首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein chicken avidin is a commonly used tool in various applications. The avidin gene belongs to a gene family that also includes seven other members known as the avidin-related genes (AVR). We report here on the extremely high thermal stability and functional characteristics of avidin-related protein AVR4/5, a member of the avidin protein family. The thermal stability characteristics of AVR4/5 were examined using a differential scanning calorimeter, microparticle analysis, and a microplate assay. Its biotin-binding properties were studied using an isothermal calorimeter and IAsys optical biosensor. According to these analyses, in the absence of biotin AVR4/5 is clearly more stable (T(m) = 107.4 +/- 0.3 degrees C) than avidin (T(m) = 83.5 +/- 0.1 degrees C) or bacterial streptavidin (T(m) = 75.5 degrees C). AVR4/5 also exhibits a high affinity for biotin (K(d) approximately 3.6 x 10(-14) m) comparable to that of avidin and streptavidin (K(d) approximately 10(-15) m). Molecular modeling and site-directed mutagenesis were used to study the molecular details behind the observed high thermostability. The results indicate that AVR4/5 and its mutants have high potential as new improved tools for applications where exceptionally high stability and tight biotin binding are needed.  相似文献   

2.
The chicken avidin gene family consists of avidin and seven separate avidin-related genes (AVRs) 1-7. Avidin protein is a widely used biochemical tool, whereas the other family members have only recently been produced as recombinant proteins and characterized. In our previous study, AVR4 was found to be the most stable biotin binding protein thus far characterized (T(m) = 106.4 degrees C). In this study, we studied further the biotin-binding properties of AVR4. A decrease in the energy barrier between the biotin-bound and unbound state of AVR4 was observed when compared with that of avidin. The high resolution structure of AVR4 facilitated comparison of the structural details of avidin and AVR4. In the present study, we used the information obtained from these comparative studies to transfer the stability and functional properties of AVR4 to avidin. A chimeric avidin protein, ChiAVD, containing a 21-amino acid segment of AVR4 was found to be significantly more stable (T(m) = 96.5 degrees C) than native avidin (T(m) = 83.5 degrees C), and its biotin-binding properties resembled those of AVR4. Optimization of a crucial subunit interface of avidin by an AVR4-inspired point mutation, I117Y, significantly increased the thermostability of the avidin mutant (T(m) = 97.5 degrees C) without compromising its high biotin-binding properties. By combining these two modifications, a hyperthermostable ChiAVD(I117Y) was constructed (T(m) = 111.1 degrees C). This study provides an example of rational protein engineering in which another member of the protein family has been utilized as a source in the optimization of selected properties.  相似文献   

3.
The chicken avidin gene (AVD) forms a closely clustered gene family together with several avidin-related genes (AVRs). In this study, we used fluorescence in situ hybridization on extended DNA fibers (fiber-FISH) to show that the number of the AVD and AVR genes differs between individuals. Furthermore, the gene copy-number showed wide somatic variation in white blood cells of the individuals. The molecular mechanism underlying the fluctuation is most probably unequal crossing-over and/or unequal sister chromatid exchange, as judged by the Gaussian distribution of the gene counts. By definition, an increase in gene number on one locus should be accompanied by a decrease on the other locus in unequal sequence exchange. The results suggest that copy-number lability may be more common among gene families than previously thought. The chicken avidin gene family also provides an excellent model for studying the mechanisms of recombination and gene conversion.  相似文献   

4.
The chicken avidin gene family comprises the avidin gene (avd) and several homologous avidin-related genes (avrs). The sequences of the avr genes are nearly identical to each other but exhibit nonrandomly distributed, frequently nonsynonymous nucleotide substitutions compared to avd. In this study, we determined the genetic distances and the phylogeny of the avd and avr genes and found differences between different exons and introns. Our results suggest the involvement of biased gene conversion in the evolution of the genes. Furthermore, one of the genes was identified as a putative fusion gene. The occurrence of both gene conversion and recombination supports the models suggesting a common initiation mechanism for conversion and crossing-over. The existence of avidin-related proteins (AVRs) is currently unknown, but the putative AVRs are expected to bind biotin similarly to avidin. However, the observed sequence differences may affect the stability and glycosylation patterns of the putative AVR proteins.  相似文献   

