首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An assembly intermediate of a small, non-enveloped RNA virus has been discovered that exhibits striking differences from the mature virion. Virus-like particles (VLPs) of Nudaurelia capensis omega virus (NomegaV), a T=4 icosahedral virus infecting Lepidoptera insects, were produced in insect cells using a baculovirus vector expressing the coat protein. A procapsid form was discovered when NomegaV VLPs were purified at neutral pH conditions. These VLPs were fragile and did not undergo the autoproteolytic maturation that occurs in the infectious virus. Electron cryo-microscopy (cryoEM) and image analysis showed that, compared with the native virion, the VLPs were 16% larger in diameter, more rounded, porous, and contained an additional internal domain. Upon lowering the pH to 5.0, the VLP capsids became structurally indistinguishable from the authentic virion and the subunits autoproteolyzed. The NomegaV protein subunit coordinates, which were previously determined crystallographically, were modelled into the 28 A resolution cryoEM map of the procapsid. The resulting pseudo-atomic model of the NomegaV procapsid demonstrated the large rearrangements in quaternary and tertiary structure needed for the maturation of the VLPs and presumably of the virus. Based on this model, we propose that electrostatically driven rearrangements of interior helical regions are responsible for the large conformational change. These results are surprising because large structural rearrangements have not been found in the maturation of any other small RNA viruses. However, similarities of this conformational change to the maturational processes of more complex DNA viruses (e.g. bacteriophages and herpesvirus) and to the swelling of simple plant viruses suggest that structural changes in icosahedral viruses, which are integral to their function, have similar strategies and perhaps mechanisms.  相似文献   

2.
The assembly and maturation of the coat protein of a T=4, nonenveloped, single-stranded RNA virus, Nudaurelia capensis omega virus (N omega V), was examined by using a recombinant baculovirus expression system. At pH 7.6, the coat protein assembles into a stable particle called the procapsid, which is 450 A in diameter and porous. Lowering the pH to 5.0 leads to a concerted reorganization of the subunits into a 410-A-diameter particle called the capsid, which has no obvious pores. This conformational change is rapid but reversible until slow, autoproteolytic cleavage occurs in at least 15% of the subunits at the lower pH. In this report, we show that expression of subunits with replacement of Asn-570, which is at the cleavage site, with Thr results in assembly of particles with expected morphology but that are cleavage defective. The conformational change from procapsid to capsid is reversible in N570T mutant virus-like particles, in contrast to wild-type particles, which are locked into the capsid conformation after cleavage of the coat protein. The reexpanded procapsids display slightly different properties than the original procapsid, suggesting hysteretic effects. Because of the stability of the procapsid under near-neutral conditions and the reversible properties of the cleavage-defective mutant, N omega V provides an excellent model for the study of pH-induced conformational changes in macromolecular assemblies. Here, we identify the relationship between cleavage and the conformational change and propose a pH-dependent helix-coil transition that may be responsible for the structural rearrangement in N omega V.  相似文献   

3.
Akahata W  Nabel GJ 《Journal of virology》2012,86(16):8879-8883
Virus-like particles (VLPs) can be generated from Chikungunya virus (CHIKV), but different strains yield variable quantities of particles. Here, we define the genetic basis for these differences and show that amino acid 234 in E2 substantially affects VLP production. This site is located within the acid-sensitive region (ASR) known to initiate a major conformational change in E1/E2. Selected other mutations in the ASR, or changes in pH, also increased VLP yield. These results demonstrate that the ASR of E2 plays an important role in regulating particle generation.  相似文献   

