首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Numerous factors that promote movement of macromolecules in and out of the nucleus have now been identified. These include both soluble cytoplasmic and nucleoplasmic proteins and proteins of the nuclear pore complex (NPC). Genetic analyses of the nuclear transport process in the model organism, the budding yeastSaccharomyces cerevisiae,have revealed remarkable conservation of all of these factors. In addition, important clues as to how these factors promote the unique bidirectional movement across the NPC have emerged from studies of yeast. We summarize the characterization and genetic interactions of the soluble transport factors and present data to illustrate how genetic experiments can be used to further define the import and export pathways.  相似文献   

3.
Herpesviruses assemble capsids in the nucleus and egress by unconventional vesicle-mediated trafficking through the nuclear envelope. Capsids bud at the inner nuclear membrane into the nuclear envelope lumen. The resulting intralumenal vesicles fuse with the outer nuclear membrane, delivering the capsids to the cytoplasm. Two viral proteins are required for vesicle formation, the tail-anchored pUL34 and its soluble interactor, pUL31. Whether cellular proteins are involved is unclear. Using giant unilamellar vesicles, we show that pUL31 and pUL34 are sufficient for membrane budding and scission. pUL34 function can be bypassed by membrane tethering of pUL31, demonstrating that pUL34 is required for pUL31 membrane recruitment but not for membrane remodeling. pUL31 can inwardly deform membranes by oligomerizing on their inner surface to form buds that constrict to vesicles. Therefore, a single viral protein can mediate all events necessary for membrane budding and abscission.  相似文献   

4.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

5.
6.
Dietary glucosylceramide improves the skin barrier function. We used a microarray system to analyze the mRNA expression in SDS-treated dorsal skin of the hairless mouse to elucidate the molecular mechanisms involved. The transepidermal water loss of mouse skin was increased by the SDS treatment, this increase being significantly reduced by a prior oral administration of glucosylceramides. The microarray-evaluated mRNA expression ratio showed a statistically significant increase in the expression of genes related to the cornified envelope and tight junction formation when compared with all genes in the glucosylceramide-fed/SDS-treated mouse skin. We then examined the contribution of glucosylceramide metabolites to the tight junction formation of cultured keratinocytes. The SDS treatment of cultured keratinocytes significantly decreased the transepidermal electrical resistance, this decrease being significantly ameliorated in the presence of sphingosine or phytosphingosine, the major metabolites of glucosylceramide. These results suggest that an oral administration of glucosylceramide improved the skin barrier function by up-regulating genes associated with both the cornified envelope and tight junction formation.  相似文献   

7.
As part of a study of the cell surface changes associated with the production of murine mammary tumor virus, the structure of the envelope of this virus has been examined by using freeze-fracture techniques. Both fracture and deep-etch surfaces were examined. The fracture faces contain 10-nm spheres comparable to those observed on fractured plasma membranes, although fewer in number. Surfaces exposed by etching possess a highly regular hexagonal array of pits 25 nm apart. By examining freeze-fracture and freeze-etch preparations of virus with ferritin covalently bound to its surface, it has been determined that the surface exposed by etching is the outer surface of the virus. The pitted exterior surface of the mammary tumor virus appears to be a unique surface structure.  相似文献   

8.
Roles of the nuclear envelope are considered in the regulation of nuclear protein import, ribonucleoprotein export, and coupling of DNA replication to the cell cycle. First, evidence is discussed that indicates that neutral and acidic amino acids can be important in nuclear localization signals as well as the widely acknowledged basic amino acids. Second, the recognition of nuclear localization signals by their receptor “importin” is discussed, focusing on the different roles of the two subunits of importin. Third, a role for the α subunit of importin in RNP export is considered together with the question of how the direction of traffic through nuclear pores is determined. The final part of this article considers evidence that the nuclear membrane prevents reinitiation of DNA replication in Xenopus eggs, by excluding a “licensing factor” that is essential for DNA replication. Replication licensing in Xenopus appears to involve several proteins including the MCM (minichromosome maintenance) complex and ORC, the origin recognition complex, which must bind before the MCM complex can bind to chromatin.  相似文献   

