首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lateral diffusion coefficients of various epidermal growth factor (EGF) receptor mutants with increasing deletions in their carboxy-terminal cytoplasmic domain were compared. A full size cDNA construct of human EGF receptor and different deletion constructs were expressed in monkey COS cells. The EGF receptor mutants expressed on the cell surface of the COS cells were labeled with rhodamine-EGF, and the lateral diffusion coefficients of the labeled receptors were determined by the fluorescence photo-bleaching recovery method. The lateral mobilities of three deletion mutants, including a mutant that has only nine amino acids in the cytoplasmic domain, are all similar (D approximately equal to 1.5 X 10(-10) cm2/s) to the lateral mobility of the "wild-type" receptor, which possess 542 cytoplasmic domain of EGF receptor, including its intrinsic protein kinase activity and phosphorylation state, are not required for the restriction of its lateral mobility.  相似文献   

2.
Lateral diffusion of proteins in the periplasm of Escherichia coli.   总被引:12,自引:6,他引:6       下载免费PDF全文
We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis.  相似文献   

3.
Micrometer-scale domains in fibroblast plasma membranes   总被引:17,自引:7,他引:10       下载免费PDF全文
We have used the technique of fluorescence photobleaching recovery to measure the lateral diffusion coefficients and the mobile fractions of a fluorescent lipid probe, 1-acyl-2-(12-[(7-nitro-2-1, 3-benzoxadiazol-4-yl)aminododecanoyl]) phosphatidylcholine (NBD-PC), and of labeled membrane proteins of human fibroblasts. Values for mobile fractions decrease monotonically with increasing size of the laser spot used for the measurements, over a range of 0.35-5.0 microns. Values for NBD-PC diffusion coefficients increase in part of this range to reach a plateau at larger laser spots. This variation is not an artifact of the measuring system, since the effects are not seen if diffusion of the probe is measured in liposomes. We also find that the distribution of diffusion coefficients measured with small laser spots is heterogeneous indicating that these small spots can sample different regions of the membrane. These regions appear to differ in protein concentration. Our data strongly indicate that fibroblast surface membranes consist of protein-rich domains approximately 1 micron in diameter, embedded in a relatively protein-poor lipid continuum. These features appear in photographs of labeled cell surfaces illuminated by the expanded laser beam.  相似文献   

4.
The pulsed field gradient NMR method for measuring self-diffusion has been used for a direct determination of the lateral diffusion coefficient of cholesterol, fluorine labeled at the 6-position, for an oriented lamellar liquid-crystalline phase of dimyristoylphosphatidylcholine (DMPC)/cholesterol/water. It is found that the diffusion coefficients of DMPC and cholesterol are equal over a large temperature interval. The apparent energy of activation for the diffusion process (58 kJ/mol) is about the same as for a lamellar phase of DMPC/water, whereas the phospholipid lateral diffusion coefficient is approximately four times smaller in the presence of cholesterol.  相似文献   

5.
Holographic relaxation spectroscopy has been used to measure tracer diffusion coefficients for photochromically labeled bovine serum albumin in solutions having total bovine serum albumin concentrations in the range 3.25 to 257 g/liter. In the limit of zero concentration, the diffusion coefficient (20 degrees C, 0.1 M NaCl, 0.05 M Tris, pH 8.0) was found to be (5.9 +/- 0.1) X 10(-7) cm2/s and the initial slope was zero. The concentration dependence of the diffusion coefficient was not significantly affected by the fraction of protein molecules which were labeled. Holographic relaxation spectroscopy permits rapid, accurate determination of tracer diffusion coefficients for proteins in mixtures.  相似文献   

6.
Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane‐bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.  相似文献   

