首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gram-negative bacteria are enveloped by two membranes, the inner (cytoplasmic) (CM) and the outer (OM). The majority of integral outer membrane proteins are arranged in β-barrels of cylindrical shape composed of amphipathic antiparallel β-strands. In bacteria, β-barrel proteins function as water-filled pores, active transporters, enzymes, receptors, and structural proteins. Proteins of bacterial OM are synthesized in the cytoplasm as unfolded polypeptides with an N-terminal sequence that marks them for transport across the CM. Precursors of membrane proteins move through the aqueous medium of the cytosol and periplasm under the protection of chaperones (SecB, Skp, SurA, and DegP), then cross the CM via the Sec system composed of a polypeptide-conducting channel (SecYEG) and ATPase (SecA), the latter providing the energy for the translocation of the pre-protein. Pre-protein folding and incorporation in the OM require the participation of the Bam-complex, probably without the use of energy. This review summarizes current data on the biogenesis of the β-barrel proteins of bacterial OM. Data on the structure of the proteins included in the multicomponent system for delivery of the OM proteins to their destination in the cell and on their complexes with partners, including pre-proteins, are pre-sented. Molecular models constructed on the basis of structural, genetic, and biochemical studies that describe the mechanisms of β-barrel protein assembly by this molecular transport machinery are also considered.  相似文献   

3.
The TOB–SAM complex is an essential component of the mitochondrial outer membrane that mediates the insertion of β-barrel precursor proteins into the membrane. We report here its isolation and determine its size, composition, and structural organization. The complex from Neurospora crassa was composed of Tob55–Sam50, Tob38–Sam35, and Tob37–Sam37 in a stoichiometry of 1:1:1 and had a molecular mass of 140 kD. A very minor fraction of the purified complex was associated with one Mdm10 protein. Using molecular homology modeling for Tob55 and cryoelectron microscopy reconstructions of the TOB complex, we present a model of the TOB–SAM complex that integrates biochemical and structural data. We discuss our results and the structural model in the context of a possible mechanism of the TOB insertase.  相似文献   

4.
β-barrel membrane proteins play an important role in controlling the exchange and transport of ions and organic molecules across bacterial and mitochondrial outer membranes. They are also major regulators of apoptosis and are important determinants of bacterial virulence. In contrast to β-helical membrane proteins, their evolutionary pattern of residue substitutions has not been quantified, and there are no scoring matrices appropriate for their detection through sequence alignment. Using a Bayesian Monte Carlo estimator, we have calculated the instantaneous substitution rates of transmembrane domains of bacterial β-barrel membrane proteins. The scoring matrices constructed from the estimated rates, called bbTM for β-barrel Transmembrane Matrices, improve significantly the sensitivity in detecting homologs of β-barrel membrane proteins, while avoiding erroneous selection of both soluble proteins and other membrane proteins of similar composition. The estimated evolutionary patterns are general and can detect β-barrel membrane proteins very remote from those used for substitution rate estimation. Furthermore, despite the separation of 2-3 billion years since the proto-mitochondrion entered the proto-eukaryotic cell, mitochondria outer membrane proteins in eukaryotes can also be detected accurately using these scoring matrices derived from bacteria. This is consistent with the suggestion that there is no eukaryote-specific signals for translocation. With these matrices, remote homologs of β-barrel membrane proteins with known structures can be reliably detected at genome scale, allowing construction of high quality structural models of their transmembrane domains, at the rate of 131 structures per template protein. The scoring matrices will be useful for identification, classification, and functional inference of membrane proteins from genome and metagenome sequencing projects. The estimated substitution pattern will also help to identify key elements important for the structural and functional integrity of β-barrel membrane proteins, and will aid in the design of mutagenesis studies.  相似文献   

