首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of a mammalian sterol cholesterol and a plant sterol β-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n = 14-22 is the even number of acyl chain carbons) was studied at 30 °C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Ku?erka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n = 18-22 similarly. β-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 Å2 and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and β-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

2.
The influence of cholesterol on the structural parameters of phosphatidylcholine bilayers is studied by small-angle neutron scattering on unilamellar liposomes. Monounsaturated diacylphosphatidylcholines diCn:1PC with the length of acyl chains n = 14, 18 and 22 carbons are used. We confirm that the bilayer thickness increases with increasing concentration of cholesterol for all studied diCn:1PCs. However, partial areas per diCn:1PC and cholesterol molecule on lipid–water interface are found not to depend of cholesterol concentration. The partial area per cholesterol molecule is 0.24 nm2. In addition, the partial area per diC18:1PC is larger than that for diC14:1PC and diC22:1PC.  相似文献   

3.
The influence of a mammalian sterol cholesterol and a plant sterol beta-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n=14-22 is the even number of acyl chain carbons) was studied at 30 degrees C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Kucerka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n=18-22 similarly. beta-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 A(2) and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and beta-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

4.
Sarcoplasmic reticulum Ca-transporting ATPase (EC 3.6.1.38) was isolated from rabbit white muscle, purified and reconstituted into vesicles of synthetic diacylphosphatidylcholines with monounsaturated acyl chains using the cholate dilution method. In fluid bilayers at 37 degrees C, the specific activity of ATPase displays a maximum (31.5+/-0.8 IU/mg) for dioleoylphosphatidylcholine (diC18:1PC) and decreases progressively for both shorter and longer acyl chain lengths. Besides the hydrophobic mismatch between protein and lipid bilayer, changes in the bilayer hydration and lateral interactions detected by small angle neutron scattering (SANS) can contribute to this acyl chain length dependence. When reconstituted into dierucoylphosphatidylcholine (diC22:1PC), the zwitterionic surfactant N-dodecyl-N,N-dimethylamine N-oxide (C12NO) stimulates the ATPase activity from 14.2+/-0.6 to 32.5+/-0.8 IU/mg in the range of molar ratios C12NO:diC22:1PC=0/1.2. In dilauroylphosphatidylcholines (diC12:0PC) and diC18:1PC, the effect of C12NO is twofold-the ATPase activity is stimulated at low and inhibited at high C12NO concentrations. In diC18:1PC, it is observed an increase of activity induced by C12NO in the range of molar ratios C12NO:diC18:1PC< or =1.3 in bilayers, where the bilayer thickness estimated by SANS decreases by 0.4+/-0.1 nm. In this range, the 31P-NMR chemical shift anisotropy increases indicating an effect of C12NO on the orientation of the phosphatidylcholine dipole N(+)-P- accompanied by a variation of the local membrane dipole potential. A decrease of the ATPase activity is observed in the range of molar ratios C12NO:diC18:1PC=1.3/2.5, where mixed tubular micelles are detected by SANS in C12NO+diC18:1PC mixtures. It is concluded that besides hydrophobic thickness changes, the changes in dipole potential and curvature frustration of the bilayer could contribute as well to C12NO effects on Ca(2+)-ATPase activity.  相似文献   

5.
Although lipid force fields (FFs) used in molecular dynamics (MD) simulations have proved to be accurate, there has not been a systematic study on their accuracy over a range of temperatures. Motivated by the X-ray and neutron scattering measurements of common phosphatidylcholine (PC) bilayers (Ku?erka et al. BBA. 1808: 2761, 2011), the CHARMM36 (C36) FF accuracy is tested in this work with MD simulations of six common PC lipid bilayers over a wide range of temperatures. The calculated scattering form factors and deuterium order parameters from the C36 MD simulations agree well with the X-ray, neutron, and NMR experimental data. There is excellent agreement between MD simulations and experimental estimates for the surface area per lipid, bilayer thickness (DB), hydrophobic thickness (DC), and lipid volume (VL). The only minor discrepancy between simulation and experiment is a measure of (DB − DHH) / 2 where DHH is the distance between the maxima in the electron density profile along the bilayer normal. Additional MD simulations with pure water and heptane over a range of temperatures provide explanations of possible reasons causing the minor deviation. Overall, the C36 FF is accurate for use with liquid crystalline PC bilayers of varying chain types and over biologically relevant temperatures.  相似文献   

