首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The Comstockiella chromosome system occurs in the armored scale insects and the closely allied palm scales. During development of the males, the paternal chromosome set becomes heterochromatic and remains so until spermatogenesis. With the exception of one chromosome, the heterochromatic complement loses its differential aspect during early spermatogenesis and its members pair with their euchromatic homologues There is but one division during which the two components of each bivalent separate to opposite poles. Both division products form sperm.One pair of chromosomes, the D pair, always shows differential behavior. The D pair usually does not form a bivalent. The heterochromatic homologue, DH, divides equationally and is eliminated by anaphase lagging or telophase ejection; its daughter halves remain as pycnotic residues during the early phases of spermiogenesis. The euchromatic homologue, DE, also divides equationally to contribute to both of the telophase nuclei. Compensation for the division of the DE univalent may occur during either the early or late phases of spermatogenesis.In some species the D pair is a fixed entity, analogous to the sex chromosomes in this regard. In other species, more than one pair may be elected to the D role, but only one at a time, and always the same one within each cyst.Taxonomic evidence indicates the Comstockiella system was derived from the lecanoid system, previously known from the work of the Schraders and others. In the lecanoid system, the paternally derived heterochromatic set divides equationally, along with the euchromatic set, during the first spermatogenic division. During the second spermatogenic division, the two sets are segregated from each other. The two euchromatic derivatives form sperm while the heterochromatic derivatives persist for a while as pycnotic residues. Both the lecanoid and Comstockiella systems occur in some species often in the same testis, but only one of the two systems within any one cyst.The discussion is devoted to an analysis of the mode of inheritance expected in the Comstockiella system and its evolutionary derivation. The Comstockiella system may have been derived in a step-by-step fashion from the lecanoid. The two systems differ by four processes which occur at spermatogenesis in the Comstockiella but not the lecanoid system; these are (1) deheterochromatization, (2) chromosome pairing, (3) compensation for the extra division of the DE chromosome, and (4) lagging or ejection to eliminate the DH chromosome.In addition, the residual genetic effects of the heterochromatic set may have undergone considerable change before the lecanoid system could evolve into a Comstockiella. Once the evolutionary step were otherwise possible, mechanistic features would aid and abet the emergence of the new system even though it lacked immediate selective advantage.The variable-D aspect of some examples of the Comstockiella system cannot be readily understood in terms of known examples of chromosome behavior; an admittedly highly speculative hypothesis is offered in an attempt to explain the situation.The diaspidid system, in which the paternal chromosomes are eliminated at late cleavage, is believed on taxonomic grounds to have stemmed from the Comstockiella, and forms the final stage of the four-step evolutionary sequence. Necessary changes for the derivation of the diaspidid system from the Comstockiella are discussed.This work was begun during the tenure of a Guggenheim Memorial Fellowship, 1956–57, and has subsequently been supported in part by grants from the National Science Foundation (G-4497 and G-9772).  相似文献   

2.
In the males of the olive scale insect, Parlatoria oleae (2n=8), the paternal set of chromosomes becomes heterochromatic during late cleavage or early blastula and remains so until spermatogenesis. Immediately before the onset of meiosis in the males one or more heterochromatic chromosomes disappear from each primary spermatocyte. At prophase four euchromatic and from one to three heterochromatic chromosomes are present in each cell. The disappearance of the heterochromatic chromosomes before meiosis could be due either to the dehetero-chromatization of the heterochromatic chromosomes and their subsequent pairing with their euchromatic homologues, or to the destruction of the heterochromatic chromosomes. — The alternative interpretations of spermatogenesis in P. oleae were tested by using chromosome aberrations, which had been induced in the heterochromatic set by paternal X-irradiation, as genetic markers in breeding tests of about 400 X1 males. Meiosis was examined in X1 males which showed conspicuous chromosomal rearrangements in their somatic cells. The absence of either heteromorphic chromosome pairs or multivalents at spermatogenesis and the failure of the X1 males to transmit any form of chromosome aberration induced by paternal irradiation is strong evidence that the heterochromatic chromosomes are destroyed in P. oleae. — The evolutionary relationships of the chromosome systems in the coccids are considered. Models are outlined for the derivation of a Comstockiella system involving chromosome destruction either from a lecanoid sequence or from a hypothetical Comstockiella sequence involving chromosome pairing. Problems concerning the control of chromosome destruction are discussed.From a dissertation submitted in partial fulfillment of the requirements of Doctor of Philosophy in Genetics.This work was supported by grant GB 8196 from the National Science Foundation to Dr. Spencer W. Brown, and by a National Institutes of Health Fellowship 1 F02 CA 44173-01 to the author from the National Cancer Institute.Dedicated to Dr. Sally Hughes-Schrader on the occasion of her seventy-fifth birthday.  相似文献   