7.
A short burst of electric field pulses was used to induce nearly simultaneous fusion among 50% or more of a population composed of unlabeled erythrocytes and erythrocytes labeled with the fluorescent lipid analogue DiI (1,1'-dihexadecyl-3,3,3',3'-tetra-methylindo carbocyanine perchlorate). Fusion products that ended in an hourglass shape were selected for analysis. The net movement of the label from the labeled membrane to the adjacent unlabeled membrane in each of the hourglass-shaped fusion products was recorded by micrography at various known times after the fusion took place, but before equilibrium was achieved. The lateral concentration gradients were measured by densitometry and compared with predictions based on Huang's model (Huang, H.-W., 1973, J. Theor. Biol., 40:11-17) for lateral diffusion on a spherical membrane. The average lateral diffusion coefficients, 3.8 and 8.1 X 10(-9) cm2/s in pH 7.4 isotonic phosphate buffer at 23-25 degrees C and 35-37 degrees C, respectively, compare very favorably with the results of three published photobleaching studies of the lateral diffusion of DiI in erythrocyte membranes. While the fusion approach to measuring lateral diffusion is not new, it has not enjoyed widespread use because of the uncertainty in the degree of fusion synchrony and low fusion yield. This study shows that the use of pulsed electric fields to induce synchronous fusion is a promising approach to overcome both of these drawbacks and yield results comparable to those obtainable by the photobleaching approach.  相似文献   

8.
Previous work has shown that bovine prothrombin fragment 1 binds to substrate-supported planar membranes composed of phosphatidylcholine (PC) and phosphatidylserine (PS) in a Ca(2+)-specific manner. The apparent equilibrium dissociation constant is 1-15 microM, and the average membrane residency time is approximately 0.25 s-1. In the present work, fluorescence pattern photobleaching recovery with evanescent interference patterns (TIR-FPPR) has been used to measure the translational diffusion coefficients of the weakly bound fragment 1. The results show that the translational diffusion coefficients on fluid-like PS/PC planar membranes are on the order of 10(-9) cm2/s and are reduced when the fragment 1 surface density is increased. Control measurements were carried out for fragment 1 on solid-like PS/PC planar membranes. The dissociation kinetics were similar to those on fluid-like membranes, but protein translational mobility was not detected. TIR-FPPR was also used to measure the diffusion coefficient of the fluorescent lipid NBD-PC in fluid-like PS/PC planar membranes. In these measurements, the diffusion coefficient was approximately 10(-8) cm2/s, which is consistent with that measured by conventional fluorescence pattern photobleaching recovery. This work represents the first measurement of a translational diffusion coefficient for a protein weakly bound to a membrane surface.  相似文献   

9.
A microscope-based system is described for directly measuring protein rotational motion in viscous environments such as cell membranes by polarized fluorescence depletion (PFD). Proteins labeled with fluorophores having a high quantum yield for triplet formation, such as eosin isothiocyanate (EITC), are examined anaerobically in a fluorescence microscope. An acousto-optic modulator generates a several-microsecond pulse of linearly polarized light which produces an orientationally-asymmetric depletion of ground state fluorescence in the sample. When the sample is then probed with light polarized parallel to the excitation pulse, fluorescence recovers over 0-1,000 microseconds as the sum of two exponentials. One exponential corresponds to triplet decay and the other to the rotational relaxation. An exciting pulse perpendicular to the probe beam is then applied. Fluorescence recovery following this pulse is the difference of the same two exponentials. Equations for fluorescence recovery kinetics to be expected in various experimentally significant cases are derived. Least-squares analysis using these equations then permits the triplet lifetime and rotational correlation time to be determined directly from PFD data. Instrumentation for PFD measurements is discussed that permits photobleaching recovery measurements of lateral diffusion coefficients using the same microscope system. With this apparatus, both rotational and translational diffusion coefficients (Dr, Dt) were measured for EITC-labeled bovine serum albumin in glycerol solutions. Values obtained for Dr and Dt are discussed in light of both the PFD models and the experimental system.  相似文献   

10.
A fluorescent derivative of the M-13 phage coat protein (molecular weight 5260) was reconsituted into oriented multilayers and giant liposomes of dimyristoylphosphatidylcholine. The rate of lateral diffusion of the labeled protein in the fluid phase was measured as a function of temperature and found to be comparable to that of lipid probes. The protein was found to have a nonuniform lateral distribution in the solid phase of both types of model membranes. Cardiolipin (0.5 mol %) included in the multibilayers did not have any substantial effect upon the rate of diffusion.  相似文献   