4.
Double-stranded DNA (dsDNA) viruses such as herpesviruses and bacteriophages infect by delivering their genetic material into cells, a task mediated by a DNA channel called "portal protein." We have used electron cryomicroscopy to determine the structure of bacteriophage P22 portal protein in both the procapsid and mature capsid conformations. We find that, just as the viral capsid undergoes major conformational changes during virus maturation, the portal protein switches conformation from a procapsid to a mature phage state upon binding of gp4, the factor that initiates tail assembly. This dramatic conformational change traverses the entire length of the DNA channel, from the outside of the virus to the inner shell, and erects a large dome domain directly above the DNA channel that binds dsDNA inside the capsid. We hypothesize that this conformational change primes dsDNA for injection and directly couples completion of virus morphogenesis to a new cycle of infection.  相似文献   

5.
Maturation of the bacteriophage HK97 capsid requires a large conformational change of the virus capsid. Experimental studies have identified several intermediates along this maturation pathway. To gain insights into the molecular mechanisms of capsid maturation, we examined the fluctuation dynamics of the procapsid and mature capsid using a residue-level computational approach. The most cooperative motions of the procapsid are found to be consistent with the observed change in configuration that takes place during maturation. A few dominant modes of motion are sufficient to describe the anisotropic expansion that accompanies maturation. Based upon these modes, maturation is proposed to occur via an overall expansion and reconfiguration of the capsid initiated by puckering of the pentamers, followed by flattening and crosslinking of the hexameric subunits, and finally crosslinking of the pentameric subunits. The highly mobile E loops are stabilized by anchoring to highly stable residues belonging to neighboring subunits.  相似文献   

6.
Bacteriophage capsids are a striking example of a robust yet dynamic genome delivery vehicle. Like most phages, HK97 undergoes a conformational maturation that converts a metastable Prohead into the mature Head state. In the case of HK97, maturation involves a significant expansion of the capsid and concomitant cross-linking of capsid subunits. The final state, termed Head-II, is a 600 angstroms diameter icosahedral structure with catenated subunit rings. Cryo-EM, small angle X-ray scattering (SAXS), and biochemical assays were used previously to characterize the initial (Prohead-II) and final states (Head-II) as well as four maturation intermediates. Here we extend the characterization of the acid-induced expansion of HK97 in vitro by monitoring changes in intrinsic fluorescence, circular dichroism (CD), and SAXS. We find that the greatest changes in all observables occur at an early stage of maturation. Upon acidification, fluorescence emissions from HK97 exhibit a blueshift and decrease in intensity. These spectral changes reveal two kinetic phases of the expansion reaction. The early phase exhibits sensitivity to pH, increasing in rate nearly 200-fold when acidification pH is lowered from 4.5 to 3.9. The second, slower phase reported by fluorescence is relatively insensitive to pH. Time-resolved SAXS experiments report an increase in overall particle dimension that parallels the fluorescence changes for the early phase. Native agarose gel assays corroborated this finding. By contrast, probes of CD at far-UV indicate that secondary structural changes precede the early expansion phase reported by SAXS and fluorescence. Based on the crystallographic structure of Head-II and the pseudo-atomic model of Prohead-II, we interpret these changes as reflecting the conversion of subunit N-terminal arms (N-arm) from unstructured polypeptide to the mixture of beta-strand and beta-turn observed in the Head-II crystal structure. Refolding of the N-arm may thus represent the conformational trigger that initiates the irreversible expansion of the phage capsid.  相似文献   