6.
We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40 mol % cholesterol results in a nearly identical increase in the thickness of the two different bilayers. In both cases, the chain ordering dominates over the hydrophobic matching between the length of the cholesterol molecule and the hydrocarbon thickness of the bilayer, which one would expect to cause a thinning of the diC22:1PC bilayer. For both bilayers there is substantial headgroup rearrangement for lipids directly in contact with cholesterol, supporting the so-called umbrella model. Importantly, in diC14:1PC bilayers, a dynamic network of hydrogen bonds stabilizes long-lived reorientations of some cholesterol molecules, during which they are found to lie perpendicular to the bilayer normal, deep within the bilayer’s hydrophobic core. Additionally, the simulations show that the diC14:1PC bilayer is significantly more permeable to water. These differences may be correlated with faster cholesterol flip-flop between the leaflets of short-chain lipid bilayers, resulting in an asymmetric distribution of cholesterol molecules. This asymmetry was observed experimentally in a case of unilamellar vesicles (ULVs), and reproduced through a set of novel asymmetric simulations. In contrast to ULVs, experimental data for oriented multilamellar stacks does not show the asymmetry, suggesting that it results from the curvature of the ULV bilayers.  相似文献   

7.
We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small angle neutron and X-ray scattering data, with the constraint of measured lipid volumes. We report the temperature dependence of bilayer parameters obtained using the one-dimensional scattering density profile model - which was derived from molecular dynamics simulations - including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of sodium counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to PC bilayers, the inclusion of a first double bond in PG lipids results in a smaller incremental change to the area per lipid and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids to infinite chain length is found to be similar to that of PCs, an indication of the glycerol-carbonyl backbone's pivotal role in influencing the lipid-water interface.  相似文献   

8.
Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku?erka et al. (Biophys J 95:2356–2367, 2008; J Phys Chem B 116:232–239, 2012). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent to these models. In particular, it is recognized that standalone data do not contain enough information to fully resolve the structure of naturally disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structure parameters, including the much-sought-after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data, as well as the implementation of local volume conservation within the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.  相似文献   

9.
Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D2O. For DPPC, additional contrast data were obtained with deuterated analogs DPPC_d62, DPPC_d13, and DPPC_d9. For the analysis, we developed a model that is based on volume probability distributions and their spatial conservation. The model's design was guided and tested by a DOPC molecular dynamics simulation. The model consistently captures the salient features found in both electron and neutron scattering density profiles. A key result of the analysis is the molecular surface area, A. For DPPC at 50°C A = 63.0 Å2, whereas for DOPC at 30°C A = 67.4 Å2, with estimated uncertainties of 1 Å2. Although A for DPPC agrees with a recently reported value obtained solely from the analysis of x-ray scattering data, A for DOPC is almost 10% smaller. This improved method for determining lipid areas helps to reconcile long-standing differences in the values of lipid areas obtained from stand-alone x-ray and neutron scattering experiments and poses new challenges for molecular dynamics simulations.  相似文献   

10.
Properties of hydrated unsaturated phosphatidylcholine (PC) lipid bilayers containing 40 mol % cholesterol and of pure PC bilayers have been studied. Various methods were applied, including molecular dynamics simulations, self-consistent field calculations, and the pulsed field gradient nuclear magnetic resonance technique. Lipid bilayers were composed of 18:0/18:1(n-9)cis PC, 18:0/18:2(n-6)cis PC, 18:0/18:3(n-3)cis PC, 18:0/20:4(n-6)cis PC, and 18:0/22:6(n-3)cis PC molecules. Lateral self-diffusion coefficients of the lipids in all these bilayers, mass density distributions of atoms and atom groups with respect to the bilayer normal, the C-H and C-C bond order parameter profiles of each phospholipid hydrocarbon chain with respect to the bilayer normal were calculated. It was shown that the lateral self-diffusion coefficient of PC molecules of the lipid bilayer containing 40 mol % cholesterol is smaller than that for a corresponding pure PC bilayer; the diffusion coefficients increase with increasing the degree of unsaturation of one of the PC chains in bilayers of both types (i.e., in pure bilayers or in bilayers with cholesterol). The presence of cholesterol in a bilayer promoted the extension of saturated and polyunsaturated lipid chains. The condensing effect of cholesterol on the order parameters was more pronounced for the double C=C bonds of polyunsaturated chains than for single C-C bonds of saturated chains.  相似文献   