5.
Avidins represent an interesting group of proteins showing high structural similarity and ligand-binding properties but low similarity in primary structure. In this study, we show that it is possible to create functional chimeric proteins from the avidin protein family when applying DNA family shuffling to the genes of the avidin protein family: avidin, avidin related gene 2 and biotin-binding protein A. The novel chimeric proteins were selected by phage display biopanning against biotin, and the selected enriched proteins were characterized, displaying diverse features distinct from the parental genes, including binding to cysteine.  相似文献   

6.

Background

Avidin is a chicken egg-white protein with high affinity to vitamin H, also known as D-biotin. Many applications in life science research are based on this strong interaction. Avidin is a homotetrameric protein, which promotes its modification to symmetrical entities. Dual-chain avidin, a genetically engineered avidin form, has two circularly permuted chicken avidin monomers that are tandem-fused into one polypeptide chain. This form of avidin enables independent modification of the two domains, including the two biotin-binding pockets; however, decreased yields in protein production, compared to wt avidin, and complicated genetic manipulation of two highly similar DNA sequences in the tandem gene have limited the use of dual-chain avidin in biotechnological applications.

Principal Findings

To overcome challenges associated with the original dual-chain avidin, we developed chimeric dual-chain avidin, which is a tandem fusion of avidin and avidin-related protein 4 (AVR4), another member of the chicken avidin gene family. We observed an increase in protein production and better thermal stability, compared with the original dual-chain avidin. Additionally, PCR amplification of the hybrid gene was more efficient, thus enabling more convenient and straightforward modification of the dual-chain avidin. When studied closer, the generated chimeric dual-chain avidin showed biphasic biotin dissociation.

Significance

The improved dual-chain avidin introduced here increases its potential for future applications. This molecule offers a valuable base for developing bi-functional avidin tools for bioseparation, carrier proteins, and nanoscale adapters. Additionally, this strategy could be helpful when generating hetero-oligomers from other oligomeric proteins with high structural similarity.  相似文献   

7.

Background  

The chicken avidin gene family consists of avidin and several avidin related genes (AVRs). Of these gene products, avidin is the best characterized and is known for its extremely high affinity for D-biotin, a property that is utilized in numerous modern life science applications. Recently, the AVR genes have been expressed as recombinant proteins, which have shown different biotin-binding properties as compared to avidin.  相似文献   

8.
Compatible/incompatible interactions between the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici (FOL) and tomato Solanum lycopersicum are controlled by three avirulence genes (AVR1-3) in FOL and the corresponding resistance genes (I-I3) in tomato. The three known races (1, 2 and 3) of FOL carry AVR genes in different combinations. The current model to explain the proposed order of mutations in AVR genes is: i) FOL race 2 emerged from race 1 by losing the AVR1 and thus avoiding host resistance mediated by I (the resistance gene corresponding to AVR1), and ii) race 3 emerged when race 2 sustained a point mutation in AVR2, allowing it to evade I2-mediated resistance of the host. Here, an alternative mechanism of mutation of AVR genes was determined by analyses of a race 3 isolate, KoChi-1, that we recovered from a Japanese tomato field in 2008. Although KoChi-1 is race 3, it has an AVR1 gene that is truncated by the transposon Hormin, which belongs to the hAT family. This provides evidence that mobile genetic elements may be one of the driving forces underlying race evolution. KoChi-1 transformants carrying a wild type AVR1 gene from race 1 lost pathogenicity to cultivars carrying I, showing that the truncated KoChi-1 avr1 is not functional. These results imply that KoChi-1 is a new race 3 biotype and propose an additional path for emergence of FOL races: Race 2 emerged from race 1 by transposon-insertion into AVR1, not by deletion of the AVR1 locus; then a point mutation in race 2 AVR2 resulted in emergence of race 3.  相似文献   

9.