7.
8.
Cell surface heparan sulfate proteoglycans (HSPGs) serve as primary attachment receptors for human papillomaviruses (HPVs). To demonstrate that a biologically functional HPV-receptor interaction is restricted to a specific subset of HSPGs, we first explored the role of HSPG glucosaminoglycan side chain modifications. We demonstrate that HSPG O sulfation is essential for HPV binding and infection, whereas de-N-sulfated heparin interfered with VLP binding but not with HPV pseudoinfection. This points to differences in VLP-HSPG and pseudovirion-HSPG interactions. Interestingly, internalization kinetics of VLPs and pseudovirions, as measured by fluorescence-activated cell sorting analysis, also differ significantly with approximate half times of 3.5 and 7.5 h, respectively. These data suggest that differences in HSPG binding significantly influence postbinding events. We also present evidence that pseudovirions undergo a conformational change after cell attachment. A monoclonal antibody (H33.J3), which displays negligible effectiveness in preattachment neutralization assays, efficiently neutralizes cell-bound virions. However, no difference in H33.J3 binding to pseudovirions and VLPs was observed in enzyme-linked immunosorbent assay and virus capture assays. In contrast to antibody H33.B6, which displays equal efficiencies in pre- and postattachment neutralization assays, H33.J3 does not block VLP binding to heparin, demonstrating that it interferes with steps subsequent to virus binding. Our data strongly suggest that H33.J3 recognizes a conformation-dependent epitope in capsid protein L1, which undergoes a structural change after cell attachment.  相似文献   

9.
The capsid of the herpes simplex virus initially assembles as a procapsid that matures through a massive conformational change of its 182 MDa surface shell. This transition, which stabilizes the fragile procapsid, is facilitated by the viral protease that releases the interaction between the shell and the underlying scaffold; however, protease-deficient procapsids mature slowly in vitro. To study procapsid maturation as a time-resolved process, we monitored this reaction by cryo-electron microscopy (cryo-EM). The resulting images were sorted into 17 distinct classes, and three-dimensional density maps were calculated for each. When arranged in a chronological series, these maps yielded molecular movies of procapsid maturation. A single major switching event takes place at stages 8-9, preceded by relatively subtle adjustments in the pattern of interactions and followed by similarly small 'aftershocks'. The primary mechanism underlying maturation is relative rotations of domains of VP5, the major capsid protein.  相似文献   

10.
Nudaurelia capensis ω virus-like particles have been characterized as a 480-Å procapsid and a 410-Å capsid, both with T=4 quasisymmetry. Procapsids transition to capsids when pH is lowered from 7.6 to 5.0. Capsids undergo autoproteolysis at residue 570, generating the 74-residue C-terminal polypeptide that remains with the particle. Here we show that the particle size becomes smaller under conditions between pH 6.8 and 6.0 without activating cleavage and that the particle remains at an intermediate size when the pH is carefully maintained. At pH 5.8, cleavage is very slow, becoming detectable only after 9 h. The optimum pH for cleavage is 5.0 (half-life, ~30 min), with a significant reduction in the cleavage rate at pH values below 5. We also show that lowering the pH is required only to make the virus particles compact and to presumably form the active site for autoproteolysis but not for the chemistry of cleavage. The cleavage reaction proceeds at pH 7.0 after ~10% of the subunits cleave at pH 5.0. Employing the virion crystal structure for reference, we investigated the role of electrostatic repulsion of acidic residues in the pH-dependent large conformational changes. Three mutations of Glu to Gln that formed procapsids showed three different phenotypes on maturation. One, close to the threefold and quasithreefold symmetry axes and far from the cleavage site, did not mature at pH 5, and electron cryomicroscopy reconstruction showed that it was intermediate in size between those of the procapsid and capsid; one near the cleavage site exhibited a wild-type phenotype; and a third, far from the cleavage site, resulted in cleavage of 50% of the subunits after 4 h, suggesting quasiequivalent specificity of the mutation.  相似文献   

11.
Time-resolved small-angle X-ray and neutron scattering (SAXS and SANS) in solution were used to study the swelling reaction of TBSV upon chelation of its constituent calcium at mildly basic pH. SAXS intensities comprise contribution from the protein capsid and the RNA moiety, while neutron scattering, recorded in 72% D2O, is essentially due to the protein capsid. Cryo-electron micrographs of compact and swollen virus were used to produce 3D reconstructions of the initial and final conformations of the virus at a resolution of 13 A and 19 A, respectively. While compact particles appear to be very homogeneous in size, solutions of swollen particles exhibit some size heterogeneity. A procedure has been developed to compute the SAXS pattern from the 3D reconstruction for comparison with experimental data. Cryo-electron microscopy thereby provides an invaluable starting (and ending) point for the analysis of the time-resolved swelling process using the scattering data.  相似文献   