11.
We have looked for the effects of three clinically used inhalational anaesthetics (nitrous oxide, halothane and cyclopropane) on the structure of lecithin/ cholesterol bilayers. The anaesthetics were delivered to the membranes in the gaseous phase, so that effects at clinical concentrations could be determined.High-resolution X-ray diffraction patterns were recorded out to 4 Å and analyzed using swelling experiments. Parallel neutron diffraction experiments were performed and analyzed using H2O-2H2O exchange. Methods were developed which enabled us to obtain confidence limits for the X-ray and neutron structure factors.The resultant X-ray and neutron scattering density profiles clearly define the positions of the principal molecular groups in the unperturbed bilayer. In particular, the high-resolution electron density profiles reveal features directly attributable to the cholesterol molecule. A comparison with the neutron scattering density profiles shows that cholesterol is anchored with its hydroxyl group at the water/hydrocarbon interface, aligned with the fatty acid ester groups of the lecithin molecule. We suggest that this positioning of the cholesterol molecule allows it to act as a thickness buffer for plasma membranes.In the presence of very high concentrations of general anaesthetics, the bilayers show increased disorder while maintaining constant membrane thickness. At surgical concentrations, however, there are no significant changes in bilayer structure at 95% confidence levels. We briefly review the literature previously used to support lipid bilayer hypotheses of general anaesthesia. We conclude that the lipid bilayer per se is not the primary site of action of general anaesthetics.  相似文献   

12.
New structural model for mixed-chain phosphatidylcholine bilayers   总被引:13,自引:0,他引:13  
Multilamellar suspensions of a mixed-chain saturated phosphatidylcholine with 18 carbon atoms in the sn-1 chain and 10 carbon atoms in the sn-2 chain have been analyzed by X-ray diffraction techniques. The structural parameters for this lipid in the gel state are quite different than usual phosphatidylcholine bilayer phases. A symmetric and sharp wide-angle reflection at 4.11 A indicates that the hydrocarbon chains in hydrated C(18):C(10)PC bilayers are more tightly packed than in usual gel-state phosphatidylcholine bilayers and that there is no hydrocarbon chain tilt. The lipid thickness is about 12 A smaller than would be expected in a normal bilayer phase, and the area per molecule is 3 times the area per hydrocarbon chain. In addition, the bilayer thickness increases upon melting to the liquid-crystalline state, whereas normal bilayer phases decrease in thickness upon melting. On the basis of these data, we propose a new lipid packing model for gel-state C(18):C(10)PC bilayers in which the long C(18) chain spans the entire width of the hydrocarbon region of the bilayer and the short C(10) chain aligns or abuts with the C(10) chain from the apposing molecule. This model is novel in that there are three hydrocarbon chains per head group at the lipid-water interface. Calculations show that this phase is energetically favorable for mixed-chain lipids provided the long acyl chain is nearly twice the length of the shorter chain. In the liquid-crystalline state C(18):C(10)PC forms a normal fluid bilayer, with two chains per head group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Transmembrane segments of ion channels tend to match the hydrophobic thickness of lipid bilayers to minimize mismatch energy and to maintain their proper organization and function. To probe how ion channels respond to mismatch with lipid bilayers of different thicknesses, we examined the single channel activities of BK(Ca) (hSlo alpha-subunit) channels in planar bilayers of binary mixtures of DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) with phosphatidylcholines (PCs) of varying chain lengths, including PC 14:1, PC 18:1, PC 22:1, PC 24:1, and with porcine brain sphingomyelin. Bilayer thickness and structure was measured with small angle x-ray diffraction and atomic force microscopy. The open probability (P(o)) of the BK(Ca) channel was finely tuned by bilayer thickness, first decreasing with increases in bilayer thickness from PC 14:1 to PC 22:1 and then increasing from PC 22:1 to PC 24:1 and to porcine brain sphingomyelin. Single channel kinetic analyses revealed that the mean open time of the channel increased monotonically with bilayer thickness and, therefore, could not account for the biphasic changes in P(o). The mean closed time increased with bilayer thickness from PC 14:1 up to PC 22:1 and then decreased with further increases in bilayer thickness to PC 24:1 and sphingomyelin, correlating with changes in P(o). This is consistent with the proposition that bilayer thickness affects channel activity mainly through altering the stability of the closed state. We suggest a simple mechanical model that combines forces of lateral stress within the lipid bilayer with local hydrophobic mismatch between lipids and the protein to account for the biphasic modulation of BK(Ca) gating.  相似文献   

14.
Hung WC  Chen FY  Lee CC  Sun Y  Lee MT  Huang HW 《Biophysical journal》2008,94(11):4331-4338
Interaction of curcumin with lipid bilayers is not well understood. A recent experiment showed that curcumin significantly affected the single-channel lifetime of gramicidin in a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer without affecting its single-channel conductance. We performed two experiments to understand this result. By isothermal titration calorimetry, we measured the partition coefficient of curcumin binding to DOPC bilayers. By x-ray lamellar diffraction, we measured the thickness change of DOPC bilayers as a function of the curcumin/lipid ratio. A nonlinear membrane-thinning effect by curcumin was discovered. The gramicidin data were qualitatively interpreted by the combination of isothermal titration calorimetry and x-ray results. We show that not only does curcumin thin the lipid bilayer, it might also weaken its elasticity moduli. The result implies that curcumin may affect the function of membrane proteins by modifying the properties of the host membrane.  相似文献   

