首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY “face” sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK “back” sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.  相似文献   

2.
Amyloid fibrils often exhibit polymorphism. Polymorphs are formed when proteins or peptides with identical sequences self-assemble into fibrils containing substantially different arrangements of the β-strands. We used atomistic molecular-dynamics simulation to examine the thermodynamic stability of a amyloid fibrils in different polymorphic forms by performing a systematic investigation of sequence and symmetry space for a series of peptides with a range of physicochemical properties. We show that the stability of fibrils depends on both sequence and the symmetry because these factors determine the availability of favorable interactions between the peptide strands within a sheet and in intersheet packing. By performing a detailed analysis of these interactions as a function of symmetry, we obtained a series of simple design rules that can be used to determine which polymorphs of a given sequence are most likely to form thermodynamically stable fibrils. These rules can potentially be employed to design peptide sequences that aggregate into a preferred polymorphic form for nanotechnological purposes.  相似文献   

3.
Nine genetically inherited neurodegenerative diseases are linked to abnormal expansions of a polyglutamine (polyQ) encoding region. Over the years, several structural models for polyQ regions have been proposed and confuted. The cross-β-spine steric zipper motif, identified recently for the GNNQQNY peptide, represents an attractive model for amyloid fibers formed by polyQ fragments. Here we report a detailed molecular dynamics investigation of polyQ models assembled by cross-β-spine steric zipper motifs. Our simulations indicate clearly that these assemblies are very stable. Glutamine side chains contribute strongly to the overall stability of the models by fitting perfectly within the zipper. In contrast to GNNQQNY zipper motifs, hydrogen bonding interactions provide a significant contribution to the overall stability of polyQ models. Molecular dynamics simulations carried out on monomeric polyQ forms (composed by 40-60 residues) show clearly that they can also assume structures stabilized by steric zipper motifs. Based on these findings, we build monomeric polyQ models that can explain recent data on the toxicity exerted by these species. In a more general context, our data suggests that polyQ models with interdigitated side chains can provide a structural rationale to several literature experiments on polyQ formation, stability, and toxicity.  相似文献   

4.
α,β-Dehydroamino acids are naturally occurring non-coded amino acids, found primarily in peptides. The review focuses on the type of α,β-dehydroamino acids, the structure of dehydropeptides, the source of their origin and bioactivity. Dehydropeptides are isolated primarily from bacteria and less often from fungi, marine invertebrates or even higher plants. They reveal mainly antibiotic, antifungal, antitumour, and phytotoxic activity. More than 60 different structures were classified, which often cover broad families of peptides. 37 different structural units containing the α,β-dehydroamino acid residues were shown including various side chains, Z and E isomers, and main modifications: methylation of peptide bond as well as the introduction of ester group and heterocycle ring. The collected data show the relation between the structure and bioactivity. This allows the activity of compounds, which were not studied in this field, but which belong to a larger peptide family to be predicted. A few examples show that the type of the geometrical isomer of the α,β-dehydroamino acid residue can be important or even crucial for biological activity.  相似文献   

5.
PolyQ peptides teeter between polyproline II (PPII) and β-sheet conformations. In tandem polyQ-polyP peptides, the polyP segment tips the balance toward PPII, increasing the threshold number of Gln residues needed for fibrillation. To investigate the mechanism of cis-inhibition by flanking polyP segments on polyQ fibrillation, we examined short polyQ, polyP, and tandem polyQ-polyP peptides. These polyQ peptides have only three glutamines and cannot form β-sheet fibrils. We demonstrate that polyQ-polyP peptides form small, soluble oligomers at high concentrations (as shown by size exclusion chromatography and diffusion coefficient measurements) with PPII structure (as shown by circular dichroism spectroscopy and 3JHN-Cα constants of Gln residues from constant time correlation spectroscopy NMR). Nuclear Overhauser effect spectroscopy and molecular modeling suggest that self-association of these peptides occurs as a result of both hydrophobic and steric effects. Pro side chains present three methylenes to solvent, favoring self-association of polyP through the hydrophobic effect. Gln side chains, with two methylene groups, can adopt a conformation similar to that of Pro side chains, also permitting self-association through the hydrophobic effect. Furthermore, steric clashes between Gln and Pro side chains to the C-terminal side of the polyQ segment favor adoption of the PPII-like structure in the polyQ segment. The conformational adaptability of the polyQ segment permits the cis-inhibitory effect of polyP segments on fibrillation by the polyQ segments in proteins such as huntingtin.  相似文献   

