首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
 PTEN是一个重要的抑癌基因.为了调查PTEN在H2O2对细胞凋亡诱导过程中的作用及机制,采用Western 印迹方法,检测了在PTEN缺失细胞及对照细胞中H2O2对PI3K/AKT通路的影响;采用Annexin Ⅴ-FITC标记结合流式检测H2O2对PTEN缺失细胞及对照细胞凋亡的诱导.结果表明,在PTEN功能正常的对照细胞中,H2O2短时间活化,长时间抑制PI3K/AKT通路,但PTEN缺失后,H2O2对PI3K/AKT通路的介导被阻断;0.1mmol/L H2O2处理12 h及24 h可以诱导对照细胞的凋亡,但对PTEN缺失细胞没有明显影响.这一结果证明,PTEN通过参与H2O2对PI3K/AKT通路活性的调控影响H2O2介导的凋亡.  相似文献   

2.
P-selectin glycoprotein ligand-1 (PSGL-1), a heavily glycosylated sialomucin expressed on most leukocytes, has dual function as a selectin ligand for leukocyte rolling on vascular selectins expressed in inflammation and as a facilitator of resting T cell homing into lymphoid organs. In this article, we document disturbances in T cell homeostasis present in PSGL-1(null) mice. Naive CD4(+) and CD8(+) T cell frequencies were profoundly reduced in blood, whereas T cell numbers in lymph nodes and spleen were at or near normal levels. Although PSGL-1(null) T cells were less efficient at entering lymph nodes, they also remained in lymph nodes longer than PSGL-1(+/+) T cells, suggesting that PSGL-1 supports T cell egress. In addition, PSGL-1(null) CD8(+) T cell proliferation was observed under steady-state conditions and PSGL-1(null) CD8(+) T cells were found to be hyperresponsive to homeostatic cytokines IL-2, IL-4, and IL-15. Despite these disturbances in T cell homeostasis, PSGL-1(null) mice exhibited a normal acute response (day 8) to lymphocytic choriomeningitis virus infection but generated an increased frequency of memory T cells (day 40). Our observations demonstrate a novel pleiotropic influence of PSGL-1 deficiency on several aspects of T cell homeostasis that would not have been anticipated based on the mild phenotype of PSGL-1(null) mice. These potentially offsetting effects presumably account for the near-normal cellularity seen in lymph nodes of PSGL-1(null) mice.  相似文献   

3.
Previous evidence suggested that the hemopoietic-specific nuclear factor Ikaros regulates TCR signaling thresholds in mature T cells. In this study, we test the hypothesis that Ikaros also sets TCR signaling thresholds to regulate selection events and CD4 vs CD8 lineage determination in developing thymocytes. Ikaros null mice were crossed to three lines of TCR-transgenic mice, and positive selection, negative selection, and CD4 vs CD8 lineage decisions were analyzed. Mice expressing a polyclonal repertoire or a MHC class II-restricted TCR transgene exhibited enhanced positive selection toward the CD4 lineage. Moreover, in the absence of Ikaros, CD4 development can occur with decreased thresholds of TCR signaling. In addition, CD4 single-positive thymocytes were detected in MHC class I-restricted TCR-transgenic Ikaros null mice. To assess the role of Ikaros in negative selection, we analyzed deletion of T cells induced by conventional Ag or by endogenous superantigen. Surprisingly, negative selection was impaired in Ikaros null thymocytes despite evidence of high levels of TCR signal and no intrinsic defect in apoptosis ex vivo. To our knowledge, these data identify Ikaros as the first nuclear factor that plays a critical role in regulating negative selection as well as CD4 vs CD8 lineage decisions during positive selection.  相似文献   

4.
MHC class II haplotypes control the specificity of Th immune responses and susceptibility to many autoimmune diseases. Understanding the role of HLA class II haplotypes in immunity is hampered by the lack of animal models expressing these genes as authentic cis-haplotypes. In this study we describe transgenic expression of the autoimmune prone HLA DR3-DQ2 haplotype from a yeast artificial chromosome (YAC) containing an intact similar320-kb region from HLA DRA to DQB2. In YAC-transgenic mice HLA DR and DQ gene products were expressed on B cells, macrophages, and dendritic cells, but not on T cells indicating cell-specific regulation. Positive selection of the CD4 compartment by human class II molecules was 67% efficient in YAC-homozygous mice lacking endogenous class II molecules (Abeta(null/null)) and expressing only murine CD4. A broad range of TCR Vbeta families was used in the peripheral T cell repertoire, which was also purged of Vbeta5-, Vbeta11-, and Vbeta12-bearing T cells by endogenous mouse mammary tumor virus-encoded superantigens. Expression of the HLA DR3-DQ2 haplotype on the Abeta(null/null) background was associated with normal CD8-dependent clearance of virus from influenza-infected mice and development of CD4-dependent protection from otherwise lethal infection with Salmonella typhimurium. HLA DR- and DQ-restricted T cell responses were also elicited following immunization with known T cell determinants presented by these molecules. These findings demonstrate the potential for human MHC class II haplotypes to function efficiently in transgenic mice and should provide valuable tools for developing humanized models of MHC-associated autoimmune diseases.  相似文献   

