypoxia. The ability to differentiate between these two modes of cell death, especially at an early stage in the process, could have a significant impact on accessing the outcome of anticancer drug therapy in the clinic. Nuclear magnetic resonance spectroscopy was used to distinguish apoptosis from necrosis in human cervical carcinoma (HeLa) cells. Apoptosis was induced by treatment with the topoisomerase II inhibitor etoposide, whereas necrosis was induced by the use of ethacrynic acid or cytochalasin B. We found that the intensity of the methylene resonance increases significantly as early as 6 h after the onset of apoptosis, but that no such changes occur during necrosis. The spectral intensity ratio of the methylene to methyl resonances also shows a high correlation with the percentage of apoptotic cells in the sample (r2=0.965, P<0.003).  相似文献   

2.
We have made a preliminary analysis of the results about the effects on tumoral cell line (lymphoid T cell line Jurkat) induced by UVB radiation (dose of 310 mJ/cm2) with and without a vegetable mixture. In the present study, we have used two techniques: Fourier transform infrared spectroscopy (FTIR) and flow cytometry. FTIR spectroscopy has the potential to provide the identification of the vibrational modes of some of the major compounds (lipid, proteins and nucleic acids) without being invasive in the biomaterials. The second technique has allowed us to perform measurements of cytotoxicity and to assess the percentage of apoptosis. We already studied the induction of apoptotic process in the same cell line by UVB radiation; in particular, we looked for correspondences and correlations between FTIR spetroscopy and flow cytometry data finding three highly probable spectroscopic markers of apoptosis (Pozzi et al. in Radiat Res 168:698–705, 2007). In the present work, the results have shown significant changes in the absorbance and spectral pattern in the wavenumber protein and nucleic acids regions after the treatments.  相似文献   

3.

Background

In a globalized word, prevention of infectious diseases is a major challenge. Rapid detection of viable virus particles in water and other environmental samples is essential to public health risk assessment, homeland security and environmental protection. Current virus detection methods, especially assessing viral infectivity, are complex and time-consuming, making point-of-care detection a challenge. Faster, more sensitive, highly specific methods are needed to quantify potentially hazardous viral pathogens and to determine if suspected materials contain viable viral particles. Fourier transform infrared (FTIR) spectroscopy combined with cellular-based sensing, may offer a precise way to detect specific viruses. This approach utilizes infrared light to monitor changes in molecular components of cells by tracking changes in absorbance patterns produced following virus infection. In this work poliovirus (PV1) was used to evaluate the utility of FTIR spectroscopy with cell culture for rapid detection of infective virus particles.

Results

Buffalo green monkey kidney (BGMK) cells infected with different virus titers were studied at 1 - 12 hours post-infection (h.p.i.). A partial least squares (PLS) regression method was used to analyze and model cellular responses to different infection titers and times post-infection. The model performs best at 8 h.p.i., resulting in an estimated root mean square error of cross validation (RMSECV) of 17 plaque forming units (PFU)/ml when using low titers of infection of 10 and 100 PFU/ml. Higher titers, from 103 to 106 PFU/ml, could also be reliably detected.

Conclusions

This approach to poliovirus detection and quantification using FTIR spectroscopy and cell culture could potentially be extended to compare biochemical cell responses to infection with different viruses. This virus detection method could feasibly be adapted to an automated scheme for use in areas such as water safety monitoring and medical diagnostics.  相似文献   

4.
Flow cytometry in the study of cell death   总被引:3,自引:0,他引:3  
In this report we present a concise review concerning the use of flow cytometric methods to characterize and differentiate between two different mechanisms of cell death, apoptosis and necrosis. The applications of these techniques to clinical and basic research are also considered. The following cell features are useful to characterize the mode of cell death: (1) activation of an endonuclease in apoptotic cells results in extraction of the low molecular weight DNA following cell permeabilization, which, in turn, leads to their decreased stainability with DNA-specific fluorochromes. Measurements of DNA content make it possible to identify apoptotic cells and to recognize the cell cycle phase specificity of apoptotic process; (2) plasma membrane integrity, which is lost in necrotic but not in apoptotic cells; (3) the decrease in forward light scatter, paralleled either by no change or an increase in side scatter, represent early changes during apoptosis. The data presented indicate that flow cytometry can be applied to basic research of the molecular and biochemical mechanisms of apoptosis, as well as in the clinical situations, where the ability to monitor early signs of apoptosis in some systems may be predictive for the outcome of some treatment protocols.  相似文献   

