共查询到20条相似文献,搜索用时 26 毫秒
1.
1-Deoxy-D-xylulose 5-phosphate synthase, the gene product of open reading frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus 下载免费PDF全文
In eubacteria, green algae, and plant chloroplasts, isopentenyl diphosphate, a key intermediate in the biosynthesis of isoprenoids, is synthesized by the methylerythritol phosphate pathway. The five carbons of the basic isoprenoid unit are assembled by joining pyruvate and D-glyceraldehyde 3-phosphate. The reaction is catalyzed by the thiamine diphosphate-dependent enzyme 1-deoxy-D-xylulose 5-phosphate synthase. In Rhodobacter capsulatus, two open reading frames (ORFs) carry the genes that encode 1-deoxy-D-xylulose 5-phosphate synthase. ORF 2816 is located in the photosynthesis-related gene cluster, along with most of the genes required for synthesis of the photosynthetic machinery of the bacterium, whereas ORF 2895 is located elsewhere in the genome. The proteins encoded by ORF 2816 and ORF 2895, 1-deoxy-D-xylulose 5-phosphate synthase A and B, containing a His(6) tag, were synthesized in Escherichia coli and purified to greater than 95% homogeneity in two steps. 1-Deoxy-D-xylulose 5-phosphate synthase A appears to be a homodimer with 68 kDa subunits. A new assay was developed, and the following steady-state kinetic constants were determined for 1-deoxy-D-xylulose 5-phosphate synthase A and B: K(m)(pyruvate) = 0.61 and 3.0 mM, K(m)(D-glyceraldehyde 3-phosphate) = 150 and 120 microM, and V(max) = 1.9 and 1.4 micromol/min/mg in 200 mM sodium citrate (pH 7.4). The ORF encoding 1-deoxy-D-xylulose 5-phosphate synthase B complemented the disrupted essential dxs gene in E. coli strain FH11. 相似文献
2.
Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase. 下载免费PDF全文
Isopentenyl diphosphate (IPP) isomerase catalyzes an essential activation step in the isoprenoid biosynthetic pathway. A database search based on probes from the highly conserved regions in three eukaryotic IPP isomerases revealed substantial similarity with ORF176 in the photosynthesis gene cluster in Rhodobacter capsulatus. The open reading frame was cloned into an Escherichia coli expression vector. The encoded 20-kDa protein, which was purified in two steps by ion exchange and hydrophobic interaction chromatography, catalyzed the interconversion of IPP and dimethylallyl diphosphate. Thus, the photosynthesis gene cluster encodes all of the enzymes required to incorporate IPP into the ultimate carotenoid and bacteriochlorophyll metabolites in R. capsulatus. More recent searches uncovered additional putative open reading frames for IPP isomerase in seed-bearing plants (Oryza sativa, Arabadopsis thaliana, and Clarkia breweri), a worm (Caenorhabiditis elegans), and another eubacterium (Escherichia coli). The R. capsulatus enzyme is the smallest of the IPP isomerases to be identified thus far and may consist mostly of a fundamental catalytic core for the enzyme. 相似文献
3.
4.
5.
Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. 总被引:4,自引:4,他引:4 下载免费PDF全文
The alternative, heterometal-free nitrogenase of Rhodobacter capsulatus is repressed by traces of molybdenum in the medium. Strains carrying mutations located downstream of nifB copy II were able to express the alternative nitrogenase even in the presence of high molybdate concentrations. DNA sequence analysis of a 5.5-kb fragment of this region revealed six open reading frames, designated modABCD, mopA, and mopB. The gene products of modB and modC are homologous to ChlJ and ChlD of Escherichia coli and represent an integral membrane protein and an ATP-binding protein typical of high-affinity transport systems, respectively. ModA and ModD exhibited no homology to known proteins, but a leader peptide characteristic of proteins cleaved during export to the periplasm is present in ModA, indicating that ModA might be a periplasmic molybdate-binding protein. The MopA and MopB proteins showed a high degree of amino acid sequence homology to each other. Both proteins contained a tandem repeat of a domain encompassing 70 amino acid residues, which had significant sequence similarity to low-molecular-weight molybdenum-pterin-binding proteins from Clostridium pasteurianum. Compared with that for the parental nifHDK deletion strain, the molybdenum concentrations necessary to repress the alternative nitrogenase were increased 4-fold in a modD mutant and 500-fold in modA, modB, and modC mutants. No significant inhibition of the heterometal-free nitrogenase by molybdate was observed for mopA mopB double mutants. The uptake of molybdenum by mod and mop mutants was estimated by measuring the activity of the conventional molybdenum-containing nitrogenase. Molybdenum transport was not affected in a mopA mopB double mutant, whereas strains carrying lesions in the binding-protein-dependent transport system were impaired in molybdenum uptake. 相似文献
6.