5.
6.
We have previously reported that central repeated units (CRUs) of Ahnak act as a scaffolding protein networking phospholipase Cgamma and protein kinase C (PKC). Here, we demonstrate that an Ahnak derivative consisting of four central repeated units binds and activates PKC-alpha in a phosphatidylserine/1,2-dioleoyl-sn-glycerol-independent manner. Moreover, NIH3T3 cells expressing the 4 CRUs of Ahnak showed enhanced c-Raf, MEK, and Erk phosphorylation in response to phorbol 12-myristate 13-acetate (PMA) compared with parental cells. To evaluate the effect of loss-of-function of Ahnak in cell signaling, we investigated PKC activation and Raf phosphorylation in embryonic fibroblast cells (MEFs) of the Ahnak knock-out (Ahnak(-/-)) mouse. Membrane translocation of PKC-alpha and phosphorylation of Raf in response to PMA or platelet-derived growth factor were decreased in Ahnak null MEF cells compared with wild type MEFs. Several lines of evidence suggest that PKC-alpha activity is regulated through association with protein phosphatase 2A (PP2A). A co-immunoprecipitation assay indicated that the association of PKC-alpha with PP2A was disrupted in NIH3T3 cells expressing 4 CRUs of Ahnak in response to PMA. Consistently, Ahnak null MEF cells stimulated by PMA showed enhanced PKC-PP2A complex formation, and add-back expression of Ahnak into Ahnak null MEF cells abolished the PKC-PP2A complex formation in response to PMA. These data indicate that Ahnak potentiates PKC activation through inhibiting the interaction of PKC with PP2A.  相似文献   

7.
Transforming growth factor-β (TGF-β), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-γ compared to heterozygous control MEFs. Treatment with the PPAR-γ ligand 15d-PGJ2 failed to down-regulate collagen gene expression in PPAR-γ null MEFs, whereas reconstitution of these cells with ectopic PPAR-γ resulted in their normalization. Compared to control MEFs, PPAR-γ null MEFs displayed elevated levels of the Type I TGF-β receptor (TβRI), and secreted more TGF-β1 into the media. Furthermore, PPAR-γ null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-β, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-γ null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-β responses. Taken together, these results indicate that loss of PPAR-γ in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-β stimulation.  相似文献   

8.
9.
Mnt is a Max-interacting protein that can antagonize the activities of Myc oncoproteins in cultured cells. Mnt null mice die soon after birth, but conditional deletion of Mnt in breast epithelium leads to tumor formation. These and related data suggest that Mnt functions as a tumor suppressor. Here we show that conditional deletion of Mnt in T cells leads to tumor formation but also causes inflammatory disease. Deletion of Mnt caused increased apoptosis of thymic T cells and interfered with T-cell development yet led to spleen, liver, and lymph node enlargement. The proportion of T cells in the spleen and lymph nodes was reduced, and the numbers of cells in non-T-cell immune cell populations were elevated. The disruption of immune homeostasis is linked to a strong skewing toward production of T-helper 1 (Th1) cytokines and enhanced proliferation of activated Mnt-deficient CD4+ T cells. Consistent with Th1 polarization in vivo, extensive intestinal inflammation and liver necrosis developed. Finally, most mice lacking Mnt in T cells ultimately succumbed to T-cell lymphoma. These results strengthen the argument that Mnt functions as a tumor suppressor and reveal a critical and surprising role for Mnt in the regulation of T-cell development and in T-cell-dependent immune homeostasis.  相似文献   

