首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 μm. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.  相似文献   

2.
Marvelous background rejection in total internal reflection fluorescence microscopy (TIR-FM) has made it possible to visualize single-fluorophores in living cells. Cell signaling proteins including peptide hormones, membrane receptors, small G proteins, cytoplasmic kinases as well as small signaling compounds have been conjugated with single chemical fluorophore or tagged with green fluorescent proteins and visualized in living cells. In this review, the reasons why single-molecule analysis is essential for studies of intracellular protein systems such as cell signaling system are discussed, the instrumentation of TIR-FM for single-molecule imaging in living cells is explained, and how single molecule visualization has been used in cell biology is illustrated by way of two examples: signaling of epidermal growth factor in mammalian cells and chemotaxis of Dictyostelium amoeba along a cAMP gradient. Single-molecule analysis is an ideal method to quantify the parameters of reaction dynamics and kinetics of unitary processes within intracellular protein systems. Knowledge of these parameters is crucial for the understanding of the molecular mechanisms underlying intracellular events, thus single-molecule imaging in living cells will be one of the major technologies in cellular nanobiology.  相似文献   

3.
Signalling is a key feature of living cells which frequently involves the local clustering of specific proteins in the plasma membrane. How such protein clustering is achieved within membrane microdomains (“rafts”) is an important, yet largely unsolved problem in cell biology. The plasma membrane of yeast cells represents a good model to address this issue, since it features protein domains that are sufficiently large and stable to be observed by fluorescence microscopy. Here, we demonstrate the ability of single-molecule atomic force microscopy to resolve lateral clustering of the cell integrity sensor Wsc1 in living Saccharomyces cerevisiae cells. We first localize individual wild-type sensors on the cell surface, revealing that they form clusters of ∼200 nm size. Analyses of three different mutants indicate that the cysteine-rich domain of Wsc1 has a crucial, not yet anticipated function in sensor clustering and signalling. Clustering of Wsc1 is strongly enhanced in deionized water or at elevated temperature, suggesting its relevance in proper stress response. Using in vivo GFP-localization, we also find that non-clustering mutant sensors accumulate in the vacuole, indicating that clustering may prevent endocytosis and sensor turnover. This study represents the first in vivo single-molecule demonstration for clustering of a transmembrane protein in S. cerevisiae. Our findings indicate that in yeast, like in higher eukaryotes, signalling is coupled to the localized enrichment of sensors and receptors within membrane patches.  相似文献   

4.
Fu G  Zhang F  Cao L  Xu ZZ  Chen YZ  Wang GY  He C 《Biophysical chemistry》2008,136(1):13-18
In the present study, single-molecule fluorescence microscopy was used to examine the characteristics of plasma membrane targeting and microdomain localization of enhanced yellow fluorescent protein (eYFP)-tagged wild-type Dok5 and its variants in living Chinese hamster ovary (CHO) cells. We found that Dok5 can target constitutively to the plasma membrane, and the PH domain is essential for this process. Furthermore, single-molecule trajectories analysis revealed that Dok5 can constitutively partition into microdomain on the plasma membrane. Finally, the potential mechanism of microdomain localization of Dok5 was discussed. This study provided insights into the characteristics of plasma membrane targeting and microdomain localization of Dok5 in living CHO cells.  相似文献   

5.
Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines. However, primary cell cultures and cell lines derived from multi-cellular organisms might exhibit different properties from cells in their native tissue environment, in particular regarding the structure and organization of the plasma membrane. Here, we describe a simple approach to image, localize, and track single fluorescently tagged membrane proteins in freshly prepared live tissue slices and demonstrate how this method can give information about the movement and localization of a G protein–coupled receptor in cardiac tissue slices. In principle, this experimental approach can be used to image the dynamics of single molecules at the plasma membrane of many different soft tissue samples and may be combined with other experimental techniques.  相似文献   