Based on deduced amino-acid sequence similarities to class-I photolyases, the open reading frame ORF90 was identified from the genome sequence of Rhodobacter capsulatus SB1003. Photoreactivation activity is not detectable in an ORF90 deletion mutant of R. capsulatus SB1003. The phenotype of R. capsulatus wild-type cells was restored by plasmid borne ORF90 of R. capsulatus DeltaORF90. Furthermore, we detected an ORF90-related CPD-specific photoreactivation activity in R. capsulatus cell extracts. The results show that the gene product of ORF90 is involved in photoreactivation and encodes a class-I cyclobutane pyrimidine dimer photolyase. 相似文献
7.
Two nonoverlapping domains on the Norwalk virus open reading frame 3 (ORF3) protein are involved in the formation of the phosphorylated 35K protein and in ORF3-capsid protein interactions 总被引:14,自引:0,他引:14 下载免费PDF全文
Expression of the Norwalk virus open reading frame 3 (ORF3) in Spodoptera frugiperda (Sf9) cells yields two major forms, the predicted 23,000-molecular-weight (23K) form and a larger 35K form. The 23K form is able to interact with the ORF2 capsid protein and be incorporated into virus-like particles. In this paper, we provide mass spectrometry evidence that both the 23K and 35K forms are composed only of the ORF3 protein. Two-dimensional gel electrophoresis and phosphatase treatment showed that the 35K form results solely from phosphorylation and that the 35K band is composed of several different phosphorylated forms with distinct isoelectric points. Furthermore, we analyzed deletion and point mutants of the ORF3 protein. Mutants that lacked the C-terminal 33 amino acids (ORF3(1-179), ORF3(1-152), and ORF3(1-107)) no longer produced the 35K form. An N-terminal truncation mutant (ORF3(51-212)) and a site-directed mutant (ORF3(T201V)) were capable of producing the larger form, which was converted to the smaller form by treatment with protein phosphatase. These data suggest that the region between amino acids 180 and 212 is phosphorylated, and mass spectrometry showed that amino acids Arg196 to Arg211 are not phosphorylated; thus, phosphorylation of the serine-threonine-rich region from Thr181 to Ser193 must be involved in the generation of the 35K form. Studies of the interaction between the ORF2 protein and full-length and mutated ORF3 proteins showed that the full-length ORF3 protein (ORF3(FL)), ORF3(1-179), ORF3(1-152), and ORF3(51-212) interacted with the ORF2 protein, while an ORF3(1-107) protein did not. These results indicate that the region of the ORF3 protein between amino acids 108 and 152 is responsible for interaction with the ORF2 protein. 相似文献
8.
Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice 下载免费PDF全文
A reverse genetic system was recently established for the coronavirus mouse hepatitis virus strain A59 (MHV-A59), in which cDNA fragments of the RNA genome are assembled in vitro into a full-length genome cDNA, followed by electroporation of in vitro-transcribed genome RNA into cells with recovery of viable virus. The "in vitro-assembled" wild-type MHV-A59 virus (icMHV-A59) demonstrated replication identical to laboratory strains of MHV-A59 in tissue culture; however, icMHV-A59 was avirulent following intracranial inoculation of C57BL/6 mice. Sequencing of the cloned genome cDNA fragments identified two single-nucleotide mutations in cloned genome fragment F, encoding a Tyr6398His substitution in open reading frame (ORF) 1b p59-nsp14 and a Leu94Pro substitution in the ORF 2a 30-kDa protein. The mutations were repaired individually and together in recombinant viruses, all of which demonstrated wild-type replication in tissue culture. Following intracranial inoculation of mice, the viruses encoding Tyr6398His/Leu94Pro substitutions and the Tyr6398His substitution alone demonstrated log10 50% lethal dose (LD50) values too great to be measured. The Leu94Pro mutant virus had reduced but measurable log10 LD5), and the "corrected" Tyr6398/Leu94 virus had a log10 LD50 identical to wild-type MHV-A59. The experiments have defined residues in ORF 1b and ORF 2a that attenuate virus replication and virulence in mice but do not affect in vitro replication. The results suggest that these proteins serve roles in pathogenesis or virus survival in vivo distinct from functions in virus replication. The study also demonstrates the usefulness of the reverse genetic system to confirm the role of residues or proteins in coronavirus replication and pathogenesis. 相似文献
9.
Purification, characterization and nucleotide sequence of the periplasmic C4-dicarboxylate-binding protein (DctP) from Rhodobacter capsulatus 总被引:8,自引:0,他引:8
A periplasmic binding protein essential for high-affinity transport of the C4-dicarboxylates malate, succinate and fumarate across the cytoplasmic membrane of the purple photosynthetic bacterium Rhodobacter capsulatus has been purified to homogeneity and some of its ligand-binding properties characterized. The protein was not produced in a Tn5 insertion mutant unable to transport C4-dicarboxylates under aerobic conditions in the dark. Wild-type DNA corresponding to the location of the transposon insertion site was subcloned and a 1.5 kb section sequenced. A complete open reading frame of 999 bp was identified that encoded a 333-residue protein (DctP) with a molecular weight of 36,128 with a 26-residue amino-terminal signal peptide. The identify of this protein with the purified dicarboxylate-binding protein and the position of the predicted signal peptide cleavage site was confirmed by N-terminal sequencing. No significant homology with other proteins was detected in database searches. A GC-rich region of dyad symmetry was located 7 bp downstream of the dctP translational stop codon. This structure may be of significance in regulating the relative abundance of DctP and other dct gene products which comprise the high-affinity dicarboxylate transport system in this bacterium. 相似文献
10.
Yang Yang Ling Zhang Heyuan Geng Yao Deng Baoying Huang Yin Guo Zhengdong Zhao Wenjie Tan 《蛋白质与细胞》2013,4(12):951
The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic respiratory virus with pathogenic mechanisms that may be driven by innate immune pathways. The goal of this study is to characterize the expression of the structural (S, E, M, N) and accessory (ORF 3, ORF 4a, ORF 4b, ORF 5) proteins of MERS-CoV and to determine whether any of these proteins acts as an interferon antagonist. Individual structural and accessory protein-coding plasmids with an N-terminal HA tag were constructed and transiently transfected into cells, and their native expression and subcellular localization were assessed using Wes tern blotting and indirect immunofluorescence. While ORF 4b demonstrated majorly nuclear localization, all of the other proteins demonstrated cytoplasmic localization. In addition, for the first time, our experiments revealed that the M, ORF 4a, ORF 4b, and ORF 5 proteins are potent interferon antagonists. Further examination revealed that the ORF 4a protein of MERS-CoV has the most potential to counteract the antiviral effects of IFN via the inhibition of both the interferon production (IFN-β promoter activity, IRF-3/7 and NF-κB activation) and ISRE promoter element signaling pathways. Together, our results provide new insights into the function and pathogenic role of the structural and accessory proteins of MERS-CoV. 相似文献
11.