10.
Accumulation of CD28(null)CD8+ T cells and the defects of these cells in response to antigenic stimulation are the hallmarks of age-associated decline of T cell function. However, the mechanism of these age-associated changes is not fully understood. In this study, we report an analysis of the growth of human CD28(null) and CD28+CD8+ memory T cells in response to homeostatic cytokine IL-15 in vitro. We showed that 1) there was no proliferative defect of CD28(null)CD8+ memory T cells in response to IL-15 compared with their CD28+ counterparts; 2) stable loss of CD28 expression occurred in those actively dividing CD28+CD8+ memory T cells responding to IL-15; 3) the loss of CD28 was in part mediated by TNF-alpha that was induced by IL-15; and 4) CCL4 (MIP-1beta), also induced by IL-15, had a significant inhibitory effect on the growth of CD28(null) cells, which in turn down-regulated their expression of CCL4 receptor CCR5. Together, these findings demonstrate that CD28(null)CD8+ memory T cells proliferate normally in response to IL-15 and that IL-15 and its induced cytokines regulate the generation and growth of CD28(null)CD8+ T cells, suggesting a possible role of IL-15 in the increase in CD28(null)CD8+ T cells that occurs with aging.  相似文献   

11.
Transforming growth factor-beta (TGF-beta) and adrenomedullin are multifunctional regulatory proteins which are expressed in developing embryonic and adult tissues. Because of their colocalization, TGF-beta1 and adrenomedullin may be able to coordinately act to influence development and differentiation. In order to learn more about the biology of adrenomedullin in the absence of the effects of TGF-beta1 in vivo, we examined adrenomedullin in the TGF-beta1 null mouse. A generally lower amount of adrenomedullin was detected by immunohistochemical staining analysis in multiple tissues from embryonic TGF-beta1 null mice compared to wildtype animals, including the heart, lung, brain, liver, and kidney, among others. In contrast, immunohistochemical staining for adrenomedullin was more intense in tissues of the postnatal TGF-beta1 null mouse compared to the wildtype mouse. These observations were confirmed by quantitative real time RT-PCR for adrenomedullin in both embryos and postnatal animals, as well as in cultured mouse embryo fibroblasts from TGF-beta1 null and wildtype mice. In addition, when cultured mouse embryo fibroblasts were treated with a neutralizing monoclonal antibody against TGF-beta1, the levels of adrenomedullin expression were statistically reduced compared to untreated cells. Our data show that expression of adrenomedullin is reduced in tissues of the developing embryonic TGF-beta1 null mouse compared to the wildtype mouse, but increases during postnatal development in TGF-beta1 null mice. The elevated expression of adrenomedullin which occurs postnatally in the TGF-beta1 null mouse may be a cause or a consequence of the multifocal wasting syndrome which is characteristic of postnatal TGF-beta1 null mice.  相似文献   

12.
13.
14.
Normal adult human liver (AHL) contains populations of unconventional lymphocytes that have been shown in the mouse to mature locally. The presence of lymphoid progenitors together with IL-7, recombinase-activating gene, and pre-TCR-alpha expression in AHL suggests similar local T cell development activity in humans. Flow cytometry was used to characterize potentially naive hepatic alphabeta-T cells. We looked for evidence of TCR-alphabeta cell development in AHL by quantifying delta deletion TCR excision circles (TRECs) in CD3(pos) populations isolated from the liver and matched blood of eight individuals. Phenotypic analysis of hepatic T cells suggests the presence of Ag-inexperienced populations. TRECs were detected in all blood samples (mean, 164.10 TRECs/ micro g DNA), whereas only two hepatic samples were positive at low levels (59.40 and 1.92). The relatively high level of CD8(pos) T cells in these livers with a naive phenotype suggests that in addition to its role as a graveyard for Ag-specific activated CD8(pos) T cells, naive CD8(pos) T cells may enter the liver without prior activation. The almost complete absence of TRECs suggests that normal AHL is not a site for the development of conventional alphabeta T cells.  相似文献   

15.
Non-disrupted pieces of primary human lung tumor implanted into NOD-scid IL2Rgamma(null) mice consistently result in successful xenografts in which tissue architecture, including tumor-associated leukocytes, stromal fibroblasts, and tumor cells are preserved for prolonged periods with limited host-vs-graft interference. Human CD45(+) tumor-associated leukocytes within the xenograft are predominantly CD3(+) T cells with fewer CD138(+) plasma cells. The effector memory T cells that had been shown to be quiescent in human lung tumor microenvironments can be activated in situ as determined by the production of human IFN-gamma in response to exogenous IL-12. Plasma cells remain functional as evidenced by production of human Ig. Significant levels of human IFN-gamma and Ig were detected in sera from xenograft-bearing mice for up to 9 wk postengraftment. Tumor-associated T cells were found to migrate from the microenvironment of the xenograft to the lung, liver, and primarily the spleen. At 8 wk postengraftment, a significant portion of cells isolated from the mouse spleens were found to be human CD45(+) cells. The majority of CD45(+) cells were CD3(+) and expressed a phenotype consistent with an effector memory T cell, consisting of CD4(+) or CD8(+) T cells that were CD45RO(+), CD44(+), CD62L(-), and CD25(-). Following adoptive transfer into non-tumor bearing NOD-scid IL2Rgamma(null) mice, these human T cells were found to expand in the spleen, produce IFN-gamma, and maintain an effector memory phenotype. We conclude that the NOD-scid IL2Rgamma(null) tumor xenograft model provides an opportunity to study tumor and tumor-stromal cell interactions in situ for prolonged periods.  相似文献   