Background  

The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin.  相似文献   

10.
The interaction between the biotrophic fungal pathogen Cladosporium fulvum and tomato complies with the genefor-gene model. Resistance, expressed as a hypersensitive response (HR) followed by other defence responses, is based on recognition of products of avirulence genes from C. fulvum (race-specific elicitors) by receptors (putative products of resistance genes) in the host plant tomato. The AVR9 elicitor is a 28 amino acid (aa) peptide and the AVR4 elicitor a 106 aa peptide which both induce HR in tomato plants carrying the complementary resistance genes Cf9 and Cf4, respectively. The 3-D structure of the AVR9 peptide, as determined by 1H NMR, revealed that AVR9 belongs to a family of peptides with a cystine knot motif. This motif occurs in channel blockers, peptidase inhibitors and growth factors. The Cf9 resistance gene encodes a membrane-anchored extracellular glycoprotein which contains leucine-rich repeats (LRRs). 125I labeled AVR9 peptide shows the same affinity for plasma membranes of Cf9+ and Cf9- tomato leaves. Membranes of solanaceous plants tested so far all contain homologs of the Cf9 gene and show similar affinities for AVR9. It is assumed that for induction of HR, at least two plant proteins (presumably CF9 and one of his homologs) interact directly or indirectly with the AVR9 peptide which possibly initiates modulation and dimerisation of the receptor, and activation of various other proteins involved in downstream events eventually leading to HR. We have created several mutants of the Avr9 gene, expressed them in the potato virus X (PVX) expression system and tested their biological activity on Cf9 genotypes of tomato. A positive correlation was observed between the biological activity of the mutant AVR9 peptides and their affinity for tomato plasma membranes. Recent results on structure and biological activity of AVR4 peptides encoded by avirulent and virulent alleles of the Avr4 gene (based on expression studies in PVX) are also discussed as well as early defence responses induced by elicitors in tomato leaves and tomato cell suspensions.  相似文献   

11.
The avirulence (AVR) gene AVR-Pita in Magnaporthe oryzae prevents the fungus from infecting rice cultivars containing the resistance gene Pi-ta. A survey of isolates of the M. grisea species complex from diverse hosts showed that AVR-Pita is a member of a gene family, which led us to rename it to AVR-Pita1. Avirulence function, distribution, and genomic context of two other members, named AVR-Pita2 and AVR-Pita3, were characterized. AVR-Pita2, but not AVR-Pita3, was functional as an AVR gene corresponding to Pi-ta. The AVR-Pita1 and AVR-Pita2 genes were present in isolates of both M. oryzae and M. grisea, whereas the AVR-Pita3 gene was present only in isolates of M. oryzae. Orthologues of members of the AVR-Pita family could not be found in any fungal species sequenced to date, suggesting that the gene family may be unique to the M. grisea species complex. The genomic context of its members was analyzed in eight strains. The AVR-Pita1 and AVR-Pita2 genes in some isolates appeared to be located near telomeres and flanked by diverse repetitive DNA elements, suggesting that frequent deletion or amplification of these genes within the M. grisea species complex might have resulted from recombination mediated by repetitive DNA elements.  相似文献   