5.
Kornelius Zeth 《BBA》2010,1797(6-7):1292-1299
Gram-negative bacteria are the ancestors of mitochondrial organelles. Consequently, both entities contain two surrounding lipid bilayers known as the inner and outer membranes. While protein synthesis in bacteria is accomplished in the cytoplasm, mitochondria import 90–99% of their protein ensemble from the cytosol in the opposite direction. Three protein families including Sam50, VDAC and Tom40 together with Mdm10 compose the set of integral β-barrel proteins embedded in the mitochondrial outer membrane in S. cerevisiae (MOM). The 16-stranded Sam50 protein forms part of the sorting and assembly machinery (SAM) and shows a clear evolutionary relationship to members of the bacterial Omp85 family. By contrast, the evolution of VDAC and Tom40, both adopting the same fold cannot be traced to any bacterial precursor. This finding is in agreement with the specific function of Tom40 in the TOM complex not existent in the enslaved bacterial precursor cell. Models of Tom40 and Sam50 have been developed using X-ray structures of related proteins. These models are analyzed with respect to properties such as conservation and charge distribution yielding features related to their individual functions.  相似文献   

6.
The outer membranes of Gram-negative bacteria, mitochondria, and chloroplasts all contain transmembrane β-barrel proteins. These β-barrel proteins serve essential functions in cargo transport and signaling and are also vital for membrane biogenesis. They have also been adapted to perform a diverse set of important cellular functions including acting as porins, transporters, enzymes, virulence factors and receptors. Recent structures of transmembrane β-barrels include that of a full length autotransporter (EstA), a bacterial heme transporter complex (HasR), a bacterial porin in complex with several ligands (PorB), and the mitochondrial voltage-dependent anion channel (VDAC) from both mouse and human. These represent only a few of the interesting structures of β-barrel membrane proteins recently elucidated. However, they demonstrate many of the advancements made within the field of transmembrane protein structure in the past few years.  相似文献   

7.

Background  

Prediction of the transmembrane strands and topology of β-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on Hidden Markov Models (HMMs), on Neural Networks (NNs) and on Support Vector Machines (SVMs). In this work, we compare the different available methods for topology prediction of β-barrel outer membrane proteins. We evaluate their performance on a non-redundant dataset of 20 β-barrel outer membrane proteins of gram-negative bacteria, with structures known at atomic resolution. Also, we describe, for the first time, an effective way to combine the individual predictors, at will, to a single consensus prediction method.  相似文献   

8.
The transmembrane region of outer-membrane proteins (OMPs) of Gram-negative bacteria are almost exclusively β-barrels composed of between 8 and 26 β-strands. To explore the relationship between β-barrel size and shape, we modeled and simulated engineered variants of the Escherichia coli protein OmpX with 8, 10, 12, 14, and 16 β-strands. We found that while smaller barrels maintained a roughly circular shape, the 16-stranded variant developed a flattened cross section. This flat cross section impeded its ability to conduct ions, in agreement with previous experimental observations. Flattening was determined to arise from the presence of inward-facing glycines at sharp turns in the β-barrel. An analysis of all simulations revealed that glycines, on average, make significantly smaller angles with residues on neighboring strands than all other amino acids, including alanine, and create sharp turns in β-barrel cross sections. This observation was generalized to 119 unique structurally resolved OMPs. We also found that the fraction of glycines in β-barrels decreases as the strand number increases, suggesting an evolutionary role for the addition or removal of glycine in OMP sequences.  相似文献   

9.
正Dear Editor.Transmembrane proteins withβ-barrel topology are mainly found in the outer membranes (OMs) of Gram-negative bacteria,mitochondria and chloroplasts (Wimley,2003).These proteins usually contain even numbers ofβ-strands,ranging from 8-36.To achieve an overall cylindrical topology,the polypeptide chain of aβ-barrel OMP must fold to form a series of anti-parallelβ-strands with eachβ-strand hydrogen-bonding to its neighboring strands (Otzen and Andersen,2013).The folding and insertion of aβ-barrel OMP in vivo requires an evolutionarily conserved multiprotein complex termedβ-barrel assembly machinery(BAM) complex (Noinaj et al.,2015).The structures of the  相似文献   

