首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inositol polyphosphate 4 phosphatase type I enzyme (INPP4A) has a well-documented function in the cytoplasm where it terminates the phosphatidylinositol 3-kinase (PI 3-K) pathway by acting as a negative regulator. In this study, we demonstrate for the first time that INPP4A shuttles between the cytoplasm and the nucleus. Nuclear INPP4A is enzymatically active and in dynamic equilibrium between the nucleus and cytoplasm depending on the cell cycle stage, with highest amounts detected in the nucleus during the G0/G1 phase. Moreover, nuclear INPP4A is found to have direct proliferation suppressive activity. Cells constitutively overexpressing nuclear INPP4A exhibit massive apoptosis. In human tissues as well as cell lines, lower nuclear localization of INPP4A correlate with cancerous growth. Together, our findings suggest that nuclear compartmentalization of INPP4A may be a mechanism to regulate cell cycle progression, proliferation and apoptosis. Our results imply a role for nuclear-localized INPP4A in tumor suppression in humans.  相似文献   

3.
4.
Cell division must be tightly coupled to cell growth in order to maintain cell size, yet the mechanisms linking these two processes are unclear. It is known that almost all proteins involved in cell division shuttle between cytoplasm and nucleus during the cell cycle; however, the implications of this process for cell cycle dynamics and its coupling to cell growth remains to be elucidated. We developed mathematical models of the cell cycle which incorporate protein translocation between cytoplasm and nucleus. We show that protein translocation between cytoplasm and nucleus not only modulates temporal cell cycle dynamics, but also provides a natural mechanism coupling cell division to cell growth. This coupling is mediated by the effect of cytoplasmic-to-nuclear size ratio on the activation threshold of critical cell cycle proteins, leading to the size-sensing checkpoint (sizer) and the size-independent clock (timer) observed in many cell cycle experiments.  相似文献   

5.
The effect of the nucleus on the cell mechanical behavior was investigated based on the dynamic indentation response of cells under a spherical tip. A “two-component” cell model (including cytoplasm and nucleus) is used, and the dynamic indentation behavior is studied by a semiempirical method, which is established based on fitting the numerical simulation results of the quasi-static indentation response of cells. We found that the “routine analysis” (based on the Hertz’s contact solution of homogeneous model) significantly overestimated the nucleus effect on the overall cell indentation response due to the effects of the Hertz contact radius and the substrate stiffening. These effects are significantly stronger in the “two-component” cell model than in the homogeneous model. The inaccuracy created by the “routine analysis” slightly increases with the modulus ratio of nucleus to cytoplasm and the volume fraction of nucleus. Finally, the error sensitivity to the geometrical parameters used in the model is discussed, which shows the indentation analysis is not very sensitive to these parameters, and the reasonable assumptions for these parameters are effective. This systematic analysis can provide a useful guideline to understanding the mechanical behavior of cells and nuclei.  相似文献   

6.
Cell cycle analysis typically relies on fixed time-point measurements of cells in particular phases of the cell cycle. The cell cycle, however, is a dynamic process whose subtle shifts are lost by fixed time-point methods. Live-cell fluorescent biosensors and time-lapse microscopy allows the collection of temporal information about real time cell cycle progression and arrest. Using two genetically-encoded biosensors, we measured the precision of the G1, S, G2, and M cell cycle phase durations in different cell types and identified a bimodal G1 phase duration in a fibroblast cell line that is not present in the other cell types. Using a cell line model for neuronal differentiation, we demonstrated that NGF-induced neurite extension occurs independently of NGF-induced cell cycle G1 phase arrest. Thus, we have begun to use cell cycle fluorescent biosensors to examine the proliferation of cell populations at the resolution of individual cells and neuronal differentiation as a dynamic process of parallel cell cycle arrest and neurite outgrowth.  相似文献   

7.
Among the Ras family, Ran is a unique small G protein. It does not have a lipid modification motif at the C-terminus to bind to the membrane, which is often observed within the Ras family. Ran may therefore interact with a wide range of proteins in various intracellular locations. This means that Ran could play many different roles like nucleocytoplasmic transport, microtubule assembly and so on. All of the Ran functions should be regulated by RanGEF and RanGAP. It is an interesting issue why RCC1, a RanGEF, is localized in the nucleus and RanGAP1/Ran1p in the cytoplasm. It is possible that RCC1 checks the state of chromosomal DNA replication and transfers it to the downstream events through Ran; thereby, RCC1 would be involved in coupling the spatial localization of cellular macromolecules with the cell cycle progression. In this context, Ran will be a very important cell cycle mediator. There is yet another G protein cascade, Gtr1-Gtr2, which interacts with the Ran cycle.  相似文献   