12.
The hydrolysis of biotinyl p-nitrophenyl ester (BNP) by a series of avidin derivatives was examined. Surprisingly, a hyperthermostable avidin-related protein (AVR4) was shown to display extraordinary yet puzzling hydrolytic activity. In order to evaluate the molecular determinants that contribute to the reaction, the crystal structure of AVR4 was compared with those of avidin, streptavidin and key mutants of the two proteins in complex with biotinyl p-nitroanilide (BNA), the inert amide analogue of BNP. The structures revealed that a critical lysine residue contributes to the hydrolysis of BNP by avidin but has only a minor contribution to the AVR4-mediated reaction. Indeed, the respective rates of hydrolysis among the different avidins reflect several molecular parameters, including binding-site architecture, the availability of the ligand to solvent and the conformation of the ligand and consequent susceptibility to efficient nucleophilic attack. In avidin, the interaction of BNP with Lys111 and disorder of the L3,4 loop (and consequent solvent availability) together comprise the major driving force behind the hydrolysis, whereas in AVR4 the status of the ligand (the pseudo-substrate) is a major distinguishing feature. In the latter protein, a unique conformation of the L3,4 loop restrains the pseudo-substrate, thereby exposing the carbonyl carbon atom to nucleophilic attack. In addition, due to its conformation, the pseudo-substrate in the AVR4 complex cannot interact with the conserved lysine analogue (Lys109); instead, this function is superseded by polar interactions with Arg112. The results demonstrate that, in highly similar proteins, different residues can perform the same function and that subtle differences in the active-site architecture of such proteins can result in alternative modes of reaction.  相似文献   

13.
Powdery mildew fungi are parasites that cause disease on a wide range of important crops. Plant resistance (R) genes, which induce host defences against powdery mildews, encode proteins that recognise avirulence (AVR) molecules from the parasite in a gene-for-gene manner. To gain insight into how virulence evolves in Blumeria graminis f.sp. hordei, associations between segregating AVR genes were established. As a prerequisite to the isolation of AVR genes, two loci were selected for further analysis. AVR(a22) is located in a tightly linked cluster comprising AVR(a10) and AVR(k1) as well as up to five other AVR genes. The ratio between physical and genetic distance in the cluster ranged between 0.7 and 35 kB/cM. The AVR(a22) locus was delimited by the previously isolated gene AVR(a10) and two cleaved amplified polymorphic sequence (CAPS) markers, 19H12R and 74E9L. By contrast, AVR(a12) was not linked to other AVR genes in two crosses. Bulk segregant analysis of over 100,000 AFLP fragments yielded two markers, ETAMTG-285 and PAAMACT-473, mapping 10 and 2cM from AVR(a12), respectively, thus delimiting AVR(a12) on one side. All markers obtained for AVR(a12) mapped proximal to it, indicating that the gene is located at the end of a chromosome. Three more AVR(a10) paralogues were identified at the locus interspersed among genes for metabolic enzymes and abundant repetitive elements, especially those homologous to the CgT1 class of retrotransposons. The flanking and close markers obtained will facilitate the isolation of AVR(a22) and AVR(a12) and provide useful tools for studies of the evolution of powdery mildew fungi in agriculture and nature.  相似文献   

14.
Powdery mildew fungi are parasites that cause disease on a wide range of important crops. Plant resistance (R) genes, which induce host defences against powdery mildews, encode proteins that recognise avirulence (AVR) molecules from the parasite in a gene-for-gene manner. To gain insight into how virulence evolves in Blumeria graminis f.sp. hordei, associations between segregating AVR genes were established. As a prerequisite to the isolation of AVR genes, two loci were selected for further analysis. AVR(a22) is located in a tightly linked cluster comprising AVR(a10) and AVR(k1) as well as up to five other AVR genes. The ratio between physical and genetic distance in the cluster ranged between 0.7 and 35 kB/cM. The AVR(a22) locus was delimited by the previously isolated gene AVR(a10) and two cleaved amplified polymorphic sequence (CAPS) markers, 19H12R and 74E9L. By contrast, AVR(a12) was not linked to other AVR genes in two crosses. Bulk segregant analysis of over 100,000 AFLP fragments yielded two markers, ETAMTG-285 and PAAMACT-473, mapping 10 and 2cM from AVR(a12), respectively, thus delimiting AVR(a12) on one side. All markers obtained for AVR(a12) mapped proximal to it, indicating that the gene is located at the end of a chromosome. Three more AVR(a10) paralogues were identified at the locus interspersed among genes for metabolic enzymes and abundant repetitive elements, especially those homologous to the CgT1 class of retrotransposons. The flanking and close markers obtained will facilitate the isolation of AVR(a22) and AVR(a12) and provide useful tools for studies of the evolution of powdery mildew fungi in agriculture and nature.  相似文献   