Purification and in vitro phosphorylation of HupT, a regulatory protein controlling hydrogenase gene expression in Rhodobacter capsulatus. 下载免费PDF全文
The HupT protein of Rhodobacter capsulatus, involved in negative regulation of hydrogenase gene expression, is predicted to be a histidine kinase on the basis of sequence comparisons. The protein was overproduced in Escherichia coli, purified to homogeneity, and demonstrated to autophosphorylate in vitro in the presence of [gamma-32P]ATP. An H217N hupt mutant was constructed, and the mutant protein was shown to have lost kinase activity. This result, and the fact that the phosphoryl group in phosphorylated HupT appeared to be bound to an N atom, support the suggestion from sequence comparisons that HupT is a histidine kinase, which can autophosphorylate on the His217 residue. 相似文献
12.
Maeda H Nagata S Wolfgang CD Bratthauer GL Bera TK Pastan I 《The Journal of biological chemistry》2004,279(23):24561-24568
We previously showed that mRNA encoding TARP (T cell receptor gamma chain alternate reading frame protein) is exclusively expressed in the prostate in males and is up-regulated by androgen in LNCaP cells, an androgen-sensitive prostate cancer cell line. We have now developed an anti-TARP monoclonal antibody named TP1, and show that TARP protein is up-regulated by androgen in both LNCaP and MDA-PCa-2b cells. We used TP1 to determine the subcellular localization of TARP by Western blotting following subcellular fractionation and immunocytochemistry. Both methods showed that TARP is localized in the mitochondria of LNCaP cells, MDA-PCa-2b cells, and PC-3 cells transfected with a TARP-expressing plasmid. We also transfected a plasmid encoding TARP fused to green fluorescent protein into LNCaP, MDA-Pca-2b, and PC-3 cells and confirmed its specific mitochondrial localization in living cells. Fractionation of mitochondria shows that TARP is located in the outer mitochondrial membrane. Immunohistochemistry using a human prostate cancer sample showed that TP1 reacted in a dot-like cytoplasmic pattern consistent with the presence of TARP in mitochondria. These data demonstrate that TARP is the first prostate-specific protein localizing in mitochondria and indicate that TARP, an androgen-regulated protein, may act on mitochondria to carry out its biological functions. 相似文献
13.
Open reading frame 5 of porcine reproductive and respiratory syndrome virus as a cause of virus-induced apoptosis. 总被引:22,自引:3,他引:22 下载免费PDF全文
P Surez M Díaz-Guerra C Prieto M Esteban J M Castro A Nieto J Ortín 《Journal of virology》1996,70(5):2876-2882
The gene product of open reading frame 5 (p25) of porcine reproductive and respiratory syndrome (PRRS) virus has been expressed by coinfection of culture cells with vaccinia virus expressing the T7 RNA polymerase and a recombinant vaccinia virus encoding the open reading frame 5 gene under the T7 promoter and the encephalomyocarditis virus internal ribosome entry site. In spite of the reported efficiency of the expression system, very poor accumulation of p25 protein was observed and a strong cytotoxicity was produced in the doubly infected cells. This cell toxicity was shown to occur by induction of apoptosis, as indicated by nucleosome ladder formation, chromatin condensation, and rRNA degradation. Apoptosis induction was also observed after infection of cultured cells with an adapted PRRS virus strain and after infection of swine macrophage cells with a PRRS virus field strain. Contrary to the observations made for other cases of virus-induced apoptosis, we could not prevent p25 protein-induced apoptosis by using a cell line permanently expressing Bcl-2 protein. 相似文献
14.
The kinetics of ligand binding to the periplasmic C4-dicarboxylate binding protein (DctP) from Rhodobacter capsulatus were investigated by exploiting the changes in the intrinsic fluorescence of the protein upon binding ligands. Steady state measurements have shown that L-malate, succinate, and fumarate are all bound with sub-micromolar Kd values, whereas D-malate is bound 2 orders of magnitude more weakly. Stopped-flow studies have revealed that the binding process involves at least three steps. In the absence of ligand, the protein is in equilibrium between an essentially nonbinding form, BP1, and the binding form, BP2. Ligands bind to the BP2 form, shifting the equilibrium toward the BP2-L conformation, and also inducing a further isomerization of the protein, to the BP3-L form. The kinetic properties of the four different conformational states of the DctP protein identified in this study would be consistent with their identification as the closed-conformation, the open-conformation, an open-liganded conformation, and a closed-liganded conformation. The latter three states have been identified by x-ray crystallographic studies of binding proteins, but no kinetic or structural data have been presented previously to support the possibility of a closed but unliganded conformation. 相似文献
15.
