首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsuda Y  Ide Y 《Molecular ecology》2005,14(13):3929-3941
Betula maximowicziana is a long-lived pioneer tree species in Japanese cool temperate forests that plays an important role in maintenance of the forest ecosystem and has high economic value. Here we assess the wide-range genetic structure of 23 natural populations of B. maximowicziana using 11 simple sequence repeat (SSR) loci. Genetic diversity within populations was relatively low in all populations (mean H(E), 0.361; mean allelic richness, 2.80; mean rare allelic richness, 1.02). The population differentiation was also relatively low (F(ST), 0.062). Genetic distance-based and Bayesian clustering analysis revealed that the populations examined here could be divided into a southern group and a northern group. Analysis of rare allelic richness and Bayesian clustering revealed evidence for both southern and northern refugia during the last glacial period. Furthermore, a comparison of regional genetic diversity revealed significant clines in allelic richness. In spatial genetic structure evaluation, significant isolation by distance (IBD) was detected among the 23 populations, but not within regions. Moreover, significant population bottlenecks were found in all populations under infinite allele model (IAM) assumptions. These unusual, significant bottlenecks might be because of the processes of postglacial colonization and the species' characters and/or life history as a long-lived pioneer tree species. The wide-range, regional genetic structure found in this study provides an important baseline for conservation and forest management, including the identification of evolutionarily significant units (ESUs) and/or management units (MUs) of B. maximowicziana.  相似文献   

2.
Forty-nine populations of brook charr (Salvelinus fontinalis) from Algonquin Park lakes and rivers were analysed for mitochondrial DNA variation. Haplotypic distributions of wild fish in the Algonquin Park region of Ontario, Canada, predominantly reflect postglacial dispersal patterns into the region in spite of substantial hatchery plantings. Two major refugial groupings colonized this region. Northern and eastern watersheds (Amable du Fond, Bonnechere, and northern Petawawa), were colonized primarily by haplotype 1 fish (B1 phylogenetic assemblage), while Oxtongue River, southern Petawawa, and York River populations were colonized predominately by fish from the B2 and A mtDNA phylogenetic assemblages. Fish with haplotypes in the A and B2 phylogenetic assemblages are common in the Lake Huron drainage. All watersheds in the Park drain into the Ottawa River, except the Oxtongue drainage (part of the Lake Huron watershed). This suggests that early glacial outflows south of the Algonquin Park region (Kirkfield-Trent) may have been colonized by fish that initially invaded ‘Ontario island’ (south-western Ontario), while fish which invaded northern Algonquin Park were derived from a different refugial grouping(s) which may have involved colonization both up the Ottawa River drainage, and/or from a more westerly (Mississippian) refugial grouping. A majority of the populations in Algonquin Park have been planted with hatchery reared brook charr since the 1940s. The Hills Lake or ‘Domestic’ strain was used almost exclusively for these plantings. Comparisons of mtDNA haplotypic distributions in hatchery and wild fish suggests that hatchery females had minimal spawning success and/or their progeny had poor survivorship in the wild.  相似文献   

3.
Human dispersal of organisms is an important process modifying natural patterns of biodiversity. Such dispersal generates new patterns of genetic diversity that overlie natural phylogeographical signatures, allowing discrimination between alternative dispersal mechanisms. Here we use allele frequency and DNA sequence data to distinguish between alternative scenarios (unassisted range expansion and long range introduction) for the colonization of northern Europe by an oak-feeding gallwasp, Andricus kollari. Native to Mediterranean latitudes from Portugal to Iran, this species became established in northern Europe following human introduction of a host plant, the Turkey oak Quercus cerris. Colonization of northern Europe is possible through three alternative routes: (i) unassisted range expansion from natural populations in the Iberian Peninsula; (ii) unassisted range expansion from natural populations in Italy and Hungary; or (iii) descent from populations imported to the UK as trade goods from the eastern Mediterranean in the 1830s. We show that while populations in France were colonized from sources in Italy and Hungary, populations in the UK and neighbouring parts of coastal northern Europe encompass allozyme and sequence variation absent from the known native range. Further, these populations show demographic signatures expected for large stable populations, rather than signatures of rapid population growth from small numbers of founders. The extent and spatial distribution of genetic diversity in the UK suggests that these A. kollari populations are derived from introductions of large numbers of individuals from each of two genetically divergent centres of diversity in the eastern Mediterranean. The strong spatial patterning in genetic diversity observed between different regions of northern Europe, and between sites in the UK, is compatible with leptokurtic models of population establishment.  相似文献   