3.
Uzi Nur 《Chromosoma》1965,17(2):104-120
Summary A modified Comstockiella chromosome system is described in the olive scale insect, Parlatoria oleae (Colvée), in which one, two, or three pairs of chromosomes may play the D role during spermatogenesis.In the male, one set of chromosomes became heteropycnotic in the embryo and remained so until spermatogenesis. Prior to the meiotic prophase, some of the heteropycnotic (H) chromosomes became euchromatic and the number of these chromosomes was cyst-specific. Those chromosomes of the H set which remained heteropycnotic are referred to as DH elements and these chromosomes together with their euchromatic (E) homologues are called the D pairs.During prophase and metaphase, 4 E and from one to three H elements were present. The number of H elements was considered to be an indication of the number of pairs which did not undergo pairing (D pairs). Thus in cysts with 1H and 4 E elements, 3 of the E elements were considered to be bivalents while 1 E and 1H elements were considered to be univalents.All the chromosomes at metaphase were of about the same size. This was taken to mean that the univalents replicated prior to meiosis while the bivalents did not.During anaphase, all the elements divided, with 4 E and from one to three DH derivatives going to each pole. In the stages which followed telophase, the DH derivatives segregated from the 4 E chromosomes. During spermiogenesis, only the nuclei with the E chromosomes formed functional sperm.On the basis of the analysis of pairing in the Comstockiella system and in other coccids, it is suggested that in the Comstockiella system, and probably also in other coccids, when pairing is not associated with chiasma formation, the homologues entering pairing are unreplicated chromosomes.The modified Comstockiella system found in P. oleae is called the multiple-D variant and is considered to be an intermediate between the lecanoid and the simple Comstockiella systems. The presence of such intermediates was predicted by Brown (1963 and 1964) who considered the evolution of the Comstockiella system to be the product of automatic frequency response.Postdoctoral Trainee in Biology, U.S. Public Health Service 1962–1963.  相似文献   

4.
Nur  Uzi 《Chromosoma》1967,22(2):151-163
Spermatogenesis is described in two eriococcid species and the observations are compared to those previously reported. In Gossyparia spuria the diploid chromosome number is 28 in both males and females. In the female all the chromosomes are euchromatic. In most male tissues 14 of the chromosomes are euchromatic (E) and 14 are heterochromatic (H). Prior to the first meiotic division in males the number of H chromosomes was reduced. During prophase I all the cells showed 14 E chromosomes and from 1 to over 9 H chromosomes. The range of chromosome numbers in metaphase I was similar to that in prophase I. All the chromosomes divided in anaphase I, and, following differential uncoiling at interkinesis, the E and H groups of chromosomes segregated from each other at anaphase II. Only the E groups formed sperm. The presence of a variable number of H chromosomes and a haploid number of E chromosomes in spermatogenesis suggested the presence of the multiple-D variant of the Comstockiella chromosome system. In this system some of the H chromosomes become euchromatic prior to prophase I of spermatogenesis and pair with their E homologues. All the remaining H chromosomes are thus univalents, while among the E elements, some are univalents and the rest are bivalents. The observed reduction in the number of H chromosomes in the first meiotic division which was previously attributed to pairing among the H chromosomes, is now interpreted to be the result of the return of some of the H chromosomes to a euchromatic state and to their subsequent pairing with their E homologues. Spermatogenesis in Eriococcus araucariae was similar to that of G. spuria except that the reduction in the number of H chromosomes was not as extensive. The chromosome systems of the two species are compared to those of other eriococcids and the differences are briefly discussed.Supported by grant GB1585 from the National Science Foundation, Washington, D. C.  相似文献   