Nucleotide sequence of the fruA gene, encoding the fructose permease of the Rhodobacter capsulatus phosphotransferase system, and analyses of the deduced protein sequence. 总被引:5,自引:4,他引:5 下载免费PDF全文
The nucleotide sequence of the fruA gene, the terminal gene in the fructose operon of Rhodobacter capsulatus, is reported. This gene codes for the fructose permease (molecular weight, 58,575; 578 aminoacyl residues), the fructose enzyme II (IIFru) of the phosphoenolpyruvate-dependent phosphotransferase system. The deduced aminoacyl sequence of the encoded gene product was found to be 55% identical throughout most of its length with the fructose enzyme II of Escherichia coli, with some regions strongly conserved and others weakly conserved. Sequence comparisons revealed that the first 100 aminoacyl residues of both enzymes II were homologous to the second 100 residues, suggesting that an intragenic duplication of about 300 nucleotides had occurred during the evolution of IIFru prior to divergence of the E. coli and R. capsulatus genes. The protein contains only two cysteyl residues, and only one of these residues is conserved between the two proteins. This residue is therefore presumed to provide the active-site thiol group which may serve as the phosphorylation site. IIFru was found to exhibit regions of homology with sequenced enzymes II from other bacteria, including those specific for sucrose, beta-glucosides, mannitol, glucose, N-acetylglucosamine, and lactose. The degree of evolutionary divergence differed for different parts of the proteins, with certain transmembrane segments exhibiting high degrees of conservation. The hydrophobic domain of IIFru was also found to be similar to several uniport and antiport transporters of animals, including the human and mouse insulin-responsive glucose facilitators. These observations suggest that the mechanism of transmembrane transport may be similar for permeases catalyzing group translocation and facilitated diffusion. 相似文献
16.
Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists 下载免费PDF全文
Kopecky-Bromberg SA Martínez-Sobrido L Frieman M Baric RA Palese P 《Journal of virology》2007,81(2):548-557
The severe acute respiratory syndrome coronavirus (SARS-CoV) is highly pathogenic in humans, with a death rate near 10%. This high pathogenicity suggests that SARS-CoV has developed mechanisms to overcome the host innate immune response. It has now been determined that SARS-CoV open reading frame (ORF) 3b, ORF 6, and N proteins antagonize interferon, a key component of the innate immune response. All three proteins inhibit the expression of beta interferon (IFN-beta), and further examination revealed that these SARS-CoV proteins inhibit a key protein necessary for the expression of IFN-beta, IRF-3. N protein dramatically inhibited expression from an NF-kappaB-responsive promoter. All three proteins were able to inhibit expression from an interferon-stimulated response element (ISRE) promoter after infection with Sendai virus, while only ORF 3b and ORF 6 proteins were able to inhibit expression from the ISRE promoter after treatment with interferon. This indicates that N protein inhibits only the synthesis of interferon, while ORF 3b and ORF 6 proteins inhibit both interferon synthesis and signaling. ORF 6 protein, but not ORF 3b or N protein, inhibited nuclear translocation but not phosphorylation of STAT1. Thus, it appears that these three interferon antagonists of SARS-CoV inhibit the interferon response by different mechanisms. 相似文献
17.
18.