10.
Membrane proteins with a β-barrel topology are found in the outer membranes of Gram-negative bacteria and in the plastids and mitochondria of eukaryotic cells. The assembly of these membrane proteins depends on a protein folding reaction (to create the barrel) and an insertion reaction (to integrate the barrel within the outer membrane). Experimental approaches using biophysics and biochemistry are detailing the steps in the assembly pathway, while genetics and bioinformatics have revealed a sophisticated production line of cellular components that catalyze the assembly pathway in vivo. This includes the modular BAM complex, several molecular chaperones and the translocation and assembly module (the TAM). Recent screens also suggest that further components of the pathway might remain to be discovered. We review what is known about the process of β-barrel protein assembly into membranes, and the components of the β-barrel assembly machinery. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

11.
12.
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid–protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

13.

Background  

Integral membrane proteins constitute about 20–30% of all proteins in the fully sequenced genomes. They come in two structural classes, the α-helical and the β-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the α-helical integral membrane proteins appears to be an easy task nowadays, the same is much more difficult for the β-barrel membrane proteins. We developed a method, based on a Hidden Markov Model, capable of predicting the transmembrane β-strands of the outer membrane proteins of gram-negative bacteria, and discriminating those from water-soluble proteins in large datasets. The model is trained in a discriminative manner, aiming at maximizing the probability of correct predictions rather than the likelihood of the sequences.  相似文献   

14.
A protocol is described for the reconstitution of a transmembrane β-barrel protein domain, tOmpA, into lipid bicelles. tOmpA is the largest protein to be reconstituted in bicelles to date. Its insertion does not prevent bicelles from orienting with their plane either parallel or perpendicular to the magnetic field, depending on the absence or presence of paramagnetic ions. In the latter case, tOmpA is shown to align with the axis of the β-barrel parallel to the magnetic field, i.e. perpendicular to the plane of the bilayer, an orientation conforming to that in natural membranes and favourable to structural studies by solid-state NMR. Reconstitution into bicelles may offer an interesting approach for structural studies of membrane proteins in a medium resembling a biological membrane, using either NMR or other biophysical techniques. Our data suggest that alignment in the magnetic field of membrane proteins included into bicelles may be facilitated if the protein is folded as a β-barrel structure.  相似文献   

15.
The spontaneous folding of two Neisseria outer membrane proteins, opacity-associated (Opa)(60) and Opa(50) into lipid vesicles was investigated by systematically varying bulk and membrane properties. Centrifugal fractionation coupled with sodium dodecyl sulfate polyacrylamide gel electrophoresis mobility assays enabled the discrimination of aggregate, unfolded membrane-associated, and folded membrane-inserted protein states as well as the influence of pH, ionic strength, membrane surface potential, lipid saturation, and urea on each. Protein aggregation was reduced with increasing lipid chain length, basic pH, low salt, the incorporation of negatively charged guest lipids, or by the addition of urea to the folding reaction. Insertion from the membrane-associated form was improved in shorter chain lipids, with more basic pH and low ionic strength; it is hindered by unsaturated or ether-linked lipids. The isolation of the physical determinants of insertion suggests that the membrane surface and dipole potentials are driving forces for outer membrane protein insertion and folding into lipid bilayers.  相似文献   

16.
β-Barrel proteins found in the outer membrane of Gram-negative bacteria serve a variety of cellular functions. Proper folding and assembly of these proteins are essential for the viability of bacteria and can also play an important role in virulence. The β-barrel assembly machinery (BAM) complex, which is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, has been the focus of many recent studies. This review summarizes the significant progress that has been made toward understanding the structure and function of the bacterial BAM complex.  相似文献   