12.
Virus-like particles (VLPs) expressed intracellularly by the yeast S. cerevisiae have helped set the framework of a wide range of biologicals, particularly as carriers for viral antigens. This article investigates the use of dynamic light scattering (DLS) for the rapid evaluation of the concentration and purity of VLPs to aid the complex purification strategy. Development of the assay was performed in a high background process stream (yeast homogenate) and involved a change in the signal proportional to the VLP concentration by addition of antibodies that bind on the VLP surface and detection of that size change by DLS. Overall, the assay was found to provide a significant improvement of rapid monitoring alternatives for VLPs, exhibiting good sensitivity and speed of measurement. Data are given for the use of the DLS-based assay for optimization of VLP release during a yeast cell disruption treatment.  相似文献   

13.
For influenza virus, we developed an efficient, noncytotoxic, plasmid-based virus-like particle (VLP) system to reflect authentic virus particles. This system was characterized biochemically by analysis of VLP protein composition, morphologically by electron microscopy, and functionally with a VLP infectivity assay. The VLP system was used to address the identity of the minimal set of viral proteins required for budding. Combinations of viral proteins were expressed in cells, and the polypeptide composition of the particles released into the culture media was analyzed. Contrary to previous findings in which matrix (M1) protein was considered to be the driving force of budding because M1 was found to be released copiously into the culture medium when M1 was expressed by using the vaccinia virus T7 RNA polymerase-driven overexpression system, in our noncytotoxic VLP system M1 was not released efficiently into the culture medium. Additionally, hemagglutinin (HA), when treated with exogenous neuraminidase (NA) or coexpressed with viral NA, could be released from cells independently of M1. Incorporation of M1 into VLPs required HA expression, although when M1 was omitted from VLPs, particles with morphologies similar to those of wild-type VLPs or viruses were observed. Furthermore, when HA and NA cytoplasmic tail mutants were included in the VLPs, M1 failed to be efficiently incorporated into VLPs, consistent with a model in which the glycoproteins control virus budding by sorting to lipid raft microdomains and recruiting the internal viral core components. VLP formation also occurred independently of the function of Vps4 in the multivesicular body pathway, as dominant-negative Vps4 proteins failed to inhibit influenza VLP budding.  相似文献   

14.
Noroviruses are a major cause of epidemic acute nonbacterial gastroenteritis worldwide. Here we report our discovery that recombinant Norwalk virus virus-like particles (rNV VLPs) agglutinate red blood cells (RBCs). Since histo-blood group antigens are expressed on gut mucosa as well as RBCs, we used rNV VLP hemagglutination (HA) as a model system for studying NV attachment to cells in order to help identify a potential NV receptor(s). rNV VLP HA is dependent on low temperature (4 degrees C) and acidic pH. Of the 13 species of RBCs tested, rNV VLPs hemagglutinated only chimpanzee and human RBCs. The rNV VLPs hemagglutinated all human type O (11 of 11), A (9 of 9), and AB (4 of 4) RBCs; however, few human type B RBC samples (4 of 14) were hemagglutinated. HA with periodate- and neuraminidase-treated RBCs indicated that rNV VLP binding was carbohydrate dependent and did not require sialic acid. The rNV VLPs did not hemagglutinate Bombay RBCs (zero of seven) that lack H type 2 antigen, and an anti-H type 2 antibody inhibited rNV VLP HA of human type O RBCs. These data indicated that the H type 2 antigen functions as the rNV VLP HA receptor on human type O RBCs. The rNV VLP HA was also inhibited by rNV VLP-specific monoclonal antibody 8812, an antibody that inhibits VLP binding to Caco-2 cells. Convalescent-phase sera from NV-infected individuals showed increased rNV VLP HA inhibition titers compared to prechallenge sera. In carbohydrate binding assays, the rNV VLPs bound to synthetic Lewis d (Le(d)), Le(b), H type 2, and Le(y) antigens, and these antigens also inhibited rNV VLP HA of human type O RBCs. Overall, our results indicate that carbohydrate antigens in the gut are a previously unrecognized factor in NV pathogenesis.  相似文献   