6.
Formation of senile plaques containing amyloid fibrils of Aβ (amyloid β-peptide) is a pathological hallmark of Alzheimer's disease. Unlike globular proteins, which fold into unique structures, the fibrils of Aβ and other amyloid proteins often contain multiple polymorphs. Polymorphism of amyloid fibrils leads to different toxicity in amyloid diseases and may be the basis for prion strains, but the structural origin for fibril polymorphism is still elusive. In the present study we investigate the structural origin of two major fibril polymorphs of Aβ40: an untwisted polymorph formed under agitated conditions and a twisted polymorph formed under quiescent conditions. Using electron paramagnetic resonance spectroscopy, we studied the inter-strand side-chain interactions at 14 spin-labelled positions in the Aβ40 sequence. The results of the present study show that the agitated fibrils have stronger inter-strand spin-spin interactions at most of the residue positions investigated. The two hydrophobic regions at residues 17-20 and 31-36 have the strongest interactions in agitated fibrils. Distance estimates on the basis of the spin exchange frequencies suggest that inter-strand distances at residues 17, 20, 32, 34 and 36?in agitated fibrils are approximately 0.2?? (1??=0.1?nm) closer than in quiescent fibrils. We propose that the strength of inter-strand side-chain interactions determines the degree of β-sheet twist, which then leads to the different association patterns between different cross β-units and thus distinct fibril morphologies. Therefore the inter-strand side-chain interaction may be a structural origin for fibril polymorphism in Aβ and other amyloid proteins.  相似文献   

7.
The peptide self-assembly mimic (PSAM) from the outer surface protein A (OspA) can form highly stable but soluble β-rich self-assembly-like structures similar to those formed by native amyloid-forming peptides. However, unlike amyloids that predominantly form insoluble aggregates, PSAMs are highly water-soluble. Here, we characterize the conformations of these soluble β-sheet-rich assemblies. We simulate PSAMs with different-sized β-sheets in the presence and absence of end-capping proteins using all-atom explicit-solvent molecular dynamics, comparing the structural stability, conformational dynamics, and association force. Structural and free-energy comparisons among β-sheets with different numbers of layers and sequences indicate that in similarity to amyloids, the intersheet side chain-side chain interactions and hydrogen bonds combined with intrasheet salt bridges are the major driving forces in stabilizing the overall structural organization. A detailed structural analysis shows that in similarity to amyloid fibrils, all wild-type and mutated PSAM structures display twisted and bent β-sheets to some extent, implying that a twisted and bent β-sheet is a general motif of β-rich assemblies. Thus, our studies indicate that soluble β-sheet-rich peptide self-assemblies can provide good amyloid mimics, and as such confirm on the atomic scale that they are excellent systems for amyloid studies. These results provide further insight into the usefulness of such mimics for nanostructure design.  相似文献   

8.
At the core of amyloid fibrils is the cross-β spine, a long tape of β-sheets formed by the constituent proteins. Recent high-resolution x-ray studies show that the unit of this filamentous structure is a β-sheet bilayer with side chains within the bilayer forming a tightly interdigitating “steric zipper” interface. However, for a given peptide, different bilayer patterns are possible, and no quantitative explanation exists regarding which pattern is selected or under what condition there can be more than one pattern observed, exhibiting molecular polymorphism. We address the structural selection mechanism by performing molecular dynamics simulations to calculate the free energy of incorporating a peptide monomer into a β-sheet bilayer. We test filaments formed by several types of peptides including GNNQQNY, NNQQ, VEALYL, KLVFFAE and STVIIE, and find that the patterns with the lowest binding free energy correspond to available atomistic structures with high accuracy. Molecular polymorphism, as exhibited by NNQQ, is likely because there are more than one most stable structures whose binding free energies differ by less than the thermal energy. Detailed analysis of individual energy terms reveals that these short peptides are not strained nor do they lose much conformational entropy upon incorporating into a β-sheet bilayer. The selection of a bilayer pattern is determined mainly by the van der Waals and hydrophobic forces as a quantitative measure of shape complementarity among side chains between the β-sheets. The requirement for self-complementary steric zipper formation supports that amyloid fibrils form more easily among similar or same sequences, and it also makes parallel β-sheets generally preferred over anti-parallel ones. But the presence of charged side chains appears to kinetically drive anti-parallel β-sheets to form at early stages of assembly, after which the bilayer formation is likely driven by energetics.  相似文献   