17.
Most proteins found in the outer membrane of gram-negative bacteria share a common domain: the transmembrane β-barrel. These outer membrane β-barrels (OMBBs) occur in multiple sizes and different families with a wide range of functions evolved independently by amplification from a pool of homologous ancestral ββ-hairpins. This is part of the reason why predicting their three-dimensional (3D) structure, especially by homology modeling, is a major challenge. Recently, DeepMind's AlphaFold v2 (AF2) became the first structure prediction method to reach close-to-experimental atomic accuracy in CASP even for difficult targets. However, membrane proteins, especially OMBBs, were not abundant during their training, raising the question of how accurate the predictions are for these families. In this study, we assessed the performance of AF2 in the prediction of OMBBs and OMBB-like folds of various topologies using an in-house-developed tool for the analysis of OMBB 3D structures, and barrOs. In agreement with previous studies on other membrane protein classes, our results indicate that AF2 predicts transmembrane β-barrel structures at high accuracy independently of the use of templates, even for novel topologies absent from the training set. These results provide confidence on the models generated by AF2 and open the door to the structural elucidation of novel transmembrane β-barrel topologies identified in high-throughput OMBB annotation studies or designed de novo.  相似文献   

18.
The outer membranes of Gram-negative bacteria are replete with integral membrane proteins that exhibit antiparallel β-barrel structures, but very few of these proteins function as enzymes. In Escherichia coli, only three β-barrel enzymes are known to exist in the outer membrane; these are the phospholipase OMPLA, the protease OmpT, and the phospholipid∷lipid A palmitoyltransferase PagP, all of which have been characterized at the structural level. Structural details have also emerged for the outer membrane β-barrel enzyme PagL, a lipid A 3-O-deacylase from Pseudomonas aeruginosa. Lipid A can be further modified in the outer membrane by two β-barrel enzymes of unknown structure; namely, the Salmonella enterica 3′-acyloxyacyl hydrolase LpxR, and the Rhizobium leguminosarum oxidase LpxQ, which employs O2 to convert the proximal glucosamine unit of lipid A into 2-aminogluconate. Structural biology now indicates how β-barrel enzymes can function as sentinels that remain dormant when the outer membrane permeability barrier is intact. Host immune defenses and antibiotics that perturb this barrier can directly trigger β-barrel enzymes in the outer membrane. The ensuing adaptive responses occur instantaneously and rapidly outpace other signal transduction mechanisms that similarly function to restore the outer membrane permeability barrier.  相似文献   

19.
A method is proposed for predicting the adjacency order in which strands pack in a -sheet in a protein, on the basis of its amino acid sequence alone. The method is based on the construction of a predicted contact map for the protein, in which the probability that various residue pairs are close to each other is computed from statistically determined average distances of residue pairs in globular proteins of known structure. Compact regions, i.e., portions of the sequence with many interresidue contacts, are determined on the map by using an objective search procedure. The proximity of strands in a -sheet is predicted from the density of contacts in compact regions associated with each pair of strands. The most probable -sheet structures are those with the highest density of contacts. The method has been tested by computing the probable strand arrangements in a five-strand -sheet in five proteins or protein domains, containing 62–138 residues. Of the theoretically possible 60 strand arrangements, the method selects two to eight arrangements as most probable; i.e., it leads to a large reduction in the number of possibilities. The native strand arrangement is among those predicted for three of the five proteins. For the other two, it would be included in the prediction by a slight relaxation of the cutoff criteria used to analyze the density of contacts.  相似文献   

20.
Coronavirus envelope (E) proteins are short (~100 residues) polypeptides that contain at least one transmembrane (TM) domain and a cluster of 2-3 juxtamembrane cysteines. These proteins are involved in viral morphogenesis and tropism, and their absence leads in some cases to aberrant virions, or to viral attenuation. In common to other viroporins, coronavirus envelope proteins increase membrane permeability to ions. Although an NMR-based model for the TM domain of the E protein in the severe acute respiratory syndrome virus (SARS-CoV E) has been reported, structural data and biophysical studies of full length E proteins are not available because efficient expression and purification methods for these proteins are lacking. Herein we have used a novel fusion protein consisting of a modified β-barrel to purify both wild type and cysteine-less mutants of two representatives of coronavirus E proteins: the shortest (76 residues), from SARS-CoV E, and one of the longest (109 residues), from the infectious bronchitis virus (IBV E). The fusion construct was subsequently cleaved with cyanogen bromide and all polypeptides were obtained with high purity. This is an approach that can be used in other difficult hydrophobic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号