11.
We have employed 31P CODEX (centre-band-only-detection-of-exchange) NMR to measure lateral diffusion coefficients of phospholipids in unilamellar lipid bilayer vesicles consisting of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), alone or in mixtures with 30 mol% 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) or cholesterol (CHOL). The lateral diffusion coefficients of POPC and POPG were extracted from experimental CODEX signal decays as a function of increasing mixing time, after accounting for the vesicle's size and size distribution, as determined via dynamic light scattering, and the viscosity of the vesicular suspension, as determined via 1H pulsed field gradient NMR. Lateral diffusion coefficients for POPC and POPG determined in this fashion fell in the range 1.0–3.2 × 10?12 m2 s?1 at 10 °C, depending on the vesicular composition, in good agreement with accepted values. Thus, two advantages of 31P CODEX NMR for phospholipid lateral diffusion measurements are demonstrated: no labelling of the molecule of interest is necessary, and multiple lateral diffusion coefficients can be measured simultaneously. It is expected that this approach will prove particularly useful in diagnosing heterogeneities in lateral diffusion behaviours, such as might be expected for specific lipid–lipid or lipid–protein interactions, and thermotropic or electrostatically induced phase inhomogeneities.  相似文献   

12.
The dependence of the lateral distribution of membrane proteins on the size, protein/lipoid molar ratio, and the magnitude of the interaction potentials has been investigated by computer modeling protein-lipid distributions with Monte Carlo calculations. These results have allowed us to develop a quantitative characterization of the distribution of membrane proteins and to correlate these distributions with experimental observables. The topological arrangement of protein domains, protein plus annular lipid domains, and free lipid domains is described in terms of radial distribution, pair connectedness, and cluster distribution functions. The radial distribution functions are used to measure the distribution of intermolecular distances between protein molecules, whereas the pair connectedness functions are used to estimate the physical extension of compositional domains. It is shown that, at characteristic protein/lipid molar ratios, previously isolated domains become connected, forming domain networks that extend over the entire membrane surface. These changes in the lateral connectivity of compositional domains are paralleled by changes in the calculated lateral diffusion coefficients and might have important implications for the regulation of diffusion controlled processes within the membrane.  相似文献   

13.
Lateral diffusion and compartmentalization of plasma membrane proteins are tightly regulated in cells and thus, studying these processes will reveal new insights to plasma membrane protein function and regulation. Recently, k-Space Image Correlation Spectroscopy (kICS)1 was developed to enable routine measurements of diffusion coefficients directly from images of fluorescently tagged plasma membrane proteins, that avoided systematic biases introduced by probe photophysics. Although the theoretical basis for the analysis is complex, the method can be implemented by nonexperts using a freely available code to measure diffusion coefficients of proteins. kICS calculates a time correlation function from a fluorescence microscopy image stack after Fourier transformation of each image to reciprocal (k-) space. Subsequently, circular averaging, natural logarithm transform and linear fits to the correlation function yields the diffusion coefficient. This paper provides a step-by-step guide to the image analysis and measurement of diffusion coefficients via kICS.First, a high frame rate image sequence of a fluorescently labeled plasma membrane protein is acquired using a fluorescence microscope. Then, a region of interest (ROI) avoiding intracellular organelles, moving vesicles or protruding membrane regions is selected. The ROI stack is imported into a freely available code and several defined parameters (see Method section) are set for kICS analysis. The program then generates a "slope of slopes" plot from the k-space time correlation functions, and the diffusion coefficient is calculated from the slope of the plot. Below is a step-by-step kICS procedure to measure the diffusion coefficient of a membrane protein using the renal water channel aquaporin-3 tagged with EGFP as a canonical example.  相似文献   

14.
Tracer diffusion coefficients of integral membrane proteins (IMPs) in intact plasma membranes are often much lower than those found in blebbed, organelle, and reconstituted membranes. We calculate the contribution of hydrodynamic interactions to the tracer, gradient, and rotational diffusion of IMPs in plasma membranes. Because of the presence of immobile IMPs, Brinkman's equation governs the hydrodynamics in plasma membranes. Solutions of Brinkman's equation enable the calculation of short-time diffusion coefficients of IMPs. There is a large reduction in particle mobilities when a fraction of them is immobile, and as the fraction increases, the mobilities of the mobile particles continue to decrease. Combination of the hydrodynamic mobilities with Monte Carlo simulation results, which incorporate excluded area effects, enable the calculation of long-time diffusion coefficients. We use our calculations to analyze results for tracer diffusivities in several different systems. In erythrocytes, we find that the hydrodynamic theory, when combined with excluded area effects, closes the gap between existing theory and experiment for the mobility of band 3, with the remaining discrepancy likely due to direct obstruction of band 3 lateral mobility by the spectrin network. In lymphocytes, the combined hydrodynamic-excluded area theory provides a plausible explanation for the reduced mobility of sIg molecules induced by binding concanavalin A-coated platelets. However, the theory does not explain all reported cases of "anchorage modulation" in all cell types in which receptor mobilities are reduced after binding by concanavalin A-coated platelets. The hydrodynamic theory provides an explanation of why protein lateral mobilities are restricted in plasma membranes and why, in many systems, deletion of the cytoplasmic tail of a receptor has little effect on diffusion rates. However, much more data are needed to test the theory definitively. We also predict that gradient and tracer diffusivities are the same to leading order. Finally, we have calculated rotational diffusion coefficients in plasma membranes. They decrease less rapidly than translational diffusion coefficients with increasing protein immobilization, and the results agree qualitatively with the limited experimental data available.  相似文献   