6.
Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines.  相似文献   

7.
Single-molecule tracking has become a widely used technique for studying protein dynamics and their organization in the complex environment of the cell. In particular, the spatiotemporal distribution of membrane receptors is an active field of study due to its putative role in the regulation of signal transduction. The SNAP-tag is an intrinsically monovalent and highly specific genetic tag for attaching a fluorescent label to a protein of interest. Little information is currently available on the choice of optimal fluorescent dyes for single-molecule microscopy utilizing the SNAP-tag labeling system. We surveyed 6 green and 16 red excitable dyes for their suitability in single-molecule microscopy of SNAP-tag fusion proteins in live cells. We determined the nonspecific binding levels and photostability of these dye conjugates when bound to a SNAP-tag fused membrane protein in live cells. We found that only a limited subset of the dyes tested is suitable for single-molecule tracking microscopy. The results show that a careful choice of the dye to conjugate to the SNAP-substrate to label SNAP-tag fusion proteins is very important, as many dyes suffer from either rapid photobleaching or high nonspecific staining. These characteristics appear to be unpredictable, which motivated the need to perform the systematic survey presented here. We have developed a protocol for evaluating the best dyes, and for the conditions that we evaluated, we find that Dy 549 and CF 640 are the best choices tested for single-molecule tracking. Using an optimal dye pair, we also demonstrate the possibility of dual-color single-molecule imaging of SNAP-tag fusion proteins. This survey provides an overview of the photophysical and imaging properties of a range of SNAP-tag fluorescent substrates, enabling the selection of optimal dyes and conditions for single-molecule imaging of SNAP-tagged fusion proteins in eukaryotic cell lines.  相似文献   

8.
Super-resolution fluorescence microscopy allows for obtaining images with a resolution of 10–20 nm, far exceeding the diffraction limit of conventional optical microscopy (200–350 nm), and provides an opportunity to study in detail the subcellular structures and individual proteins in both living and fixed cells. Among these methods, single-molecule localization microscopy (SMLM) has become widespread. SMLM techniques are based on special fluorophores capable of photoswitching. The paper presents a classification of such fluorophores and describes their photoswitching mechanisms and successful practical applications. We discuss recent progress and prospects for the development of new effective labels suitable for SMLM.  相似文献   

9.
We report the first imaging of membrane lipid order in a whole, living vertebrate organism. This was achieved with the phase-sensitive, membrane-partitioning probe Laurdan in conjunction with multiphoton microscopy to image cell membranes in various tissues of live zebrafish embryos in three dimensions, including hindbrain, retina, muscle, gut, and kidney. The data also allowed quantitative analysis of membrane order, which showed high lipid order in the apical surfaces of polarized epithelial cells. The transition of membrane order imaging from cultured cell lines to living organisms is an important step forward in understanding the physiological relevance of membrane microdomains including lipid rafts.  相似文献   

10.
Adaptive immune responses are initiated by triggering of the T cell receptor. Single-molecule imaging based on total internal reflection fluorescence microscopy at coverslip/basal cell interfaces is commonly used to study this process. These experiments have suggested, unexpectedly, that the diffusional behavior and organization of signaling proteins and receptors may be constrained before activation. However, it is unclear to what extent the molecular behavior and cell state is affected by the imaging conditions, i.e., by the presence of a supporting surface. In this study, we implemented single-molecule light-sheet microscopy, which enables single receptors to be directly visualized at any plane in a cell to study protein dynamics and organization in live, resting T cells. The light sheet enabled the acquisition of high-quality single-molecule fluorescence images that were comparable to those of total internal reflection fluorescence microscopy. By comparing the apical and basal surfaces of surface-contacting T cells using single-molecule light-sheet microscopy, we found that most coated-glass surfaces and supported lipid bilayers profoundly affected the diffusion of membrane proteins (T cell receptor and CD45) and that all the surfaces induced calcium influx to various degrees. Our results suggest that, when studying resting T cells, surfaces are best avoided, which we achieve here by suspending cells in agarose.  相似文献   

11.
12.
JGP study describes method to trace the real-time movements of individual membrane proteins in live tissue slices.