15.
Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules.  相似文献   

16.
We recently published two papers detailing the structures of fluid phase phosphatidylglycerol (PG) lipid bilayers (Ku?erka et al., 2012 J. Phys. Chem. B 116: 232–239; Pan et al., 2012 Biochim. Biophys. Acta Biomembr. 1818: 2135–2148), which were determined using the scattering density profile model. This hybrid experimental/computational technique utilizes molecular dynamics simulations to parse a lipid bilayer into components whose volume probabilities follow simple analytical functional forms. Given the appropriate scattering densities, these volume probabilities are then translated into neutron scattering length density (NSLD) and electron density (ED) profiles, which are used to jointly refine experimentally obtained small angle neutron and X-ray scattering data. However, accurate NSLD and ED profiles can only be obtained if the bilayer's chemical composition is known. Specifically, in the case of neutron scattering, the lipid's exchangeable hydrogens with aqueous D2O must be accounted for, as they can have a measureable effect on the resultant lipid bilayer structures. This was not done in our above-mentioned papers. Here we report on the molecular structures of PG lipid bilayers by appropriately taking into account the exchangeable hydrogens. Analysis indicates that the temperature-averaged PG lipid areas decrease by 1.5 to 3.8 Å2, depending on the lipid's acyl chain length and unsaturation, compared to PG areas when hydrogen exchange was not taken into account.  相似文献   

17.
We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 Å at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 Å for DOPC; Alm is then mismatched with the 7 Å thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (KC) by a factor of ∼ 2 in DOPC and a factor of ∼ 10 in diC22:1PC membranes (P/L ∼ 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.  相似文献   

18.
Cholesterol and saturated lipid species preferentially partition into liquid ordered microdomains, such as lipid rafts, away from unsaturated lipid species for which the sterol has less affinity in the surrounding liquid-disordered membrane. To observe how cholesterol interacts with unsaturated phospholipids, we have determined, from one-dimensional neutron scattering length density profiles, the depth of cholesterol in phosphatidylcholine (PC) bilayers with varying amounts of acyl chain unsaturation. Through the use of [2,2,3,4,4,6-(2)H(6)]-labeled cholesterol, we show that in 1-palmitoyl-2-oleoylphosphatidylcholine (16:0-18:1 PC), 1,2-dioleoylphosphatidylcholine (18:1-18:1 PC), and 1-stearoyl-2-arachidonylphosphatidylcholine (18:0-20:4 PC) bilayers the center of mass of the deuterated sites is approximately 16 A from the bilayer center. This location places the hydroxyl group of the sterol moiety at the hydrophobic/hydrophilic bilayer interface, which is the generally accepted position. In dramatic contrast, for 20:4-20:4 PC membranes the hydroxyl group is found, unequivocally, sequestered in the bilayer center. We attribute the change in location to the high disorder of polyunsaturated fatty acids (PUFA) that is incompatible with close proximity to the steroid moiety in its usual "upright" orientation.  相似文献   

19.
The effect of the incorporation of small amounts (∼1 mole%) of amphiphilic solutes, such as cholesterol, a short-chain lipid (DC10PC), and a bola lipid, into multilamellar DMPC bilayers is studied by small-angle neutron scattering and differential-scanning calorimetry. The anomalous swelling behavior observed in the transition region of pure DMPC bilayers is interpreted as an indication of bilayer softening and thermally reduced bending rigidity. Small amounts of the solutes are found to maintain or even enhance the bilayer softness. In the case of cholesterol, a systematic study shows that the well-known rigidification effect is observed only for cholesterol concentrations above 3–4 mole%. The results are discussed in relation to the physical properties of internal cell membranes. Received: 28 May 1996 / Accepted: 27 July 1996  相似文献   

20.
2H-NMR measurements of the ordering of several n-alkane and one n-alcohol solutes in lipid bilayers formed from dimyristoyl lecithin (DML) are reported. The results are consistent with orientation of the solutes between the lipid chains, the n-alkanes having a preference for the bilayer interior, while the n-octanol is anchored at the bilayer surface. Solubility of the short chain n-alkanes, n-hexane and n-octane as an ordered component in the Lα phase is more limited than that of n-dodecane. The NMR data are supported by low angle X-ray diffraction results which confirm that n-octanol has a more dramatic influence on bilayer area than the n-alkanes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号