16.
17.
Ethical considerations constrain the in vivo study of human hemopoietic stem cells (HSC). To overcome this limitation, small animal models of human HSC engraftment have been used. We report the development and characterization of a new genetic stock of IL-2R common gamma-chain deficient NOD/LtSz-scid (NOD-scid IL2Rgamma(null)) mice and document their ability to support human mobilized blood HSC engraftment and multilineage differentiation. NOD-scid IL2Rgamma(null) mice are deficient in mature lymphocytes and NK cells, survive beyond 16 mo of age, and even after sublethal irradiation resist lymphoma development. Engraftment of NOD-scid IL2Rgamma(null) mice with human HSC generate 6-fold higher percentages of human CD45(+) cells in host bone marrow than with similarly treated NOD-scid mice. These human cells include B cells, NK cells, myeloid cells, plasmacytoid dendritic cells, and HSC. Spleens from engrafted NOD-scid IL2Rgamma(null) mice contain human Ig(+) B cells and lower numbers of human CD3(+) T cells. Coadministration of human Fc-IL7 fusion protein results in high percentages of human CD4(+)CD8(+) thymocytes as well human CD4(+)CD8(-) and CD4(-)CD8(+) peripheral blood and splenic T cells. De novo human T cell development in NOD-scid IL2Rgamma(null) mice was validated by 1) high levels of TCR excision circles, 2) complex TCRbeta repertoire diversity, and 3) proliferative responses to PHA and streptococcal superantigen, streptococcal pyrogenic exotoxin. Thus, NOD-scid IL2Rgamma(null) mice engrafted with human mobilized blood stem cells provide a new in vivo long-lived model of robust multilineage human HSC engraftment.  相似文献   

18.
During peripheral T cell deletion, lymphocytes accumulate in nonlymphoid organs including the liver, a tissue that expresses the nonclassical, MHC-like molecule, CD1. Injection of anti-CD3 Ab results in T cell activation, which in normal mice is followed by peripheral T cell deletion. However, in CD1-deficient mice, the deletion of the activated T cells from the lymph nodes was impaired. This defect in peripheral T cell deletion was accompanied by attenuated accumulation of CD8(+) T cells in the liver. In tetra-parental bone marrow chimeras, expression of CD1 on the T cells themselves was not required for T cell deletion, suggesting a role for CD1 on other cells with which the T cells interact. We tested whether this role was dependent on the Ag receptor-invariant, CD1-reactive subset of NK T cells using two other mutant mouse lines that lack most NK T cells, due to deletion of the genes encoding either beta(2)-microglobulin or the TCR element J alpha 281. However, these mice had no abnormality of peripheral T cell deletion. These findings indicate a novel role for CD1 in T cell deletion, and show that CD1 functions in this process through mechanisms that does not involve the major, TCR-invariant set of NK T cells.  相似文献   

19.
IFN-gamma has a dual function in the regulation of T cell homeostasis. It promotes the expansion of effector T cells and simultaneously programs their contraction. The cellular mechanisms leading to this functional dichotomy of IFN-gamma have not been identified to date. In this study we show: 1) that expansion of wild-type CD8+ T cells is defective in IFN-gamma-deficient mice but increased in IFN-gammaR-deficient mice; and 2) that contraction of the effector CD8+ T cell pool is impaired in both mouse strains. Furthermore, we show that CD11b+ cells responding to IFN-gamma are sufficient to limit CD8+ T cell expansion and promote contraction. The data presented here reveal that IFN-gamma directly promotes CD8+ T cell expansion and simultaneously induces suppressive functions in CD11b+ cells that counter-regulate CD8+ T cell expansion, promote contraction, and limit memory formation. Thus, innate immune cells contribute to the IFN-gamma-dependent regulation of Ag-specific CD8+ T cell homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号