4.
Isolation by distance (IBD) is a phenomenon characterized by increasing genetic divergence and decreasing gene flow with increasing geographic distance. IBD is often used in conservation biology to infer the extent of gene flow among populations. An assumption inherent to this approach is equilibrium between genetic drift and gene flow, which may take thousands of years to achieve. This implies that empirical IBD studies of recently colonized areas, such as postglacial systems, should be concerned with whether or not equilibrium has been reached. Short of equilibrium, IBD should increase with the length of time since a geographical area was colonized. We test the prediction that IBD increases with increasing time since colonization through a meta-analysis based on a diverse range of empirical systems. P and r 2 values from published IBD studies were analyzed with respect to time since colonization (in generations and years), taking into account variation in sample sizes, molecular markers, divergence metrics (genetic distance, F st, Nm), and dispersal patterns (one or two dimensional). Overall, we found weak evidence for associations between time since colonization and IBD. Sample sizes, molecular markers, divergence metrics, and dispersal patterns did not appreciably influence IBD. We propose that the expected relationship between IBD and time since colonization is obscured by the influence of other factors, such as dispersal ability, geographical barriers, and proximity to glacial refugia. The possible effects of time since colonization should continue to be evaluated in empirical studies, but other potential factors should also be thoroughly explored.  相似文献   

5.
The distribution of genetic diversity in Mycelis muralis, or wall lettuce, was investigated at a European scale using 12 microsatellite markers to infer historical and contemporary forces from genetic patterns. Mycelis muralis has the potential for long-distance seed dispersal by wind, is mainly self-pollinated, and has patchily distributed populations, some of which may show metapopulation dynamics. A total of 359 individuals were sampled from 17 populations located in three regions, designated southern Europe (Spain and France), the Netherlands, and Sweden. At this within-region scale, contemporary evolutionary forces (selfing and metapopulation dynamics) are responsible for high differentiation between populations (0.34 < F(ST) < 0.60) but, contrary to expectation, levels of within-population diversity, estimated by Nei's unbiased expected heterozygosity (H(E)) (0.24 < H(E) < 0.68) or analyses of molecular variance (50% of the variation found within-populations), were not low. We suggest that the latter results, which are unusual in selfing species, arise from efficient seed dispersal that counteracts population turnover and thus maintains genetic diversity within populations. At the European scale, northern regions showed lower allelic richness (A = 2.38) than populations from southern Europe (A = 3.34). In light of postglacial colonization hypotheses, these results suggest that rare alleles may have been lost during recolonization northwards. Our results further suggest that mutation has contributed to genetic differentiation between southern and northern Europe, and that Sweden may have been colonized by dispersers originating from at least two different refugia.  相似文献   

6.
While it is generally recognized that noncontiguous (long‐distance) dispersal of small numbers of individuals is important for range expansion over large geographic areas, it is often assumed that colonization on more local scales proceeds by population expansion and diffusion dispersal (larger numbers of individuals colonizing adjacent sites). There are few empirical studies of dispersal modes at the front of expanding ranges, and very little information is available on dispersal dynamics at smaller geographic scales where we expect contiguous (diffusion) dispersal to be prevalent. We used highly polymorphic genetic markers to characterize dispersal modes at a local geographic scale for populations at the edge of the range of a newly invasive grass species (Brachypodium sylvaticum) that is undergoing rapid range expansion in the Pacific Northwest of North America. Comparisons of Bayesian clustering of populations, patterns of genetic diversity, and gametic disequilibrium indicate that new populations are colonized ahead of the invasion front by noncontiguous dispersal from source populations, with admixture occurring as populations age. This pattern of noncontiguous colonization was maintained even at a local scale. Absence of evidence for dispersal among adjacent pioneer sites at the edge of the expanding range of this species suggests that pioneer populations undergo an establishment phase during which they do not contribute emigrants for colonization of neighbouring sites. Our data indicate that dispersal modes change as the invasion matures: initial colonization processes appear to be dominated by noncontiguous dispersal from only a few sources, while contiguous dispersal may play a greater role once populations become established.  相似文献   