Directly observing the movements of single, fluorescently labeled molecules can provide crucial information about a molecule’s interactions in living cells. Plasma membrane proteins, for example, may freely diffuse around the lipid bilayer, pausing only when they collide and interact with other proteins. These movements can be followed relatively easily in single-cell organisms or cultured mammalian cells but are much more challenging to observe in multicellular organisms, where cell–cell interactions can dramatically alter the properties of the plasma membrane. In this issue of JGP, Mashanov et al. describe a new method to image and track individual plasma membrane proteins in living tissue slices (1).Justin Molloy (left), Gregory Mashanov (right), and colleagues describe a method to image single plasma membrane proteins in live tissue slices. By tracking individual M2 muscarinic acetylcholine receptors in cardiac tissue over time, the researchers can construct a super-resolution map of the tissue, encompassing both the round cardiomyocytes and the ultrathin nerve fibers that innervate them.Justin Molloy’s group at The Francis Crick Institute in London are interested in how the M2 muscarinic acetylcholine receptor regulates the heartbeat. This G protein–coupled receptor diffuses through the plasma membrane and, in response to acetylcholine, alters the resting potential of cardiomyocytes via a Gβγ-mediated interaction with inwardly rectifying potassium GIRK channels (2, 3).“It’s a diffusion-limited signaling cascade, so it’s important to look at the movement of the molecules within the membrane,” Molloy explains. “We’ve tracked the movements of single M2 receptors in cultured cardiomyocytes, but we wanted to do it in tissues where the cells are in their native environment.”Molloy and colleagues, led by Gregory Mashanov, developed a technique to image single M2 receptors in cardiac tissue slices (1). Freshly extracted mouse hearts are quickly placed in a custom-made, 3-D–printed cutting block, then sectioned by a multi-blade assembly into 1-mm-thick slices. These slices are treated with a fluorescently labeled ligand that tightly binds to M2 receptors, before being transferred to coverslips for TIRF video microscopy.Mashanov immediately noticed that cardiomyocytes in living tissue are much more rounded than they are in cell culture. More remarkable still, however, were the differences Mashanov observed when he compared the movements of single M2 receptors in cells and tissues. “The M2 receptors move around the membrane around four times faster in tissue than they do in cultured cells,” Mashanov says.The reason for this increased mobility in tissues remains unclear, but Mashanov et al. saw a similarly rapid movement of M2 receptors in zebrafish hearts, which the researchers were also able to dissect and prepare for TIRF microscopy with their new technique, even though these organs measure just ∼0.5 mm in length.In addition, the researchers discovered that they could use their single-molecule tracking data to create super-resolution images of the cardiac tissue slices. “When we average our tracking data over time, the paths of individual M2 receptors combine to delineate the cellular structure of the tissue,” Molloy explains.Because neurons also express M2 receptors, these super-resolution tissue maps include not only the cardiomyocytes but also the nerve fibers that innervate them. “These nerve fibers are only ∼0.2 μM in diameter and they aren’t really visible by light microscopy,” Mashanov says. “But we could see hundreds of them. Every cardiomyocyte has a nerve fiber associated with it.”Mashanov et al.’s technique should be easily adapted for other tissues and membrane proteins and may even facilitate single-molecule imaging in entire model organisms like zebrafish or fruit flies. For Molloy’s laboratory, though, the next step is to develop dual-color labeling of M2 receptors and the downstream proteins in the pathway, Gβγ and GIRK, so that the kinetics of the molecules’ interactions can be studied in living tissues.  相似文献   

13.
Membrane proteins are a large, diverse group of proteins, serving a multitude of cellular functions. They are difficult to study because of their requirement of a lipid membrane for function. Here we show that two-photon polarization microscopy can take advantage of the cell membrane requirement to yield insights into membrane protein structure and function, in living cells and organisms. The technique allows sensitive imaging of G-protein activation, changes in intracellular calcium concentration and other processes, and is not limited to membrane proteins. Conveniently, many suitable probes for two-photon polarization microscopy already exist.  相似文献   

14.
Transmembrane proteins are synthesized and folded in the endoplasmic reticulum (ER), an interconnected network of flattened sacs or tubes. Up to now, this organelle has eluded a detailed analysis of the dynamics of its constituents, mainly due to the complex three-dimensional morphology within the cellular cytosol, which precluded high-resolution, single-molecule microscopy approaches. Recent evidences, however, pointed out that there are multiple interaction sites between ER and the plasma membrane, rendering total internal reflection microscopy of plasma membrane proximal ER regions feasible. Here we used single-molecule fluorescence microscopy to study the diffusion of the human serotonin transporter at the ER and the plasma membrane. We exploited the single-molecule trajectories to map out the structure of the ER close to the plasma membrane at subdiffractive resolution. Furthermore, our study provides a comparative picture of the diffusional behavior in both environments. Under unperturbed conditions, the majority of proteins showed similar mobility in the two compartments; at the ER, however, we found an additional 15% fraction of molecules moving with 25-fold faster mobility. Upon degradation of the actin skeleton, the diffusional behavior in the plasma membrane was strongly influenced, whereas it remained unchanged in the ER.  相似文献   

15.
Biological membranes compartmentalize and define physical borders of cells. They are crowded with membrane proteins that fulfill diverse crucial functions. About one-third of all genes in organisms code for, and the majority of drugs target, membrane proteins. To combine structure and function analysis of membrane proteins, we designed a two-chamber atomic force microscopy (AFM) setup that allows investigation of membranes spanned over nanowells, therefore separating two aqueous chambers. We imaged nonsupported surface layers (S layers) of Corynebacterium glutamicum at sufficient resolution to delineate a 15 A-wide protein pore. We probed the elastic and yield moduli of nonsupported membranes, giving access to the lateral interaction energy between proteins. We combined AFM and fluorescence microscopy to demonstrate the functionality of proteins in the setup by documenting proton pumping by Halobacterium salinarium purple membranes.  相似文献   