5.
Several modes of cell death are now recognized, including necrosis, apoptosis, and autophagy. Oftentimes the distinctions between these various modes may not be apparent, although the precise mode may be physiologically important. Accordingly, it is often desirable to be able to classify the mode of cell death. Apoptosis was originally defined by structural alterations in cells observable by transmitted light and electron microscopy. Today, a wide variety of imaging and cytochemical techniques are available for the investigation of apoptosis. This review will highlight many of these methods, and provide a critique on the advantages and disadvantages associated with them for the specific identification of apoptotic cells in culture and tissues.  相似文献   

6.
Death ligands not only induce apoptosis but can also trigger necrosis with distinct biochemical and morphological features. We recently showed that in L929 cells CD95 ligation induces apoptosis, whereas TNF elicits necrosis. Treatment with anti-CD95 resulted in typical apoptosis characterized by caspase activation and DNA fragmentation. These events were barely induced by TNF, although TNF triggered cell death to a similar extent as CD95. Surprisingly, whereas the caspase inhibitor zVAD prevented CD95-mediated apoptosis, it potentiated TNF-induced necrosis. Cotreatment with TNF and zVAD was characterized by ATP depletion and accelerated necrosis. To investigate the mechanisms underlying TNF-induced cell death and its potentiation by zVAD, we examined the role of poly(ADP-ribose)polymerase-1 (PARP-1). TNF but not CD95 mediated PARP activation, whereas a PARP inhibitor suppressed TNF-induced necrosis and the sensitizing effect of zVAD. In addition, fibroblasts expressing a noncleavable PARP-1 mutant were more sensitive to TNF than wild-type cells. Our results indicate that TNF induces PARP activation leading to ATP depletion and subsequent necrosis. In contrast, in CD95-mediated apoptosis caspases cause PARP-1 cleavage and thereby maintain ATP levels. Because ATP is required for apoptosis, we suggest that PARP-1 cleavage functions as a molecular switch between apoptotic and necrotic modes of death receptor-induced cell death.  相似文献   

7.
Gold nanoparticles are recently having much attention because of their increased applications in biomedical fields. In this paper, we demonstrated the photothermal efficacy of citrate capped gold nanoparticles (AuNPs) for the destruction of A431 cancer cells. Citrate capped AuNPs were synthesized successfully and characterized by UV–visible–NIR spectrophotometry and High Resolution Transmission Electron Microscopy (HR-TEM). Further, AuNPs were conjugated with epidermal growth factor receptor antibody (anti-EGFR) and applied for the selective photothermal therapy (PTT) of human epithelial cancer cells, A431. PTT experiments were conducted in four groups, Group I—control cells, Group II—cells treated with laser light alone, Group III—cells treated with unconjugated AuNP and further laser irradiation and Group IV—anti-EGFR conjugated AuNP treated cells irradiated by laser light. After laser irradiation, cell morphology changes that were examined using phase contrast microscopy along with the relevant biochemical parameters like lactate dehydrogenase activity, reactive oxygen species generation and caspase-3 activity were studied for all the groups to determine whether cell death occurs due to necrosis or apoptosis. From these results we concluded that, these immunotargeted nanoparticles could selectively induce cell death via ROS mediated apoptosis when cells were exposed to a low power laser light.  相似文献   