8.
Nek2 is a mammalian protein kinase that is structurally homologous to NIMA, a mitotic regulator in Aspergillus nidulans. To understand the possible cellular processes in which Nek2 participates during the cell cycle, we investigated the expression and subcellular localization of Nek2 in mitotic cells. The Nek2 protein levels were observed to be regulated in a cell cycle stage-specific manner in cultured cells. The cell cycle stage specificity of Nek2 expression was also confirmed in cells undergoing mitosis in vivo. Nek2 proteins were localized in both the nucleus and cytoplasm throughout the cell cycle, but exhibited dynamic changes in distribution, depending on the cell cycle stage. Nek2 was associated with chromosomes from prophase to metaphase and then was dissociated upon entering into anaphase. Nek2 then appeared at the midbody of the cytoplasmic bridge at telophase. Nek2 was also associated with the centrosome throughout the cell cycle as observed previously by others. Additionally, the nuclear localization of Nek2 was increased during S phase. Such dynamic behavior of Nek2 suggests that Nek2 may be a mitotic regulator that is involved in diverse cell cycle events.  相似文献   

9.
10.
Frank  Steven A 《BMC biology》2004,2(1):1-8

Background

The observation of multiple genetic markers in situ by optical microscopy and their relevance to the study of three-dimensional (3D) chromosomal organization in the nucleus have been greatly developed in the last decade. These methods are important in cancer research because cancer is characterized by multiple alterations that affect the modulation of gene expression and the stability of the genome. It is, therefore, essential to analyze the 3D genome organization of the interphase nucleus in both normal and cancer cells.

Results

We describe a novel approach to study the distribution of all telomeres inside the nucleus of mammalian cells throughout the cell cycle. It is based on 3D telomere fluorescence in situ hybridization followed by quantitative analysis that determines the telomeres' distribution in the nucleus throughout the cell cycle. This method enables us to determine, for the first time, that telomere organization is cell-cycle dependent, with assembly of telomeres into a telomeric disk in the G2 phase. In tumor cells, the 3D telomere organization is distorted and aggregates are formed.

Conclusions

The results emphasize a non-random and dynamic 3D nuclear telomeric organization and its importance to genomic stability. Based on our findings, it appears possible to examine telomeric aggregates suggestive of genomic instability in individual interphase nuclei and tissues without the need to examine metaphases. Such new avenues of monitoring genomic instability could potentially impact on cancer biology, genetics, diagnostic innovations and surveillance of treatment response in medicine.  相似文献   

11.
The MPM-2 antibody, which recognizes a mitosis-specific phosphorylated epitope, has been used to study cell-cycle-related proteins in partially synchronized cell suspension cultures and root meristem cells. Immunofluorescence revealed that the epitope recognized by MPM-2 is located in the nucleus in interphase cells. In mitotic cells, MPM-2 labels the prophase nucleus, the spindle and some cytoplasmic components. The relative amount of the epitope changes significantly during the cell cycle. Labelling is lowest in G1 and S-phase cells and increases 2–3-fold during G2. Prophase and metaphase show four to five times the labelling of G1 cells. Labelling decreases rapidly after metaphase and is at a very low level by telophase. One- (1-D) and two-dimensional (2-D) immunoblots showed that MPM-2 labels a family of phosphorylated proteins. The labelling shows significant cell cycle dependence. Subfractionation shows at least one of these proteins is a component of the detergent-insoluble cytoskeleton cell fraction. This component is resolved on 2-D immunoblots to two to three spots of slightly different isoelectric point, possibly charge isomers, at a relative molecular mass of approximately 65 kDa. The same spots are labelled by IFA, an antibody against intermediate filament proteins. Another three of the spots at lower relative molecular mass are labelled on 2-D immunoblots of the nuclear matrix fraction.  相似文献   