9.
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies.  相似文献   

10.
A common thread connecting nine fatal neurodegenerative protein aggregation diseases is an abnormally expanded polyglutamine tract found in the respective proteins. Although the structure of this tract in the large mature aggregates is increasingly well described, its structure in the small early aggregates remains largely unknown. As experimental evidence suggests that the most toxic species along the aggregation pathway are the small early ones, developing strategies to alleviate disease pathology calls for understanding the structure of polyglutamine peptides in the early stages of aggregation. Here, we present a criterion, grounded in available experimental data, that allows for using kinetic stability of dimers to assess whether a given polyglutamine conformer can be on the aggregation path. We then demonstrate that this criterion can be assessed using present-day molecular dynamics simulations. We find that although the α-helical conformer of polyglutamine is very stable, dimers of α-helices lack the kinetic stability necessary to support further oligomerization. Dimers of steric zipper, β-nanotube, and β-pseudohelix conformers are also too short-lived to initiate aggregation. The β-hairpin-containing conformers, instead, invariably form very stable dimers when their side chains are interdigitated. Combining these findings with the implications of recent solid-state NMR data on mature fibrils, we propose a possible pathway for the initial stages of polyglutamine aggregation, in which β-hairpin-containing conformers act as templates for fibril formation.  相似文献   

11.
12.
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils) is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human β2-microglobulin and its truncated variant ΔN6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy, and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different side-chain packing, and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils to an extent that is greater than that obtained by polymerization of a single precursor alone.  相似文献   

13.
We study the thermodynamic properties of the experimental fragments of the amyloid fibril made of the HET-s prion proteins (the infectious element of the filamentous fungus Podospora anserina) and of amyloid-β proteins (the major component of Alzheimer's disease-associated plaques) by using the three-dimensional molecular theory of solvation. The full quantitative picture of hydration effects, including the hydration thermodynamics and hydration structure around the fragments, is presented. For both the complexes, the hydration entropic effects dominate, which results in the entropic part offsetting the unfavorable energetic part of the free energy change upon the association. This is in accord with the fact that the hydrophobic cooperativity plays an essential role in the formation of amyloid fibrils. By calculating the partial molar volume of the proteins, we found that the volume change upon the association in both the systems is large and positive, with the implication that high pressure causes destabilization of the fibril. This observation is in good agreement with the recent experimental results. We also found that both the HET-s and amyloid-β pentamers have loose intermolecular packing with voids. The three-dimensional molecular theory of solvation predicts that water molecules can be locked in the interior cavities along the fibril axis for both the HET-s and amyloid-β proteins. We provide a detailed molecular picture of the structural water localized in the interior of the fibrils. Our results suggest that the interior hydration plays an important role in the structural stability of fibrils.  相似文献   

14.
Pedersen JS  Dikov D  Otzen DE 《Biochemistry》2006,45(48):14503-14512
Recent work suggests that the molecular structure of amyloid-like fibrils is determined by environmental conditions as well as amino acid sequence. To probe the involvement of side chains in fibrillation of the 29-residue hormone glucagon, we have measured fibrillation kinetics of 15 alanine mutants. At acidic pH, all of the mutants are able to form fibrils. However, substitution of hydrophobic residues in the N- and C-termini (in particular Phe6, Tyr10, Val23, and Met27) decelerates fibrillation dramatically. This indicates that the hydrophobicity and/or high beta-sheet propensity of these residues may be important for fibrillation. In contrast, substitution of Leu14 increases fibrillation propensity compared to that of the wild type. Nevertheless, despite identical fibrillation conditions, the thioflavin T and tryptophan fluorescence spectra of fibrils formed by mutants Tyr13, Leu14, and Asp15 are significantly different from those of other mutants, indicating that substitution of these residues may influence not only the fibrillation kinetics and fibril stability but also the preferred final structure of the fibrils that is formed, in line with the general structural polymorphism of glucagon fibrils. In contrast, under alkaline conditions, only a handful of the alanine mutants are capable of forming fibrils, suggesting that more side chains are involved in stabilizing interactions here. In addition, fibrils formed by wild-type glucagon at alkaline pH appear very stable, compared to fibrils formed at acidic pH. This suggests that the distribution of charges determines the number of different fibrillated states available to a peptide, since these can block formation of metastable fibrillated states.  相似文献   

15.
16.
Armstrong AH  Chen J  McKoy AF  Hecht MH 《Biochemistry》2011,50(19):4058-4067
The aggregation of polypeptides into amyloid fibrils is associated with a number of human diseases. Because these fibrils--or intermediates on the aggregation pathway--play important roles in the etiology of disease, considerable effort has been expended to understand which features of the amino acid sequence promote aggregation. One feature suspected to direct aggregation is the π-stacking of aromatic residues. Such π-stacking interactions have also been proposed as the targets for various aromatic compounds that are known to inhibit aggregation. In the case of Alzheimer's disease, the aromatic side chains Phe19 and Phe20 in the wild-type amyloid beta (Aβ) peptide have been implicated. To explicitly test whether the aromaticity of these side chains plays a role in aggregation, we replaced these two phenylalanine side chains with leucines or isoleucines. These residues have similar sizes and hydrophobicities as Phe but are not capable of π-stacking. Thioflavin-T fluorescence and electron microscopy demonstrate that replacement of residues 19 and 20 by Leu or Ile did not prevent aggregation, but rather enhanced amyloid formation. Further experiments showed that aromatic inhibitors of aggregation are as effective against Ile- and Leu-substituted versions of Aβ42 as they are against wild-type Aβ. These results suggest that aromatic π-stacking interactions are not critical for Aβ aggregation or for the inhibition of Aβ aggregation.  相似文献   