15.
Avidin is a homotetrameric ~56 kDa protein found in chicken egg white. Avidin’s ability to bind biotin with a very high affinity has widely been exploited in biotechnological applications. Protein engineering has further diversified avidin’s feasibility. ChiAVD(I117Y) is a product of rational protein engineering. It is a hyperthermostable synthetic hybrid of avidin and avidin-related protein 4 (AVR4). In this chimeric protein a 23-residue segment in avidin has been replaced with the corresponding sequence found in AVR4, and a point mutation at subunit interface 1–3 (and 2–4) has been introduced. Here we report the backbone and sidechain resonance assignments of the biotin-bound form of ChiAVD(I117Y) as well as the backbone resonance assignments of the free form.  相似文献   

16.
Magnaporthe oryzae 2539 was previously found to be avirulent to most rice cultivars and, therefore, was assumed to carry many avirulence (AVR) genes. However, only one AVR gene, AVR1-CO39, which corresponds to a resistance (R) gene Pi-CO39(t) in rice cv. CO39, has been found from 2539 thus far. In order to identify more AVR genes, we isolated 228 progeny strains from a cross between 2539 and Guy11, an M. oryzae strain with strong virulence on rice, and inoculated these strains onto 23 rice accessions (22 individual cultivars and a mixture of 14 cultivars) that are all resistant to 2539 but susceptible to Guy11. Unexpectedly, the experimental results indicated that the avirulence of 2539 on these rice cultivars appeared to be controlled only by the AVR1-CO39 locus. Consistent with this result, we further found that all except one of the rice cultivars were resistant to two transformed Guy11 strains carrying a 1.05-kb fragment containing the AVR1-CO39 gene from 2539. These results suggest that AVR1-CO39 is a predominant locus controlling the broad avirulence of 2539 on cultivated rice. Based on the results of this study and other previous studies, we infer that AVR1-CO39 is a species-wise rather than a cultivar-wise host-specific AVR locus of M. oryzae for rice.  相似文献   

17.
Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVR(a10) and AVR(k1) of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and inaccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVR(a10) and AVR(k1) encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVR(a10) and AVR(k1) belong to a large family with >30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.  相似文献   

18.
The gene-for-gene model postulates that for every gene determining resistance in the host plant, there is a corresponding gene conditioning avirulence in the pathogen. On the basis of this relationship, products of resistance (R) genes and matching avirulence (Avr) genes are predicted to interact. Here, we report on binding studies between the R gene product Cf-9 of tomato and the Avr gene product AVR9 of the pathogenic fungus Cladosporium fulvum. Because a high-affinity binding site (HABS) for AVR9 is present in tomato lines, with or without the Cf-9 resistance gene, as well as in other solanaceous plants, the Cf-9 protein was produced in COS and insect cells in order to perform binding studies in the absence of the HABS. Binding studies with radio-labeled AVR9 were performed with Cf-9-producing COS and insect cells and with membrane preparations of such cells. Furthermore, the Cf-9 gene was introduced in tobacco, which is known to be able to produce a functional Cf-9 protein. Binding of AVR9 to Cf-9 protein produced in tobacco was studied employing surface plasmon resonance and surface-enhanced laser desorption and ionization. Specific binding between Cf-9 and AVR9 was not detected with any of the procedures. The implications of this observation are discussed.  相似文献   

19.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

20.
The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号