5.
Uzi Nur 《Chromosoma》1982,85(4):519-530
In male coccids with the Comstockiella chromosome system, the set of chromosomes of paternal orgin becomes heterochromatic (H) during early cleavage. Just prior to prophase I of spermatogenesis, some of the H chromosomes are destroyed; the rest are eliminated following meiosis. In this report a Comstockiella sequence is described from Dactylopius opuntiae (2n=10) in which one chromosome pair is about three times longer than the others. During prophase I the number of small H chromosomes present varied from cyst to cyst, but the long H chromosome was present in every cyst. These observations provide the best evidence to date that in the Comstockiella system a particular chromosome may always escape destruction. An analysis of Kitchin's (1975) data about the frequency of prophase I cysts with 1–4 H chromosomes in three species of Parlatoria with 2n = 8 suggested that in these species chromosomes of similar size may have very different probabilities of being destroyed. Evidence that in other species with the Comstockiella system a particular H chromosome is always retained is reviewed, and the possibility that in Ancepaspis tridentata the variation in the length of the H chromosome retained is due to the partial destruction of the longest chromosome is discussed.  相似文献   

6.
In the males of lecanoid coccids, or mealybugs, an entire, paternally derived, haploid chromosome set becomes heterochromatic after the seventh embryonic mitotic cycle. In females, both haploid sets are euchromatic throughout the life cycle. In mealybugs, as in all homopteran species, chromosomes are holocentric. Holocentric chromosomes are characterized by the lack of a localized centromere and consequently of a localized kinetic activity. In monocentric species, sister chromatid cohesion and monopolar attachment play a pivotal role in regulating chromosome behavior during the two meiotic divisions. Both these processes rely upon the presence of a single, localized centromere and as such cannot be properly executed by holocentric chromosomes. Here we furnish further evidence that meiosis is inverted in both sexes of mealybugs and we suggest how this might represent an adaptation to chromosome holocentrism. Moreover, we reveal that at the second meiotic division in males a monopolar spindle is formed, to which only euchromatic chromosomes become attached. By this mechanism the paternally derived, heterochromatic, haploid chromosome set strictly segregates from the euchromatic one, and it is then excluded from the genetic continuum as a result of meiotic drive.Communicated by E.A. Nigg  相似文献   

7.
Robert M. Kitchin 《Genetica》1975,45(2):227-235
Spermatogenesis is described in two species of armored scale insects,Parlatoria proteus andParlatoria ziziphus. In the males of both species, a haploid set of four chromosomes becomes heterochromatic during early embryogeny. The heterochromatic chromosomes are lost later by two different mechanisms during spermatogenesis. Just before meiosis begins one or more heterochromatic chromosomes disappear from each primary spermatocyte as a consequence of a rapid intranuclear chromosome destruction. Meiosis consists of a single achiasmatic division. At prophase four euchromatic and from one to three heterochromatic chromosomes are present in each cell. Although both the euchromatic and remaining heterochromatic chromosomes divide, the heterochromatic chromosomes are later eliminated by posttelophase ejection; the eliminated chromosomes then disintegrate slowly in the cytoplasm. Each of the two species displays a species specific level of heterochromatin retention and both differ in this regard from the previously describedParlatoria oleae. The evolution of a chromosome system involving intranuclear chromosome destruction is discussed.  相似文献   

8.
Uzi Nur 《Chromosoma》1966,19(4):439-448
In males of mealy bugs with the lecanoid chromosome system, the paternal set of chromosomes becomes heterochromatic in early embryogeny. In males of the mealy bug, Planococcus citri, the heterochromatic (H) set in testis sheath cells and in most of the oenocytes apparently did not replicate while the euchromatic (E) set was undergoing several cycles of endoreplication. In third instar males, testis sheath cells in endoanaphase and endotelophase exhibited 5H and either 40 or 80E chromosomes. The increase in the number of E chromosomes was attributed to the replication of only the E chromosomes. Oenocytes of third instar males had 0, 5, or 10H chromosomes and from 10 to 240E chromosomes. The oenocytes with 5H chromosomes had a mean of 50.8E chromosomes, and those with 10H chromosomes had a mean of 155.6E chromosomes. Nuclear and cell fusion was considered as a means of producing the various numbers of H and E chromosomes in oenocytes, and it was concluded that although nuclear fusion probably took place, the differences between the number of H and E chromosomes was at least in part due to replication of only the E chromosomes. The size of the H chromosomes was about the same in all the testis sheath cells and the oenocytes irrespective of the level of endopolyploidy for the E set. These H chromosomes apparently did not increase in polyteny, because they were only about half the size of the H chromosomes in prophase I of spermatogenesis. The significance of the nonreplication of the H set and the control of nonreplication are briefly discussed.This study was aided by a grant (GB-1585) from the National Science Foundation, Washington, D.C.  相似文献   