9.
Changes in the Envelope Permeability of Developing Chloroplasts   总被引:2,自引:0,他引:2  
The distribution of 3H-labelled mevalonic acid, leucine andtyrosine between plastids and extraplastidic tissue in illuminated,etiolated seedlings was studied using electron microscope autoradiomicrographyand radioassay of specific plastidic and extraplastidic components.There appears to be a selective change in the permeability ofthe plastid envelope during development which differs accordingto the specific substrates used.  相似文献   

10.
. The behavior of nuclear envelopes during mitosis in Amoeba proteus was studied by means of indirect immunofluo-rescence staining using a monoclonal antibody against a 220-kD membrane-associated protein of amoebae in conjunction with DAPI staining of chromatin. The antibody selectively recognized antigens on nuclear envelopes during interphase but did not react with the nuclear membranes during mitosis until after cytokinesis had been completed. Thus, it appeared that the membrane-associated protein reacting with the monoclonal antibody and normally present on the nuclear membranes was absent from fragmented nuclear membranes or nuclear membranes that were continuous but did not have the honey-comb lamina. The findings suggested that the 220-kD nuclear-membrane protein may be involved in the dissolution and reformation of the honey-comb lamina during mitosis in amoebae.  相似文献   

11.
12.
13.
Early Changes in the Envelope Permeability of Developing Chloroplasts   总被引:1,自引:0,他引:1  
Application of the technique of silicone oil centrifugal filtrationhas shown that for some compounds, particularly oxaloacetateand succinate, there is a pronounced increase in permeabilityafter 1–2 h of greening. Other compounds such as malate,glycine, and glutamate are progressively less permeable duringplastid morphogenesis. Alanine, aspartate, and 3-phosphoglycerateshow an initial decline in permeability after 1 h illuminationbut ready uptake into 2–4 h etiochloroplasts. There isalso evidence that a translocator system for dicarboxylic acidsinvolving malate exists within the plastid envelopes of Avena.  相似文献   

14.
Bakers' yeast (Saccharomyces cerevisiae) was equilibrated with distilled water and then packed into standardized pellets by centrifugation. The fractional space (S value) that was accessible to passive permeation was probed with a variety of mono- and divalent salts, mono- and disaccharides, polyols, substrates and products of beta-fructofuranosidase (EC 3.2.1.26) and acid phosphatase (EC 3.1.3.2), and a cross-linked polymer of sucrose (Ficoll 400). A simple but very reproducible method was developed to measure pellet volume. At the limit of zero osmolality for bathing medium, the interstitial space was 0.223 ml/ml of pellet, and the aqueous volume of cell envelopes was 0.117 ml/ml of pellet. Thus the cell envelope for this yeast, under these conditions, was approximately 15% of the total cell volume. At a finite osmolality, the space in a yeast pellet that was accessible to salt was accounted for by the sum of initial interstitial space, the volume of the cell envelopes, and the volume of water abstracted from the cells by osmosis. Plots of S value versus osmolality were linear for uncharged probes and curvilinear for all salts. When Ficoll and potassium thiocyanate were presented to the yeast in admixture, the S values for the salt increased continuously over the range of osmolality studied. However, the S values for Ficoll 400 (which did not penetrate the cell wall) were lower by an amount equilivalent to the cell envelopes; they increased in parallel with the S curve for salt up to 1.15 osmol/kg and then plateaued. The results support the concept of incipient plasmolysis at 1.15 osmol/kg, and the separation of protoplasm from the cell wall is indicated with more concentrated solutions. Such cells were still viable if slowly diluted in distilled water, but they were injured by the shock of rapid dilution. However, shocking the cells did not release beta-fructofuranosidase into the medium. The complete accessibility of salts toward killed cells was demonstrated with yeast that had been pretreated with heat, organic solvents, or glutaraldehyde.  相似文献   