Sequences 5' of the first upstream open reading frame in GCN4 mRNA are required for efficient translational reinitiation. 总被引:1,自引:0,他引:1 下载免费PDF全文
Translation of yeast GCN4 mRNA occurs by a reinitiation mechanism that is modulated by amino acid levels in the cell. Ribosomes which translate the first of four upstream open reading frames (uORFs) in the mRNA leader resume scanning and can reinitiate downstream. Under non-starvation conditions reinitiation occurs at one of the remaining three uORFs and GCN4 is repressed. Under starvation conditions, in contrast, ribosomes bypass the uORFs and reinitiate at GCN4 instead. The high frequency of reinitiation following uORF1 translation depends on an adequate distance to the next start codon and particular sequences surrounding the uORF1 stop codon. We present evidence that sequences 5' to uORF1 also strongly enhance reinitiation. First, reinitiation was severely inhibited when uORF1 was transplanted into the position of uORF4, even though the native sequence environment of the uORF1 stop codon was maintained, and this effect could not be accounted for by the decreased uORF1-GCN4 spacing. Second, insertions and deletions in the leader preceding uORF1 greatly reduced reinitiation at GCN4. Sequences 5' to uORF1 may influence the probability of ribosome release following peptide termination at uORF1. Alternatively, they may facilitate rebinding of an initiation factor required for reinitiation prior to resumption of the scanning process. 相似文献
19.
Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells 下载免费PDF全文
Kemble GW Annunziato P Lungu O Winter RE Cha TA Silverstein SJ Spaete RR 《Journal of virology》2000,74(23):11311-11321
We report the discovery of a novel gene in the varicella-zoster virus (VZV) genome, designated open reading frame (ORF) S/L. This gene, located at the left end of the prototype VZV genome isomer, expresses a polyadenylated mRNA containing a splice within the 3' untranslated region in virus-infected cells. Sequence analysis reveals significant differences between the ORF S/Ls of wild-type and attenuated strains of VZV. Antisera raised to a bacterially expressed portion of ORF S/L reacted specifically with a 21-kDa protein synthesized in cells infected with a VZV clinical isolate and with the original vaccine strain of VZV (Oka-ATCC). Cells infected with other VZV strains, including a wild-type strain that has been extensively passaged in tissue culture and commercially produced vaccine strains of Oka, synthesize a family of proteins ranging in size from 21 to 30 kDa that react with the anti-ORF S/L antiserum. MeWO cells infected with recombinant VZV harboring mutations in the C-terminal region of the ORF S/L gene lost adherence to the stratum and adjacent cells, resulting in an altered plaque morphology. Immunohistochemical analysis of VZV-infected cells demonstrated that ORF S/L protein localizes to the cytoplasm. ORF S/L protein was present in skin lesions of individuals with primary or reactivated infection and in the neurons of a dorsal root ganglion during virus reactivation. 相似文献
20.
Mohamed Fahmy Gad El-Rab S Abdel-Fattah Shoreit A Fukumori Y 《Bioscience, biotechnology, and biochemistry》2006,70(10):2394-2402
The effects of cadmium stress on growth, morphology, and protein expression were investigated in Rhodobacter capsulatus B10 using two-dimensional polyacrylamide gel electrophoresis and a scanning electron microscope with an energy dispersive X-ray spectrometer. The bacterium grew in the presence of 150 microM CdCl2 and highly induced heat-shock proteins (GroEL and Dnak), S-adenosylmethionine synthetase, ribosomal protein S1, aspartate aminotransferase, and phosphoglycerate kinase. Interestingly, the ribosomal protein S1 was proportionally expressed as the amount of cadmium in the medium, suggesting that S1 may be required for the repair of cadmium-mediated cellular damage. On the other hand, we identified five cadmium-binding proteins: 2-methylcitrate dehydratase, phosphate periplasmic binding protein, inosine-5'-monophosphate dehydrogenase/guanosine-5'-monophosphate reductase, inositol monophosphatase, and lytic murein transglycosylase. The cadmium-treated cells had a filamentous structure and contained less phosphorous than the untreated cells. We propose that these characteristics of the cadmium-treated cells may be due to the inactivation of the phosphate periplasmic binding protein and lytic murein transglycosylase by cadmium. 相似文献