16.
Recent progress in single-molecule detection techniques has allowed us to visualize the dynamic behaviour and reaction kinetics of individual biological molecules inside living cells. Single-molecule visualization provides a direct way to quantify, with a high spatial and temporal resolution, biological events inside cells at the single-molecule level. In this article, we discuss how single-molecule visualization can be used in cell biology.  相似文献   

17.
Understanding how cells maintain genome integrity when challenged with DNA double-strand breaks (DSBs) is of major importance, particularly since the discovery of multiple links of DSBs with genome instability and cancer-predisposition disorders. Ionizing radiation is the agent of choice to produce DSBs in cells; however, targeting DSBs and monitoring changes in their position over time can be difficult. Here we describe a procedure for induction of easily recognizable linear arrays of DSBs in nuclei of adherent eukaryotic cells by exposing the cells to alpha particles from a small Americium source (Box 1). Each alpha particle traversing the cell nucleus induces a linear array of DSBs, typically 10-20 DSBs per 10 mum track length. Because alpha particles cannot penetrate cell-culture plastic or coverslips, it is necessary to irradiate cells through a Mylar membrane. We describe setup and irradiation procedures for two types of experiments: immunodetection of DSB response proteins in fixed cells grown in Mylar-bottom culture dishes (Option A) and detection of fluorescently labeled DSB-response proteins in living cells irradiated through a Mylar membrane placed on top of the cells (Option B). Using immunodetection, recruitment of repair proteins to individual DSB sites as early as 30 s after irradiation can be detected. Furthermore, combined with fluorescence live-cell microscopy of fluorescently tagged DSB-response proteins, this technique allows spatiotemporal analysis of the DSB repair response in living cells. Although the procedures might seem a bit intimidating, in our experience, once the source and the setup are ready, it is easy to obtain results. Because the live-cell procedure requires more hands-on experience, we recommend starting with the fixed-cell application.  相似文献   

18.
Light sheet microscopy techniques, such as selective plane illumination microscopy (SPIM), are ideally suited for time-lapse imaging of developmental processes lasting several hours to a few days. The success of this promising technology has mainly been limited by the lack of suitable techniques for mounting fragile samples. Embedding zebrafish embryos in agarose, which is common in conventional confocal microscopy, has resulted in severe growth defects and unreliable results. In this study, we systematically quantified the viability and mobility of zebrafish embryos mounted under more suitable conditions. We found that tubes made of fluorinated ethylene propylene (FEP) filled with low concentrations of agarose or methylcellulose provided an optimal balance between sufficient confinement of the living embryo in a physiological environment over 3 days and optical clarity suitable for fluorescence imaging. We also compared the effect of different concentrations of Tricaine on the development of zebrafish and provide guidelines for its optimal use depending on the application. Our results will make light sheet microscopy techniques applicable to more fields of developmental biology, in particular the multiview long-term imaging of zebrafish embryos and other small organisms. Furthermore, the refinement of sample preparation for in toto and in vivo imaging will promote other emerging optical imaging techniques, such as optical projection tomography (OPT).  相似文献   

19.
Total internal reflection fluorescence microscopy (TIRFM) has been proven to be an extremely powerful technique in animal cell research for generating high contrast images and dynamic protein conformation information. However, there has long been a perception that TIRFM is not feasible in plant cells because the cell wall would restrict the penetration of the evanescent field and lead to scattering of illumination. By comparative analysis of epifluorescence and TIRF in root cells, it is demonstrated that TIRFM can generate high contrast images, superior to other approaches, from intact plant cells. It is also shown that TIRF imaging is possible not only at the plasma membrane level, but also in organelles, for example the nucleus, due to the presence of the central vacuole. Importantly, it is demonstrated for the first time that this is TIRF excitation, and not TIRF-like excitation described as variable-angle epifluorescence microscopy (VAEM), and it is shown how to distinguish the two techniques in practical microscopy. These TIRF images show the highest signal-to-background ratio, and it is demonstrated that they can be used for single-molecule microscopy. Rare protein events, which would otherwise be masked by the average molecular behaviour, can therefore be detected, including the conformations and oligomerization states of interacting proteins and signalling networks in vivo. The demonstration of the application of TIRFM and single-molecule analysis to plant cells therefore opens up a new range of possibilities for plant cell imaging.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号