15.
A number of mechanisms have been proposed to account for the decrease in protein lateral diffusion coefficients in a lipid bilayer membrane, as the concentration of proteins is increased. One such mechanism is the steric hindrance (via, say, a hard-core repulsion) to the lateral movement of a protein due to the proximity of other proteins. Here a model is presented to study this effect alone. It is argued that the model will overestimate the effect being studied. The results of computer simulations show that such a mechanism will decrease the lateral diffusion coefficient by less than a factor of 20 below the zero-concentration limit, even when up to 81.7% of the bilayer surface is composed of integral proteins. This result supports the opinion (Kell, D.B. (1984) Trends Biochem. Sci. 9, 379) that such a mechanism cannot account for a decrease in the lateral diffusion coefficient by two or three orders of magnitude.  相似文献   

16.
Interactions between membrane proteins are believed to be important for the induction of transmembrane signaling. Endocytosis is one of the responses which is regulated by both intracellular and extracellular signals. To study such interactions, we have measured the lateral mobility and rate of endocytosis of epidermal growth factor receptor in three transfected NIH-3T3 cell lines (HER84, HER22, and HER82) expressing 2 X 10(4), 2 X 10(5) and 1.5 X 10(6) EGF-receptors per cell, respectively. Using rhodamine-labeled EGF (Rh-EGF) and rhodamine-labeled monoclonal anti-EGF-receptor antibody (Rh-mAb-108), we measured twofold decreases in the lateral diffusion coefficients for each approximately 10-fold increase in EGF-receptor concentration. Since steric effects cannot account for such dependence, we propose that protein mobility within the membrane, which is determined by the rate of motion between immobile barriers, decreases due to aggregate formation. The rate of endocytosis also decreases twofold between the HER84 (2 X 10(4) receptors/cell) and HER22 (2 X 10(5) receptors/cell) cell lines, suggesting that it is diffusion limited. The comparable rates of endocytosis of the HER82 and HER22 cell lines suggest that at high receptor density endocytosis may be limited by the total number of sites for receptors in coated-pits and by their rate of recycling.  相似文献   

17.
Previous work has shown that bovine prothrombin fragment 1 binds to supported planar membranes composed of phosphatidylcholine and phosphatidylserine in a Ca(2+)-specific manner (Tendian et al. (1991) Biochemistry 30, 10991; Pearce et al. (1992) Biochemistry 31, 5983-5995). In the present work, fluorescence pattern photobleaching recovery has been used to examine the effect of membrane-bound fragment 1 on the translational diffusion coefficients of two fluorescent phospholipids in fluid-like phosphatidylserine/phosphatidylcholine Langmuir-Blodgett monolayers. The results show that saturating concentrations of fragment 1, in the presence of Ca2+, reduce the diffusion coefficient of nitrobenzoxadiazolyl-conjugated phosphatidylserine (NBD-PS) and nitrobenzoxadiazolyl-conjugated phosphatidylcholine (NBD-PC) by factors of approximately four and two, respectively. Ca2+ or fragment 1 alone do not have a statistically significant effect on NBD-PS or NBD-PC diffusion. In addition, a nonspecific protein (ovalbumin) does not change the diffusion coefficients of the fluorescent phospholipids either in the absence or presence of Ca2+. The fractions of the fluorescent phospholipids that are laterally mobile are approximately 0.9 for all samples. These results are interpreted with several models for possible mechanisms by which extrinsically bound proteins might retard phospholipid diffusion in membranes.  相似文献   