17.
Amyloid β (Aβ) peptides are a primary component of fibrils and oligomers implicated in the etiology of Alzheimer's disease (AD). However, the intrinsic flexibility of these peptides has frustrated efforts to investigate the secondary and tertiary structure of Aβ monomers, whose conformational landscapes directly contribute to the kinetics and thermodynamics of Aβ aggregation. In this work, de novo replica exchange molecular dynamics (REMD) simulations on the microseconds-per-replica timescale are used to characterize the structural ensembles of Aβ42, Aβ40, and M35-oxidized Aβ42, three physiologically relevant isoforms with substantially different aggregation properties. J-coupling data calculated from the REMD trajectories were compared to corresponding NMR-derived values acquired through two different pulse sequences, revealing that all simulations converge on the order of hundreds of nanoseconds-per-replica toward ensembles that yield good agreement with experiment. Though all three Aβ species adopt highly heterogeneous ensembles, these are considerably more structured compared to simulations on shorter timescales. Prominent in the C-terminus are antiparallel β-hairpins between L17–A21, A30–L36, and V39–I41, similar to oligomer and fibril intrapeptide models that expose these hydrophobic side chains to solvent and may serve as hotspots for self-association. Compared to reduced Aβ42, the absence of a second β-hairpin in Aβ40 and the sampling of alternate β topologies by M35-oxidized Aβ42 may explain the reduced aggregation rates of these forms. A persistent V24–K28 bend motif, observed in all three species, is stabilized by buried backbone to side-chain hydrogen bonds with D23 and a cross-region salt bridge between E22 and K28, highlighting the role of the familial AD-linked E22 and D23 residues in Aβ monomer folding. These characterizations help illustrate the conformational landscapes of Aβ monomers at atomic resolution and provide insight into the early stages of Aβ aggregation pathways.  相似文献   

18.
Slowly but steadily bibliographic evidence is accumulating that the apparent convergence of the various biomolecular force fields as evidenced from simulations of proteins in the folded state does not hold true for folding simulations. Here we add one more example to the growing list of peptides and proteins for which different force fields show irreconcilable differences in their folding predictions, even at such a fundamental level as that of a peptide's secondary structure. We show that for an undecamer peptide that is known from two independent NMR structure determinations to have a mainly 310-helical structure in solution, three mainstream biomolecular force fields give completely disparate predictions: The CHARMM force field (with the CMAP correction) predicts an outstandingly stable α-helical structure, in disagreement not only with the experimental structures, but also with experimental evidence obtained from circular dichroism. OPLS-AA shows an almost totally disordered peptide with the most frequently observed folded conformation corresponding to a β-hairpin-like structure, again in disagreement with all available experimental evidence. Only the AMBER99SB force field appears to qualitatively agree with not only the general structural characteristics of the peptide (on the account of both NMR- and CD-based experiments), but to also correctly predict some of the experimentally observed interactions at the level of side chains. Possible interpretations of these findings are discussed.  相似文献   

19.
Amyloid immunotherapy has led to the rise of antibodies, which target amyloid fibrils or structural precursors of fibrils, based on their specific conformational properties. Recently, we reported the biotechnological generation of the B10 antibody fragment, which provides conformation-specific binding to amyloid fibrils. B10 strongly interacts with fibrils from Alzheimer's β amyloid (Aβ) peptide, while disaggregated Aβ peptide or Aβ oligomers are not explicitly recognized. B10 also enables poly-amyloid-specific binding and recognizes amyloid fibrils derived from different types of amyloidosis or different polypeptide chains. Based on our current data, however, we find that B10 does not recognize all tested amyloid fibrils and amyloid tissue deposits. It also does not specifically interact with intrinsically unfolded polypeptide chains or globular proteins even if the latter encompass high β-sheet content or β-solenoid domains. By contrast, B10 binds amyloid fibrils from d-amino acid or l-amino acid peptides and non-proteinaceous biopolymers with highly regular and anionic surface properties, such as heparin and DNA. These data establish that B10 binding does not depend on an amyloid-specific or protein-specific backbone structure. Instead, it involves the recognition of a highly regular and anionic surface pattern. This specificity mechanism is conserved in nature and occurs also within a group of natural amyloid receptors from the innate immune system, the pattern recognition receptors. Our data illuminate the structural diversity of naturally occurring amyloid scaffolds and enable the discrimination of distinct fibril populations in vitro and within diseased tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号