15.
Nuclear translocation of stimulated Smad heterocomplexes is a critical step in the signal transduction of transforming growth factor β (TGF-β) from transmembrane receptors into the nucleus. Specifically, normal nuclear accumulation of Smad2/Smad4 heterocomplexes induced by TGF-β1 is involved in carcinogenesis. However, the relationship between nuclear accumulation and the nucleocytoplasmic transport kinetics of Smad proteins in the presence of TGF-β1 remains obscure. By combining a high-speed single-molecule tracking microscopy and Förster resonance energy transfer technique, we tracked the entire TGF-β1-induced process of Smad2/Smad4 heterocomplex formation, as well as their transport through nuclear pore complexes in live cells, with a high single-molecule localization precision of 2 ms and <20 nm. Our single-molecule Förster resonance energy transfer data have revealed that in TGF-β1-treated cells, Smad2/Smad4 heterocomplexes formed in the cytoplasm, imported through the nuclear pore complexes as entireties, and finally dissociated in the nucleus. Moreover, we found that basal-state Smad2 or Smad4 cannot accumulate in the nucleus without the presence of TGF-β1, mainly because both of them have an approximately twofold higher nuclear export efficiency compared to their nuclear import. Remarkably and reversely, heterocomplexes of Smad2/Smad4 induced by TGF-β1 can rapidly concentrate in the nucleus because of their almost fourfold higher nuclear import rate in comparison with their nuclear export rate. Thus, we believe that the determined TGF-β1-dependent transport configurations and efficiencies for the basal-state Smad or stimulated Smad heterocomplexes elucidate the basic molecular mechanism to understand their nuclear transport and accumulation.  相似文献   

16.
17.
18.
19.
Disassembly of the nuclear lamina is essential in mitosis and apoptosis requiring multiple coordinated enzymatic activities in nucleus and cytoplasm. Activation and coordination of the different activities is poorly understood and moreover complicated as some factors translocate between cytoplasm and nucleus in preparatory phases. Here we used the ability of parvoviruses to induce nuclear membrane breakdown to understand the triggers of key mitotic enzymes. Nuclear envelope disintegration was shown upon infection, microinjection but also upon their application to permeabilized cells. The latter technique also showed that nuclear envelope disintegration was independent upon soluble cytoplasmic factors. Using time-lapse microscopy, we observed that nuclear disassembly exhibited mitosis-like kinetics and occurred suddenly, implying a catastrophic event irrespective of cell- or type of parvovirus used. Analyzing the order of the processes allowed us to propose a model starting with direct binding of parvoviruses to distinct proteins of the nuclear pore causing structural rearrangement of the parvoviruses. The resulting exposure of domains comprising amphipathic helices was required for nuclear envelope disintegration, which comprised disruption of inner and outer nuclear membrane as shown by electron microscopy. Consistent with Ca++ efflux from the lumen between inner and outer nuclear membrane we found that Ca++ was essential for nuclear disassembly by activating PKC. PKC activation then triggered activation of cdk-2, which became further activated by caspase-3. Collectively our study shows a unique interaction of a virus with the nuclear envelope, provides evidence that a nuclear pool of executing enzymes is sufficient for nuclear disassembly in quiescent cells, and demonstrates that nuclear disassembly can be uncoupled from initial phases of mitosis.  相似文献   

20.
Further Observations on the Nuclear Envelope of the Animal Cell   总被引:27,自引:25,他引:2       下载免费PDF全文
The term pore complex is proposed for approximately cylindrical formations which are observed with the electron microscope to penetrate the nuclear envelope of cells. Cross-sections of the pore complex are somewhat annular in shape, but differ in appearance depending upon the level of the cross-section with respect to the nuclear surface. An explanation is offered for the apparent discrepancy between the width of pores in sections perpendicular to the nuclear envelope and the width of cross-sections of the pore complex in tangential sections. Channels associated with the pore complex extend deep into the nucleus. Although crescents and spirals of ribonucleoprotein particles were often seen in the immediate vicinity of the outer nuclear membrane, direct association with the pore complex was not observed. Many examples were found of pores that were not covered by a continuous membrane although the possibility of such a covering in some cases is not precluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号