9.
A chromosome complement formed by 16 autosomes and an Xyp sex chromosome system was found in Epilachna paenulata Germar (Coleoptera: Coccinellidae). All autosomes were metacentric except pair 1 which was submetacentric. The X and the Y chromosomes were also submetacentric but the Y was minute. The whole chromosome set carried large paracentric heterochromatic C-segments representing about 15% of the haploid complement length. Heterochromatic segments associated progressively during early meiotic stages forming a large single chromocenter. After C-banding, chromocenters revealed an inner networklike filamentous structure. Starlike chromosome configurations resulted from the attachment of bivalents to the chromocenters. These associations were followed until early diakinesis. Thin remnant filaments were also observed connecting metaphase I chromosomes. Evidence is presented that, in this species, the Xyp bivalent resulted from an end-to-end association of the long arms of the sex chromosomes. The parachute Xyp bivalent appeared to be composed of three distinct segments: two intensely heterochromatic C-banded corpuscles formed the canopy and a V-shaped euchromatic filament connecting them represented the parachutist component. The triple constitution of the sex bivalent was interpreted as follows: each heterochromatic corpuscle corresponded to the paracentric C-segment of the X and Y chromosomes; the euchromatic filament represented mainly the long arm of the X chromosome terminally associated with the long arm of the Y chromosome. The complete sequence of the formation of the Xyp bivalent starting from nonassociated sex chromosomes in early meiotic stages, and progressing through pairing of heterochromatic segments, coiling of the euchromatic filament, and movement of the heterochromatic corpuscles to opposite poles is described. These findings suggest that in E. paenulata the Xyp sex bivalent formation is different than in other coleopteran species and that constitutive heterochromatic segments play an important role not only in chromosome associations but also in the Xyp formation.  相似文献   

10.
Prophase chromosomes of Drosophila hydei were stained with 0.5 g/ml Hoechst 33258 and examined under a fluorescence microscope. While autosomal and X chromosome heterochromatin are homogeneously fluorescent, the entirely heterochromatic Y chromosome exhibits an extremely fine longitudinal differentiation, being subdivided into 18 different regions defined by the degree of fluorescence and the presence of constrictions. Thus high resolution Hoechst banding of prophase chromosomes provides a tool comparable to polytene chromosomes for the cytogenetic analysis of the Y chromosome of D. hydei. — D. hydei heterochromatin was further characterized by Hoechst staining of chromosomes exposed to 5-bromodeoxyuridine for one round of DNA replication. After this treatment the pericentromeric autosomal heterochromatin, the X heterochromatin and the Y chromosome exhibit numerous regions of lateral asymmetry. Moreover, while the heterochromatic short arms of the major autosomes show simple lateral asymmetry, the X and the Y heterochromatin exhibit complex patterns of contralateral asymmetry. These observations, coupled with the data on the molecular content of D. hydei heterochromatin, give some insight into the chromosomal organization of highly and moderately repetitive heterochromatic DNA.  相似文献   

11.
Summary A reexamination of the second spermatogenic division of the mealy bug, Planococcus citri (Risso), a lecanoid coccid, has revealed hitherto unknown spindle activity of the euchromatic set of chromosomes during anaphase II. An initial large half spindle elaborated by the heterochromatic chromosomes in early metaphase, gives way to a less pronounced, but clearly visible bipolar spindle involving both sets of chromosomes at early anaphase. There is no lengthening of the spindle or cell, but the separation of the chromosomes occurs around the periphery of the cell with the aid of interzonal activity. The active participation of the euchromatic chromosome during the separation is furthermore inferred by the formation of bridges resulting from euchromatic-heterochromatic translocations.  相似文献   

12.
The chromatin organization in developing germ cells of Drosophila hydei males was studied with the highly sensitive DNA stain DAPI (4, 6-diamidino-2-phenylindole dichloride). The prophase of meiosis I is characterized by decondensed chromosomes and only late during this stage do they condense rapidly. The sex chromosomes show allocycly. During postmeiotic development the final condensation of chromatin is preceded by a cycle of condensation and subsequent decondensation. Meiotic chromosomes were studied in more detail after orcein staining. Pairing sites of the sex chromosomes could be localized in the distal end of the heterochromatic arm of the X chromosome and distally in both arms of the Y chromosome. The various heterochromatic parts of the genome condense differentially in meiosis. Chromatin reorganization was studied cytochemically with antibodies raised against histones H1 and H2A of D. melanogaster. The core histone H2A is present in spermatid nuclei until the late elongation stage. However, histone H1 is not found in the chromatin later than the early primary spermatocyte stage. Thus, chromatin reorganization during spermatogenesis in D. hydei is complex. The process is discussed with regard to possible functions.  相似文献   