15.
Virus-like particles (VLPs) from hepatitis B and human papillomaviruses have been successfully used as preventative vaccines against these infectious agents. These VLPs consist of a self-associating capsid polymer formed from a single structure protein and are devoid of viral DNA. Since virions from herpesviruses consist of a large number of molecules of viral and cellular origin, generating VLPs from a subset of these would be a particularly arduous task. Therefore, we have adopted an alternative strategy that consists of producing DNA-free defective virus particles in a cell line infected by a herpesvirus mutant incapable of packaging DNA. We previously reported that an Epstein-Barr virus (EBV) mutant devoid of the terminal repeats (ΔTR) that act as packaging signals in herpesviruses produces substantial amounts of VLPs and of light particles (LPs). However, ΔTR virions retained some infectious genomes, and although these mutants had lost their transforming abilities, this poses potential concerns for clinical applications. Therefore, we have constructed a series of mutants that lack proteins involved in maturation and assessed their ability to produce viral DNA-free VLP/LPs. Some of the introduced mutations were deleterious for capsid maturation and virus production. However, deletion of BFLF1/BFRF1A or of BBRF1 resulted in the production of DNA-free VLPs/LPs. The ΔBFLF1/BFRF1A viruses elicited a potent CD4+ T-cell response that was indistinguishable from the one obtained with wild-type controls. In summary, the defective particles produced by the ΔBFLF1/BFRF1A mutant fulfill the criteria of efficacy and safety expected from a preventative vaccine.  相似文献   

16.
In our previous study, we have observed that the isolated coat proteins (CP) of the Potyvirus Potato Virus A (PVA) virions exhibit an intrinsic tendency to self-associate into various multimeric forms containing some fractions of cross-β-structure. In this report, we studied the effect of solution conditions on the structure and dissociation of isolated PVA CP using a number of complementary physicochemical methods. Analysis of the structure of PVA CP in solution was performed by limited proteolysis with MALDI-TOF mass spectrometry analysis, transmission electron microscopy, intrinsic fluorescence spectroscopy, and synchrotron small angle X-ray scattering (SAXS). Overall structural characteristics of PVA CP obtained by combination of these methods and ab initio shape reconstruction by SAXS show that PVA CP forms large multi-subunit particles. We demonstrate that a mixture of compact virus-like particles (VLP) longer than 30 nm is assembled on dialysis of isolated CP into neutral pH buffer (at low ionic strength). Under conditions of high ionic strength (0.5 M NaCl) and high pH (pH 10.5), PVA dissociates into low compactness oval-shaped particles of approximately 30 subunits (20–30 nm). The results of limited trypsinolysis of these particles (enzyme/substrate ratio 1:100, 30 min) showed the existence of non-cleavable core-fragment, consisting of 137 amino acid residues. Trypsin treatment removed only a short N-terminal fragment in the intact virions. These particles are readily reassembled into regular VLPs by changing pH back to neutral. It is possible that these particles may represent some kind of intermediate in PVA assembly in vitro and in vivo.  相似文献   