7.
Narrow endemics are at risk from climate change because of their restricted habitat preferences, lower colonization ability and dispersal distances. Landscape genetics combines new tools and analyses that allow us to test how both past and present landscape features have facilitated or hindered previous range expansion and local migration patterns, and thereby identifying potential limitations to future range shifts. We have compared current and historic habitat corridors in Cirsium pitcheri, an endemic of the linear dune ecosystem of the Great Lakes, to determine the relative contributions of contemporary migration and post-glacial range expansion on genetic structure. We used seven microsatellite loci to characterize the genetic structure for 24 populations of Cirsium pitcheri, spanning the center to periphery of the range. We tested genetic distance against different measures of geographic distance and landscape permeability, based on contemporary and historic landscape features. We found moderate genetic structure (Fst=0.14), and a north–south pattern to the distribution of genetic diversity and inbreeding, with northern populations having the highest diversity and lowest levels of inbreeding. High allelic diversity, small average pairwise distances and mixed genetic clusters identified in Structure suggest that populations in the center of the range represent the point of entry to the Lake Michigan and a refugium of diversity for this species. A strong association between genetic distances and lake-level changes suggests that historic lake fluctuations best explain the broad geographic patterns, and sandy habitat best explains local patterns of movement.  相似文献   

8.
The hypothesis of isolation by distance (IBD) predicts that genetic differentiation between populations increases with geographic distance. However, gene flow is governed by numerous factors and the correlation between genetic differentiation and geographic distance is never simply linear. In this study, we analyze the interaction between the effects of geographic distance and of wild or domesticated status of the host plant on genetic differentiation in the bean beetle Acanthoscelides obvelatus. Geographic distance explained most of the among-population genetic differentiation. However, IBD varied depending on the kind of population pairs for which the correlation between genetic differentiation and geographic distance was examined. Whereas pairs of beetle populations associated with wild beans showed significant IBD (P < 10(-4)), no IBD was found when pairs of beetle populations on domesticated beans were examined (P= 0.2992). This latter result can be explained by long-distance migrations of beetles on domesticated plants resulting from human exchanges of bean seeds. Beetle populations associated with wild beans were also significantly more likely than those on domesticated plants to contain rare alleles. However, at the population level, beetles on cultivated beans were similar in allelic richness to those on wild beans. This similarity in allelic richness combined with differences in other aspects of the genetic diversity (i.e., IBD, allelic diversity) is compatible with strongly contrasting effects of migration and drift. This novel indirect effect of human actions on gene flow of a serious pest of a domesticated plant has important implications for the spread of new adaptations such as resistance to pesticides.  相似文献   

9.
Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America), via the analyses of 516 individuals, and asked the following questions: 1) Do populations have differing levels of within-population genetic diversity? 2) Do populations form distinct genetic clusters? 3) Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering) and pairwise F ST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources) in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further contribute to the invasive success of P. cespitosum in its introduced range.  相似文献   

10.
Aim  This study aims to assess the role of long-distance seed dispersal and topographic barriers in the post-glacial colonization of red maple ( Acer rubrum L.) using chloroplast DNA (cpDNA) variation, and to understand whether this explains the relatively higher northern diversity found in eastern North American tree species compared with that in Europe.
Location  North-eastern United States.
Methods  The distribution of intraspecific cpDNA variation in temperate tree populations has been used to identify aspects of post-glacial population spread, including topographic barriers to population expansion and spread by long-distance seed dispersal. We sequenced c.  370 cpDNA base pairs from 221 individuals in 100 populations throughout the north-eastern United States, and analysed spatial patterns of diversity and differentiation.
Results  Red maple has high genetic diversity near its northern range limit, but this diversity is not partitioned by topographic barriers, suggesting that the northern Appalachian Mountains were not a barrier to the colonization of red maple. We also found no evidence of the patchy genetic structure that has been associated with spread by rare long-distance seed dispersal in previous studies.
Main conclusions  Constraints on post-glacial colonization in eastern North America seem to have been less stringent than those in northern Europe, where bottlenecks arising from long-distance colonization and topographic barriers appear to have strongly reduced genetic diversity. In eastern North America, high northern genetic diversity may have been maintained by a combination of frequent long-distance dispersal, minor topographic obstacles and diffuse northern refugia near the ice sheet.  相似文献   