13.
5-Azacytidine-induced undercondensations in human chromosomes   总被引:11,自引:1,他引:10  
Summary The cytosine analogue 5-azacytidine induces very distinct undercondensations in human chromosomes if applied to lymphocyte cultures. The number of induced undercondensations and their chromosomal localization can be varied by the 5-azacytidine dose and the treatment time. Pulverized chromosomes or undercondensations in the G-band-positive chromosome regions are produced with high doses and long treatment times. If applied in low doses during the last hours of culture, 5-azacytidine induces specific undercondensations in the heterochromatin of chromosomes 1, 9, 15, 16, and Y. Optimum conditions required for inducing the various types of undercondensation in the chromosomes were determined. Various examples of the use 5-azacytidine in the analysis of chromosome rearrangements involving heterochromatic regions are presented.  相似文献   

14.
R. L. Blackmail 《Chromosoma》1988,96(4):318-324
Autosomal dissociations are a common feature of aphid karyotype evolution, but multiple X chromosome systems are rare. Birch-feeding aphids of the genus Euceraphis, however, have X1X2O males as a general rule, X1 being always much larger than X2. Only one species has XO males, and this condition appears to be secondary. Most Euceraphis karyotypes also have one or more, usually heterochromatic, elements that occur in the same numbers in both males and females, yet behave like X chromosomes at male and female meiosis I. They appear to be supernumerary, non-functional X chromosomes, although showing greater within-species stability in size and number than typical B chromosomes. Euceraphis gillettei forms a separate group within the genus and feeds on alders (Alnus species), yet has a similar system, and the two most closely related genera, Symydobius and Clethrobius, also have additional chromosomal elements possibly representing non-functional X chromosomes. Thus the multiple X chromosome system in these aphids seems to be a primitive condition.  相似文献   

15.
Dr. Uzi Nur 《Chromosoma》1962,13(3):249-271
Summary The supernumerary chromosomes of a mealy bug,Pseudococcus obscurus Essig are heterochromatic but show a variable heteropycnosis. In the female, they are weakly heteropyonotic in most tissues, but in a few tissues the individual supernumeraries form striking chromocenters. At oogenesis, they remain unassociated and divide equationally during the first division; during the second, they pair and disjoin. Pairing is usually accomplished by twos so that an unpaired supernumerary is found whenever an odd number, or only one, is present; the unpaired entity is twice as likely to go to the second polar body as to the egg.The normal spermatogenesis in the mealy bugs is a highly modified meiosis in which the paternal heterochromatic set is eliminated from the genetic continuum; during this sequence the supernumeraries are fully heterochromatic up until late prophase I. They then undergo a sharp change in pycnosis and become negatively heteropycnotic. In the second meiotic division they usually segregate with the maternal euchromatic set. Their behavior during spermatogenesis thus becomes an accumulation mechanism since an unreduced number, or nearly that, is transmitted by the males.The variable behavior of the supernumeraries affords further insight into the problem of heterochromatization in the mealy bugs.The supernumeraries may have originated from fragments followed by subsequent duplications. The accumulation mechanism may have been an important factor in their establishment.In genetic systems in which the supernumeraries have an accumulation mechanism, an elimination mechanism might evolve to stabilize the number of supernumeraries. Such elimination mechanisms are known for other genetic systems but have not yet been developed in this mealy bug.The material in this paper is part of a dissertation submitted to the graduate school of the University of California in partial satisfaction of the requirements for the degree of Doctor of Philosophy. This work was supported in part by a National Science Foundation Grant (G-9772) to ProfessorSpencer W. Brown.Predoctoral Trainee in Genetics, National Institutes of Health, 1960–1961.  相似文献   