18.
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity.  相似文献   

19.
We have developed a general model that relates the lateral diffusion coefficient of one isolated large intrinsic molecule (mol. wt. greater than or approximately 1000) in a phosphatidylcholine bilayer to the static lipid hydrocarbon chain order. We have studied how protein lateral diffusion can depend upon protein-lipid interactions but have not investigated possible non-specific contributions from gel-state lattice defects. The model has been used in Monte Carlo simulations or in mean-field approximations to study the lateral diffusion coefficients of Gramicidin S, the M-13 coat protein and glycophorin in dimyristoyl- and dipalmitoylphosphatidylcholine (DMPC and DPPC) bilayers as functions of temperature. Our calculated lateral diffusion coefficients for Gramicidin S and the M-13 coat protein are in good agreement with what has been observed and suggest that Gramicidin S is in a dimeric form in DMPC bilayers. In the case of glycophorin we find that the 'ice breaker' effect can be understood as a consequence of perturbation of the lipid polar region around the protein. In order to understand this effect is necessary that the protein hydrophilic section perturb the polar regions of at least approx. 24 lipid molecules, in good agreement with the numbers of 29-30 measured using 31P-NMR. Because of lipid-lipid interactions this effect extends itself out to four or five lipid layers away from the protein so that the hydrocarbon chains of between approx. 74 and approx. 108 lipid molecules are more disordered in the gel phase, so contributing less to the transition enthalpy, in agreement with the numbers of 80-100 deduced from differential scanning calorimetry (DSC). An understanding of the abrupt change in the diffusion coefficient at a temperature below the main bilayer transition temperature requires an additional mechanism. We propose that this change may be a consequence of a 'coupling-uncoupling' transition involving the protein hydrophilic section and the lipid polar regions, which may be triggered by the lipid bilayer pretransition. Our calculation of the average number of gauche bonds per lipid chain as a function of temperature and distance away from an isolated polypeptide or integral protein shows the extent of statically disordered lipid around such molecules. The range of this disorder depends upon temperature, particularly near the main transition.  相似文献   

20.
Vascular endothelial surface-related activities may depend on the lateral mobility of specific cell surface macromolecules. Previous studies have shown that cytokines induce changes in the morphology and surface antigen composition of vascular endothelial cells in vitro and at sites of immune and inflammatory reactions in vivo. The effects of cytokines on membrane dynamic properties have not been examined. In the present study, we have used fluorescence photobleaching recovery (FPR) to quantify the effects of the cytokines tumor necrosis factor (TNF) and immune interferon (IFN-gamma) on the lateral mobilities of class I major histocompatibility complex protein, of an abundant 96,000 Mr mesenchymal cell surface glycoprotein (gp96), and of a phospholipid probe in cultured human endothelial cell (HEC) membranes. Class I protein and gp96 were directly labeled with fluorescein-conjugated monoclonal antibodies; plasma membrane lipid mobility was examined with the phospholipid analogue fluorescein phosphatidylethanolamine (Fl-PE). In untreated, confluent HEC monolayers, diffusion coefficients were 30 x 10(-10) cm2 s-1 for class I protein, 14 x 10(-10) cm2 s-1 for gp96, and 80 x 10(-10) cm2 s-1 for Fl-PE. Fractional mobilities were greater than 80% for each probe. Cultures treated at visual confluence for 3-4 d with either 100 U/ml TNF or 200 U/ml IFN-gamma did not exhibit significant changes in protein or lipid mobilities despite significant changes in cell morphology and membrane antigen composition. In HEC cultures treated concomitantly with TNF and IFN-gamma, however, diffusion coefficients decreased by 71-79% for class I protein, 29-55% for gp96, and 23-38% for Fl-PE. Fractional mobilities were unchanged. By immunoperoxidase transmission electron microscopy, plasma membranes of untreated and cytokine-treated HEC were flat and stained uniformly for class I antigen. "Line" FPR measurements on doubly treated HEC demonstrated isotropic diffusion of class I protein, gp96, and Fl-PE. Finally, although TNF and IFN-gamma retarded the growth of HEC cultures and disrupted the organization of cell monolayers, the slow diffusion rates of gp96 and Fl-PE in confluent doubly treated monolayers were not reproduced in sparse or subconfluent untreated monolayers. We conclude that the slowing of protein and lipid diffusion induced by the combination of TNF and IFN-gamma is not due to plasma membrane corrugations, to anisotropic diffusion barriers, or to decreased numbers of cell-cell contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号