11.
Marko PB 《Molecular ecology》2004,13(3):597-611
In marine environments, many species have apparently colonized high latitude regions following the last glacial maximum (LGM) yet lack a life-history stage, such as a free-living larva, that is clearly capable of long-distance dispersal. Two hypotheses can explain the modern high latitude distributions of these marine taxa: (1) survival in northern refugia during the LGM or (2) rapid post-glacial dispersal by nonlarval stages. To distinguish these two scenarios, I characterized the genetic structure of two closely related northeastern Pacific gastropods that lack planktonic larvae but which have distributions extending more than 1000 km north of the southern limit of glaciers at the LGM. Despite having identical larval dispersal potential, these closely related species exhibit fundamentally different patterns of genetic structure. In Nucella ostrina, haplotype diversity among northern populations (British Columbia and Alaska) is low, no pattern of isolation by distance exists and a coalescent-based model of population growth indicates that during the LGM population size was reduced to less than 35% of its current size. In the congeneric and often sympatric N. lamellosa, northern populations harbour a diversity of ancient private haplotypes, significant evidence of isolation by distance exists and regional subdivision was found between northern (Alaska) and southern (southern British Columbia, Washington and Oregon) populations. Estimates of coalescent parameters indicate only a modest reduction in population size during the LGM and that northern and southern populations of N. lamellosa split approximately 50 Kyr before the LGM. The patterns are consistent with the hypothesis that N. ostrina recently reinvaded the northeastern Pacific but N. lamellosa survived the LGM in a northern refuge. A comparison of similar studies in this region indicates that depleted levels of genetic variation at high latitudes--evidence suggestive of recent colonization from a southern refuge--is more common among intertidal species that live relatively high on the shore, where exposure times to cold stress in air are longer than for species living lower on the shore. These data suggest that for some faunas, ecological differences between taxa may be more important than larval dispersal potential in determining species' long-term biogeographical responses to climate change.  相似文献   

12.
With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.  相似文献   

13.
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.  相似文献   

14.
Variation at 12 polymorphic isozyme loci was studied in the European beech on the basis of an extensive sample of 389 populations distributed throughout the species range. Special emphasis was given to the analysis of the pattern of geographic variation on the basis of two contrasting measures of genetic diversity, gene diversity (H) and allelic richness, and to their relationship. Measures of allelic richness were corrected for variation in sample size by using the rarefaction method. As expected, maximum allelic richness was found in the southeastern part of the range (southern Italy and the Balkans), where beech was confined during the last ice age. Surprisingly, H was lower in refugia than in recently colonized regions, resulting in a negative correlation between the two diversity measures. The decrease of allelic richness and the simultaneous increase of H during postglacial recolonization was attributed to several processes that differentially affect the two diversity parameters, such as bottlenecks due to long-distance founding events, selection during population establishment, and increased gene flow at low population densities.  相似文献   

15.
16.
17.
Refugial populations at the rear edge are predicted to contain higher genetic diversity than those resulting from expansion, such as in post-glacial recolonizations. However, peripheral populations are also predicted to have decreased diversity compared to the centre of a species' distribution. We aim to test these predictions by comparing genetic diversity in populations at the limits of distribution of the seagrass Zostera marina, with populations in the species' previously described central diversity 'hotspot'. Zostera marina populations show decreased allelic richness, heterozygosity and genotypic richness in both the 'rear' edge and the 'leading' edge compared to the diversity 'hotspot' in the North Sea/Baltic region. However, when populations are pooled, genetic diversity at the southern range is as high as in the North Sea/Baltic region while the 'leading edge' remains low in genetic diversity. The decreased genetic diversity in these southern Iberian populations compared to more central populations is possibly the effect of drift because of small effective population size, as a result of reduced habitat, low sexual reproduction and low gene flow. However, when considering the whole southern edge of distribution rather than per population, diversity is as high as in the central 'hotspot' in the North Sea/Baltic region. We conclude that diversity patterns assessed per population can mask the real regional richness that is typical of rear edge populations, which have played a key role in the species biogeographical history and as marginal diversity hotspots have very high conservation value.  相似文献   