8.
Growing evidence suggests that two modes of cell death, known as apoptosis and necrosis, are involved in postanoxic injury. The current opinion on these two types of cell death is that apoptosis and necrosis are not always the uniform and distinct events. The aim of this study was to determine ultrastructural criteria of postanoxic neuronal changes in model of anoxia in vitro. The organotypic cultures of rat hippocampus exposed to 10‐ and 20‐min of anoxic insult revealed the morphological features classic for both necrotic and apoptotic neuronal cell injury. Some neurones exhibited the typical necrotic lysis whereas others clearly reflected an active apoptotic form of cell death consisting of nuclear condensation with early preservation of cell membranes. However, numerous damaged cells shared both apoptotic and necrotic ultrastructural characteristics. These results evidenced the morphological continuum between apoptosis and necrosis under anoxia in vitro.  相似文献   

9.
ATP‐analogue inhibitors, Gefitinib (Iressa) and Erlotinib (Tarceva) had been approved for advanced and metastatic nonsmall cell lung cancer (NSCLC) cells against tyrosine kinase domain of epidermal growth factor receptor (EGFR). Many techniques have been developed to better understand the drug mechanism which is multistep, time‐consuming and expensive. Herein, we performed Fourier‐transform infrared (FTIR) microscopy for evaluating the biochemical change on NSCLC (A549) cells after treatment. At levels that produced equivalent effects, Gefitinib dramatically induced cell apoptosis via impaired mitochondrial transmembrane potential. Whereas, Erlotinib had a slight effect on A549. Principal component analysis was performed to distinguish the effect of EGFR inhibitors on A549. FTIR spectra regions were divided into three regions: lipids (3000‐2800 cm?1), proteins (1700‐1500 cm?1) and carbohydrates and nuclei acids (1200‐1000 cm?1). Biochemical changes can be evaluated by these spectral regions. This work may be a novel concept for utilizing FTIR spectroscopy for high‐throughput discriminative effects of a drug or compound and its derivatives on cells.  相似文献   

10.
Ferroptosis is a newly discovered type of cell death that differs from traditional apoptosis and necrosis and results from iron‐dependent lipid peroxide accumulation. Ferroptotic cell death is characterized by cytological changes, including cell volume shrinkage and increased mitochondrial membrane density. Ferroptosis can be induced by two classes of small‐molecule substances known as class 1 (system X c ? inhibitors) and class 2 ferroptosis inducers [glutathione peroxidase 4 (GPx4) inhibitors]. In addition to these small‐molecule substances, a number of drugs (e.g. sorafenib, artemisinin and its derivatives) can induce ferroptosis. Various factors, such as the mevalonate (MVA) and sulphur‐transfer pathways, play pivotal roles in the regulation of ferroptosis. Ferroptosis plays an unneglectable role in regulating the growth and proliferation of some types of tumour cells, such as lymphocytoma, ductal cell cancer of the pancreas, renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). Here, we will first introduce the discovery of and research pertaining to ferroptosis; then summarize the induction mechanisms and regulatory pathways of ferroptosis; and finally, further elucidate the roles of ferroptosis in human tumourous diseases.  相似文献   

11.
Growing evidence suggests that two modes of cell death, known as apoptosis and necrosis, are involved in postanoxic injury. The current opinion on these two types of cell death is that apoptosis and necrosis are not always the uniform and distinct events. The aim of this study was to determine ultrastructural criteria of postanoxic neuronal changes in model of anoxia in vitro . The organotypic cultures of rat hippocampus exposed to 10- and 20-min of anoxic insult revealed the morphological features classic for both necrotic and apoptotic neuronal cell injury. Some neurones exhibited the typical necrotic lysis whereas others clearly reflected an active apoptotic form of cell death consisting of nuclear condensation with early preservation of cell membranes. However, numerous damaged cells shared both apoptotic and necrotic ultrastructural characteristics. These results evidenced the morphological continuum between apoptosis and necrosis under anoxia in vitro .  相似文献   