12.
The cell cycle of most organisms is highlighted by characteristic changes in the appearance and activity of the nucleus. Structural changes in the nucleus are particularly evident when a cell begins to divide. At this time, the nuclear envelope is disassembled, the chromatin condenses into metaphase chromosomes, and the chromosomes associate with a newly formed spindle. Upon completion of cell division the nuclear envelope reassembles around the chromosomes as they form telophase nuclei, and subsequently interphase nuclei, in the daughter cells. The cytoplasmic control of nuclear behavior has been the theme of Yoshio Masui's research for much of his career. His pioneering demonstration that the cytoplasm of maturing amphibian oocytes causes the resumption of the meiotic cell cycle when it is injected into an immature oocyte provided unequivocal evidence that a cytoplasmic factor could initiate the transition from interphase to metaphase (M-phase) in intact cells. As described in several reviews in this and the previous issue of Biology of the Cell (see Beckhelling and Ford; Duesbery and Vande Woude; Maller), Masui initially called this activity maturation promoting factor (MPF), but when it was realized that it was a ubiquitous regulator of both mitotic and meiotic cell cycles, MPF came to stand for M-phase promoting factor. Biochemical evidence indicates that MPF activity is composed of a mitotic B-type cyclins and cyclin-dependent kinase 1. The increase in the protein kinase activity of cdk1 initiates the changes in the nucleus associated with oocyte maturation and with the entry into mitosis. This article will attempt to provide a brief summary of the responses of the nucleus to the activation of MPF. In addition, the effect of MPF inactivation on nuclear envelope assembly at the end of mitosis will be discussed. This article is written as a tribute to Yoshio Masui on his retirement from the University of Toronto, and as an expression of gratitude for his guidance while I was a student in his laboratory. I have felt very privileged to have known him as a mentor and a friend.  相似文献   

13.
Cluster analysis has proven to be a valuable statistical method for analyzing whole genome expression data. Although clustering methods have great utility, they do represent a lower level statistical analysis that is not directly tied to a specific model. To extend such methods and to allow for more sophisticated lines of inference, we use cluster analysis in conjunction with a specific model of gene expression dynamics. This model provides phenomenological dynamic parameters on both linear and non-linear responses of the system. This analysis determines the parameters of two different transition matrices (linear and nonlinear) that describe the influence of one gene expression level on another. Using yeast cell cycle microarray data as test set, we calculated the transition matrices and used these dynamic parameters as a metric for cluster analysis. Hierarchical cluster analysis of this transition matrix reveals how a set of genes influence the expression of other genes activated during different cell cycle phases. Most strikingly, genes in different stages of cell cycle preferentially activate or inactivate genes in other stages of cell cycle, and this relationship can be readily visualized in a two-way clustering image. The observation is prior to any knowledge of the chronological characteristics of the cell cycle process. This method shows the utility of using model parameters as a metric in cluster analysis.  相似文献   

14.
The athecate, pseudocolonial polykrikoid dinoflag‐ellates show a greater morphological complexity than many other dinoflagellate cells and contain not only elaborate extrusomes but sulci, cinguli, flagellar pairs, and nuclei in multiple copies. Among polykrikoids, Polykrikos kofoidii is a common species that plays an important role as a grazer of toxic planktonic algae but whose life cycle is poorly known. In this study, the main life cycle stages of P. kofoidii were examined and documented for the first time. The formation of gametes, 2‐zooid‐1‐nucleus stages very different from vegetative cells, was observed and the process of gamete fusion, isogamy, was recorded. Karyogamy followed shortly after completed plasmogamy. A complex reorganization of furrows (cinguli and sulci) and flagella followed zygote formation, resulting in a 4‐zooid zygote with one nucleus. The fate of zygotes under different nutritional conditions was also investigated; well‐fed zygotes were able to reenter the vegetative cycle via meiotic divisions as indicated by nuclear cyclosis. However, nuclear cyclosis was preceded by a presumably mitotic division of the primary zygote nucleus which by definition would imply that P. kofoidii has a diplohaplontic life cycle. Nuclear cyclosis in germlings hatched from spiny resting cysts indicate that these cysts are of zygote origin (hypnozygotes). Hypnozygote formation, cyst hatching, the morphology of the germling (a 1‐zooid cell), and its development into a normal pseudocolony are documented here for the first time. There is evidence that P. kofoidii has a system of complex heterothallism.  相似文献   

15.
Cell cycle regulation of NF-YC nuclear localization   总被引:3,自引:0,他引:3  
NF-Y is a trimeric activator with histone fold, HFM, subunits that binds to the CCAAT-box and is required for a majority of cell cycle promoters, often in conjunction with E2Fs. In vivo binding of NF-Y is dynamic during the cell cycle and correlates with gene activation. We performed immunofluorescence studies on endogenous, GFP- and Flag-tagged overexpressed NF-Y subunits. NF-YA, NF-YB are nuclear proteins. Unexpectedly, NF-YC localizes both in cytoplamatic and nuclear compartments and its nuclear localization is determined by the interaction with its heterodimerization partner NF-YB. Most importantly, compartmentalization is regulated during the cell cycle of serum restimulated NIH3T3 cells, accumulating in the nucleus at the onset of S phase. These data point to the control of HFM heterodimerization as an important layer of NF-Y regulation during cell cycle progression.  相似文献   