17.
Infection of cells by human papillomaviruses (HPVs) associated with malignant genital lesions has not been studied because of the lack of an in vitro system and the unavailability of virions. We have now used virus-like particles (VLPs) of HPV type 33 to analyze the initial events in the interaction of the HPV capsid with cell lines. Binding of VLPs to HeLa cells was observed in biochemical assays and by immunofluorescence. VLP binding was inhibited by antisera raised against VLPs but not by monoclonal antibodies recognizing either L1 or L2 epitopes accessible on VLPs. Under saturating conditions, approximately 2 x 10(4) VLPs were bound per cell, with a dissociation constant of about 100 pM. VLPs composed of L1 alone bound as well as VLPs composed of both capsid proteins, indicating that L2 is not required for initial binding. VLPs dissociated into capsomers did not bind, demonstrating that intercapsomer contacts are required. Neither capsomers nor simian virus 40 virions competed with VLP binding. Uptake of VLPs by small and smooth endocytic vesicles was demonstrated by immunoelectron microscopy. Cellular binding of VLPs was sensitive to trypsin but not to sialidase, N-glycosidase, or octyl-beta-D-glycopyranoside treatment, suggesting that a cell surface protein is involved in the VLP binding. Cell lines originating from a variety of tissues and organisms as distantly related as insects and humans bound VLPs with similar efficiency and specificity. Therefore, the putative receptor mediating VLP attachment should be highly conserved and cannot be responsible for the species and tissue specificity of HPVs.  相似文献   

18.
Virus-like particles (VLPs) are shell-like viruses that lack virus-specific genetic materials. Many viral-structured proteins can assemble into VLPs, which mimic the overall structure of virus particles and can elicit strong immune responses in a host. Dengue viruses (DENVs), from the genus Flavivirus, are transmitted to humans through the bites of an infected Aedes mosquito. DENVs cause several diseases that prevailed mainly in tropical and subtropical areas. However, effective treatment measures and preventive strategies for dengue diseases are still lacking. The present minireview summarized the assembly and maturation of DENVs, the strategies and effective factors for dengue VLP construction, and the application of DENV VLPs.  相似文献   

19.
The pH-induced change in the structure and aggregation state of the PR-8 and X-31 strains of intact human influenza virus has been studied in vitro. Reducing the pH from 7.4 to 5.0 produces a large increase in the intensity of light scattered to low angles. A modest increase in the polydispersity parameter from cumulants fits to the dynamic light scattering correlograms accompanies the increase, as does a change in how that parameter varies with scattering angle. These trends imply that the virus particles are not uniform, even at pH 7.4, and tend to aggregate as pH is reduced. The scattering profiles (angular dependence of intensity) never match those of isolated, spherical particles of uniform size, but the deviations from that simple model remain modest at pH 7.4. At pH 5.0, scattering profiles calculated for aggregates of uniformly sized spheres come much closer to matching the experimental data than those computed for isolated particles. Although these observations indicate that acid-induced aggregation develops over a period of minutes to hours after acidification, a nearly instantaneous increase in hydrodynamic size is the first response of intact virus particles to lower pH.  相似文献   

20.
Currently virus-like particles (VLPs) are receiving much attention as platforms for next generation vaccines. However, chromatography-based methods for purifying VLPs remain challenging. Unlike traditional methods using density gradient for purifying VLPs, there have been few advances in explaining how assembled particles can be obtained by chromatography. Nervous necrosis virus (NNV) infects over 30 species of fish and leads to large economic losses in the farmed fish industry. Previously we developed a heparin chromatography-based method for purifying red-spotted grouper NNV (RGNNV) VLPs. However it is unclear how the assembled RGNNV VLPs are obtained by this method. It is known that assembly of NNV capsid proteins depends on calcium ions. In the present study, we found that the yield of purified RGNNV capsid protein in heparin chromatography was enhanced when calcium ions were present during binding. Also, it appears that the capsid protein of RGNNV undergoes partial disassembly and reassembly during sample preparation prior to heparin chromatography and the protein finally undergoes assembly during the chromatography. Therefore, our results indicated that heparin-binding affinity of RGNNV capsid protein is linked to its ability for VLP formation. The assembly of RGNNV capsid proteins recombinantly produced is a good model for explaining VLP formation during chromatography-based purification processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号