12.
《Autophagy》2013,9(5):433-441
Studies on human and animal models of retinal dystrophy have suggested that apoptosis may be the common pathway of photoreceptor cell death. Autophagy, the major cellular degradation process in animal cells, is important in normal development and tissue remodeling, as well as under pathological conditions. Previously we provided evidence that genes, whose products are involved in apoptosis and autophagy, may be co-expressed in photoreceptors undergoing degeneration. Here, we investigated autophagy in oxidative stress-mediated cell death in photoreceptors, analyzing the light-damage mouse model and 661W photoreceptor cells challenged with H2O2. In the in vivo model, we demonstrated a time-dependent increase in the number of TUNEL-positive cells, concomitant with the formation of autophagosomes. In vitro, oxidative stress increased mRNA levels of apoptotic and autophagic marker genes. H2O2 treatment resulted in the accumulation of TUNEL-positive cells, the majority of which contain autophagosomes. To determine whether autophagy and apoptosis might precede each other or co-occur, we performed inhibitor studies. The autophagy inhibitor 3-methyladenine (3-MA), silencing RNA (siRNA) against two genes whose products are required for autophagy (autophagy-related (ATG) gene 5 and beclin 1), as well as the pan-caspase-3 inhibitor, zVAD-fmk, were both found to partially block cell death. Blocking autophagy also significantly decreased caspase-3 activity, whereas blocking apoptosis increased the formation of autophagosomes. The survival effects of 3-MA and zVAD-fmk were not additive; rather treatment with both inhibitors lead to increased cell death by necrosis. In summary, the study first suggests that autophagy participates in photoreceptor cell death possibly by initiating apoptosis. Second, it confirms that cells that normally die by apoptosis will execute cell death by necrosis if the normal pathway is blocked. And third, these results argue that the up-stream regulators of autophagy need to be identified as potential therapeutic targets in photoreceptor degeneration.  相似文献   

13.
Phospholipases generate important secondary messengers in several cellular processes, including cell death. Tumor necrosis factor (TNF) can induce two distinct modes of cell death, viz. necrosis and apoptosis. Here we demonstrate that phospholipase D (PLD) and cytosolic phospholipase A2 (cPLA2) are differentially activated during TNF-induced necrosis or apoptosis. Moreover, a comparative study using TNF and anti-Fas antibodies as cell death stimuli showed that PLD and cPLA2 are specifically activated by TNF. These results indicate that both the mode of cell death and the type of death stimulus determine the potential role of phospholipases as generators of secondary messengers. J. Cell. Biochem. 71:392–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
 A new system to study programmed cell death in plants is described. Tomato (Lycopersicon esculentum Mill.) suspension cells were induced to undergo programmed cell death by treatment with known inducers of apoptosis in mammalian cells. This chemical-induced cell death was accompanied by the characteristic features of apoptosis in animal cells, such as typical changes in nuclear morphology, the fragmentation of the nucleus and DNA fragmentation. In search of processes involved in plant apoptotic cell death, specific enzyme inhibitors were tested for cell-death-inhibiting activity. Our results showed that proteolysis plays a crucial role in apoptosis in plants. Furthermore, caspase-specific peptide inhibitors were found to be potent inhibitors of the chemical-induced cell death in tomato cells, indicating that, as in animal systems, caspase-like proteases are involved in the apoptotic cell death pathway in plants. Received: 5 August 1999 / Accepted: 14 March 2000  相似文献   

15.
Hepatocellular carcinoma (HCC) is an aggressive cancer that is resistant to drug therapy. It is believed that the development of HCC is correlated with misregulation of programmed cell death. Discovery of effective inducers of HCC cell death is very important for HCC therapy. The aim of this work was to identify structural changes leading to the death of HCC cells exposed to nanosized and original forms of lithium salts. Structural features of autophagy and apoptosis were revealed in HCC cells after their incubation with various forms of lithium salts by light, electron microscopy, and flow cytometry. It was shown that nanosized forms of lithium carbonate and lithium citrate had a pronounced effect on HCC-29 cells. Of these forms, the nanosized lithium citrate induced mainly apoptosis, while the nanosized form of lithium carbonate, along with apoptosis, induced autophagic death of HCC cells.  相似文献   

16.
Multiple Functions of BCL-2 Family Proteins   总被引:1,自引:0,他引:1  
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.  相似文献   