16.
The hypotrichous ciliated protozoan Euplotes aediculatus possesses a characteristic C-shaped somatic nucleus (macronucleus) within the cytoplasm, which shows dynamic shape change during the cell cycle. It is shown that isolated macronuclei possess Ca(2+)-dependent contractility. Macronuclei were isolated, stuck fast on the glass surface, and subjected to different concentrations of Ca(2+) in a Ca(2+)-EGTA buffer. The nuclei became expanded at [Ca(2+)]<10(-7)M, and they contracted on subsequent addition of higher concentrations of Ca(2+). Cycles of expansion and contraction of the nucleus could be repeated many times by alternate addition of EGTA and Ca(2+), indicating that the size of isolated nuclei can be regulated by [Ca(2+)] alone. The nuclear contraction was observed in all phases of the cell cycle, but contractility was less evident around replication bands in the S phase. In addition to the hypotrichous ciliate Euplotes, similar Ca(2+)-dependent nuclear contractility was found to exist in other cell types, including protozoans of different taxa (a heliozoon Actinophrys sol and a peniculine ciliate Paramecium bursaria), and also mammalian culture cells (HeLa cells). Our findings suggest a possibility that Ca(2+)-dependent nuclear contractility may be shared among diverse eukaryotic organisms.  相似文献   

17.
The cell nucleus is separated from the rest of the cell by the nuclear envelope. The nuclear envelope, nuclear envelope proteins and nuclear lamina organise the structure of the entire nucleus and the chromatin via a myriad of interactions. These interactions are dynamic, change with the change (progress) of the cell cycle, with cell differentiation and with changes in cell physiology.  相似文献   

18.
Spatial organisation of the genome within the nucleus can play a role in maintaining the expressed or silent state of some genes [1]. There are distinct addresses for specific chromosomes, which have different functional characteristics, within the nuclei of dividing populations of human cells [2]. Here, we demonstrate that this level of nuclear architecture is altered in cells that have become either quiescent or senescent. Upon cell cycle exit, a gene-poor human chromosome moves from a location at the nuclear periphery to a more internal site in the nucleus, and changes its associations with nuclear substructures. The chromosome moves back toward the edge of the nucleus at a distinctive time after re-entry into the cell cycle. There is a 2-4 hour period at the beginning of G1 when the spatial organisation of these human chromosomes is established. Lastly, these experiments provide evidence that temporal control of DNA replication can be independent of spatial chromosome organisation. We conclude that the sub-nuclear organisation of chromosomes in quiescent or senescent mammalian somatic cells is fundamentally different from that in proliferating cells and that the spatial organisation of the genome is plastic.  相似文献   

19.
The variability of the duration of the cell cycle is explained by the phenomenon of sensitive dependence upon initial conditions; as may occur in deterministic non-linear systems. Chaotic dynamics of a system is the result of this sensitive dependence. First a deterministic system is formulated that is equivalent to the Smith-Martin transition probability model of the cell cycle. Next the model is extended to a dynamic process that ranges over the cell generations. A deterministic non-linear relationship between the cycle time of the mother and daughter cell is established. It clarifies the variability of mother-daughter correlation for the different cell types. The model is fitted to two different cell cultures; it shows that the graph of the non-linear relation has the same shape for different cell types.  相似文献   

20.
胡炜  汪亚平  朱作言 《遗传学报》2003,30(5):485-492
目前动物克隆技术体系极待完善,其极低的成功率及克隆动物普遍存在的早衰、早天现象是阻碍研究深入进行的首要问题,其突破的关键在于对核移植后的细胞核再程序化机制的阐明。从移植核在结构上的重塑、移植核与受体卵细胞质所处的细胞周期及其相互作用、重构胚与两性胚在分子水平的变化等多方面研究表明:受体细胞质的环境对于细胞核的再程序化至关重要,处于有丝分裂各时期的细胞作为核供体一旦移植到卵母细胞后,移植核在卵质环境里将出现结构上的重塑和分子的再程序化;移植核与受体卵问细胞周期的相容性、重构胚的染色体倍性的正确与否,可能是决定重构胚发育率高低的重要因素;合子型基因激活是基因表达再程序化的关键事件之一;印记基因对于体细胞克隆动物移植核的再程序化过程可能起着非常独特的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号