18.
Many ectothermic species are currently expanding their geographic range due to global warming. This can modify the population genetic diversity and structure of these species because of genetic drift during the colonization of new areas. Although the genetic signatures of historical range expansions have been investigated in an array of species, the genetic consequences of natural, contemporary range expansions have received little attention, with the only studies available focusing on range expansions along a narrow front. We investigate the genetic consequences of a natural range expansion in the Mediterranean damselfly Coenagrion scitulum, which is currently rapidly expanding along a broad front in different directions. We assessed genetic diversity and genetic structure using 12 microsatellite markers in five centrally located populations and five recently established populations at the edge of the geographic distribution. Our results suggest that, although a marginal significant decrease in the allelic richness was found in the edge populations, genetic diversity has been preserved during the range expansion of this species. Nevertheless, edge populations were genetically more differentiated compared with core populations, suggesting genetic drift during the range expansion. The smaller effective population sizes of the edge populations compared with central populations also suggest a contribution of genetic drift after colonization. We argue and document that range expansion along multiple axes of a broad expansion front generates little reduction in genetic diversity, yet stronger differentiation of the edge populations.  相似文献   

19.
Dutech C  Joly HI  Jarne P 《Heredity》2004,92(2):69-77
Both gene flow and historical events influence the genetic diversity of natural populations. One way to understand their respective impact is to analyze population genetic structure at large spatial scales. We studied the distribution of genetic diversity of 17 populations of Vouacapoua americana (Caesalpiniaceae) in French Guiana, using nine microsatellite loci. Low genetic diversity was observed within populations, with a mean allelic richness and gene diversity of 4.1 and 0.506, respectively, which could be due to low effective population size and/or past bottlenecks. Using the regression between Fst/(1-Fst), estimated between pairs of populations, and the logarithm of the geographical distance, the spatial genetic structure can partly be explained by isolation-by-distance and limited gene flow among populations. This result is in agreement with the species' biology, including seed and pollen dispersal by rodents and insects, respectively. In contrast, no clear genetic signal of historical events was found when examining genetic differentiation among populations in relation to biogeographical hypotheses or by testing for bottlenecks within populations. Our conclusion is that nuclear spatial genetic structure of V. americana, at the geographic scale of French Guiana, is better explained by gene flow rather than by historical events.  相似文献   

20.
BACKGROUND AND AIMS: Genetic variability was estimated for Atriplex tatarica from 25 populations in the Czech Republic. Since its north-western range margin is in central Europe, a relationship between marginality and low within-population genetic diversity was tested in accordance with the Central-Marginal Model. METHODS: Population genetic diversity was expressed by assessing patterns of variation at 13 putatively neutral allozyme loci (comprising 30 putative alleles) within and between 25 natural populations of A. tatarica along a north-west-south-east transect in the Czech Republic. KEY RESULTS: Atriplex tatarica is a species of human-made habitats with a mixed mating system and wide geographic distribution. Overall, A. tatarica displayed moderate levels of genetic diversity in comparison with other herbaceous plants. The percentage of loci that were polymorphic was 47.1%, with average values of 1.55, 0.151 and 0.155 for the average number of alleles per polymorphic locus (A), observed heterozygosity (Ho) and expected heterozygosity (He), respectively. There was only weak evidence of inbreeding within populations (FIS=0.031) and significant population differentiation (FST=0.214). Analysis of the data provides no evidence for isolation-by-distance for the whole study area. However, Mantel tests were highly significant for the marginal Bohemian region and non-significant for the central Moravian region. While northern populations of A. tatarica showed significantly lower allelic richness (A=1.462) than populations from the southern part of the study area (A=1.615), they did not differ in observed heterozygosity (Ho), gene diversity (HS), inbreeding within populations (FIS) or population differentiation (FST), despite generally lower values of particular genetic measurements in the marginal region. CONCLUSIONS: Genetic diversity, with the exception of allelic richness, was not significantly lower at the margins of the species' range. This, therefore, provides only weak support for the predictions of the Central-Marginal Model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号