17.
Modes of L929 cell death induced by TNF-alpha and other cytotoxic agents.   总被引:4,自引:0,他引:4  
D T Humphreys  M R Wilson 《Cytokine》1999,11(10):773-782
Recent studies have variably reported that tumour necrosis factor alpha (TNF-alpha) induces either necrosis or apoptosis in L929 cells. This study was undertaken to better characterize the mode of death induced in L929 cells by this agent. We determined the effects of exposure to TNF-alpha and other cytotoxic agents on cell size and morphology, cell membrane permeability, exposure of phosphatidylserine at the cell surface, nuclear morphology and fragmentation of DNA. Our results suggest that L929 cells treated with TNF-alpha alone show nuclear changes and a pattern of DNA fragmentation that are atypical of apoptosis. In contrast, our results demonstrate that, when augmented with actinomycin D, TNF-alpha induces classical apoptosis in L929 cells. We also provide the first report that, in L929 cells, staurosporine induces classical apoptosis and colchicine induces a form of apoptosis lacking internucleosomal DNA fragmentation. Previous studies of TNF-alpha-induced death in L929 cells relied on measurements of only one or two parameters to define the mode of death. Overall, our results suggest that in future cellular or biochemical studies of the effects of TNF-alpha on L929 cells it will be prudent to characterize the mode of death in each case using a multi-parameter approach, as done here.  相似文献   

18.
Human T-lymphoma Jurkat cells treated with several intrinsic death stimuli readily undergo a stepwise apoptotic program. Treatment with 1,9-dideoxyforskolin (ddFSK), an inactive analogue of the adenylate cyclase activator forskolin, induces necrotic cell death and switches to necrosis the response to the apoptosis inducers in Jurkat and in other cell models. Yet, in the presence of ddFSK, mitochondrial changes are enhanced and apoptosome formation takes place. We show that ddFSK does not inhibit the catabolic steps of apoptosis, but rather elicits a profound ATP depletion that in turn tunes the mode of cell demise towards necrosis. Treatment with ddFSK impairs both glycolysis and oxidative phosphorylation in a Bcl-X(L)- and PKB/Akt-independent fashion, and inhibition of both processes is needed to affect apoptosis progression. Apoptosis is not blocked per se by ATP depletion, as engagement of the Fas receptor directly activates caspases, thus bypassing ddFSK inhibition.  相似文献   

19.
Macrophage death is an important feature of atherosclerosis, but the cellular mechanism for this process is largely unknown. There is increasing interest in cellular free cholesterol (FC) excess as an inducer of lesional macrophage death because macrophages accumulate large amounts of FC in vivo, and FC loading of macrophages in culture causes cell death. In this study, a cell culture model was used to explore the cellular mechanisms involved in the initial stages of FC-induced macrophage death. After 9 h of FC loading, some of the macrophages exhibited externalization of phosphatidylserine and DNA fragmentation, indicative of an apoptotic mechanism. Incubation of the cells with Z-DEVD-fluoromethylketone blocked these events, indicating dependence upon effector caspases. Macrophages from mice with mutations in either Fas or Fas ligand (FasL) demonstrated substantial resistance to FC-induced apoptosis, and FC-induced death in wild-type macrophages was blocked by an anti-FasL antibody. FC loading had no effect on the expression of cell-surface Fas but caused a small yet reproducible increase in cell-surface FasL. To determine the physiological significance of this finding, unloaded and FC-loaded Fas-deficient macrophages, which can only present FasL, were compared for their ability to induce apoptosis in secondarily added Fas-bearing macrophages. The FC-loaded macrophages were much more potent inducers of apoptosis than the unloaded macrophages, and this effect was almost completely blocked by an inhibitory anti-FasL antibody. In summary, during the early stages of FC loading of macrophages, a fraction of cells exhibited biochemical changes that are indicative of apoptosis. An important part of this event is FC-induced activation of FasL that leads to Fas-mediated apoptosis. In light of recent in vivo findings that show that apoptotic macrophages in atherosclerotic lesions express both Fas and FasL, we present a cellular model of Fas-mediated death in lesional foam cells.  相似文献   

20.
Morphological assessment of apoptosis   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号