16.
Cytogenetic analysis of an Idaho population of the checkerspot butterfly, Euphydryas colon, has revealed considerable inter- and intra-individual variation in chromosome number which turns out to be a classic case of B chromosome variation. The basic chromosome complement of the species is n (, )=31. The A chromosomes were aligned equatorially at mitotic metaphase and metaphase II, and axially at metaphase I, indicating a restriction of centric activity at the first meiotic division. No failure of pairing between homologous A chromosomes was observed and, although a marked asynchrony of chromatid separation was found to be characteristic of mitotic telophase and telophase II, the frequency of macrospermatid formation was low. The B chromosomes were at least partly heterochromatic but exhibited some variation in both pycnosity and size. Mitotically stable B-containing individuals showed a preponderance of unpaired Bs at first metaphase and these divided at either first or second anaphase. The presence of Bs was associated with a heightened production of abnormal spermatids particularly in individuals with high numbers of B chromosomes. Among the 25 individuals sampled, 21 carried from 1–6 B chromosomes, and of these 14 were mitotically stable. In all 7 unstable individuals the mean number of B chromosomes per cell exceeded the modal number. Assuming that the modal number represents the zygotic number, these results suggest that a mechanism to boost the number of B chromosomes exists in males of E. colon.  相似文献   

17.
Unfixed metaphase chromosome preparations from human lymphocyte cultures were immunofluorescently labelled using antibodies to defined histone epitopes. Both mouse monoclonal antibody HBC-7, raised against the N-terminal region of H2B, and rabbit serum R5/12, which recognizes H4 acetylated at Lys-12, gave non-uniform labelling patterns, whereas control antibodies against total histone fractions H4 and H1 produced homogeneous fluorescence. HBC-7 bound approximately uniformly to the bulk of the chromosomes, but the major heterochromatic domains of chromosomes 1, 9, 15, 16 and the Y showed significantly brighter fluorescence. Serum R5/12 indicated an overall reduction in acetylation of H4 in metaphase chromosomes compared with interphase nuclei, although some specific chromosomal locations had considerably elevated acetylation levels. Acetylation levels in the major heterochromatic domains appeared extremely low. To investigate further the differences noted in heterochromatin labelling, metaphases from cultures grown in the presence of various agents known to induce undercondensation of the major heterochromatic domains were similarly immunolabelled. Decondensed heterochromatin no longer exhibited higher than normal immunofluorescence levels with HBC-7. The higher resolution afforded by stretching the centromeric heterochromatin of chromosomes 1, 9 and 16 confirmed the low level of H4 acetylation in these domains. We consider the implications of these observations in relation to chromatin conformation and activity.by W.C. Earnshaw  相似文献   

18.
The gigantic chromosomes (megachromosomes) described previously as occurring spontaneously in hybrid combinations between N. tabacum and species of the Tomentosae section of Nicotiana were due to an enlargement of heterochromatic segments introduced from the latter into a N. tabacum background. Only chromosomes with large heterochromatic segments became megachromosomes and the enlarged parts themselves showed at interphase and prophase the intense staining characteristic of heterochromatin. Euchromatic arms of the same chromosomes did not undergo enlargement.In contrast, megachromosomes described here for N. tabacum x N. plumbaginifolia hybrids originate from chromosomes which have no heterochromatic blocks. These megachromosomes are not recognizable at interphase and when distinguished at prophase are found to be stained lightly like the rest of the euchromatin.The mode of origin of megachromosomes is still unknown. Spontaneous chromosome breakage is frequent in all hybrids in which megachromosomes are found and is probably associated in some way with their formation, but an origin of megachromosomes by breakage and end-to-end fusion of broken strands is unlikely. This leaves as a possibility an origin by repeated replication from the same template.Other examples of very large chromosomes with characteristics of megachromosomes found in the literature are briefly discussed. They all arose in atypical situations of interspecific hydribization, exposure to mutagens or in tumors and cell cultures.Paper number 4748 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, North Carolina  相似文献   

19.
20.
C. J. Marchant 《Chromosoma》1968,24(1):100-134
The chromosome karyotypes are described and scale diagrams prepared of 35 species representing 8 genera of the cycad families Stangeriaceae and Zamiaceae. The karyotype patterns, chromosome types and characteristics of the nucleolar organisers and heterochromatin are discussed in relation to their evolution in this ancient group of plants. A possible path of chromosome evolution is suggested by the concurrence in some genera of terminal heterochromatic knobs on chromosome arms and a single pair of telocentric homologues which in the remaining genera are replaced by complex partially heterochromatic nucleolar-organising chromosomes. — It is suggested that telocentric chromosomes may be of ancient origin in the cycads and that there may have been a progression from telocentric to mesocentric karyotypes. The paucity of genera today and the taxonomic isolation of the cycads from the remainder of the present-day flora renders impossible the corroboration of this theory by direct cytological comparisons with other groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号