首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To localize activated protein kinase C (PKC) in smooth muscle cells, an antibody directed to the catalytic site of the enzyme was used to assess PKC distribution by immunofluorescence techniques in gastric smooth muscle cells isolated from Bufo marinus. An antibody to vinculin was used to delineate the cell membrane. High-resolution three-dimensional images of immunofluorescence were obtained from a series of images collected through focus with a digital imaging microscope. Cells were untreated or treated with agents that increase PKC activity (10 microM carbachol for 1 min, 1 microM phorbol 12-myristate 13-acetate (PMA) for 10 min), or have no effect on PKC activity (1 micrometer 4-alpha phorbol, 12,13-didecanoate (4-alpha PMA)). In unstimulated cells, activated PKC and vinculin were located and organized at the cell surface. Cell cytosol labeling for activated PKC was sparse and diffuse and was absent for vinculin. After treatment with carbachol, which stimulates contraction and PKC activity, in addition to the membrane localization, the activated PKC exhibited a pronounced cytosolic fibrillar distribution and an increased total fluorescence intensity relative to vinculin. The distributions of activated PKC observed after PMA but not 4-alpha PMA were similar to those observed with carbachol. Our results indicate that in resting cells there is a pool of activated PKC near the cell membrane, and that after stimulation activated PKC is no longer membrane-confined, but is present throughout the cytosol. Active PKC appears to associate with contractile filaments, supporting a possible role in modulation of contraction.  相似文献   

2.
In epithelial cells, vinculin is enriched in cell adhesion structures but is in equilibrium with a large cytosolic pool. It is accepted that when cells adhere to the extracellular matrix, a part of the soluble cytosolic pool of vinculin is recruited to specialized sites on the plasma membrane called focal adhesions (FAs) by binding to plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2). We have previously shown that bradykinin (BK) induces both a reversible dissipation of vinculin from FAs, by the phospholipase C (PLC)-mediated hydrolysis of PtdIns(4,5)P2, and the concomitant internalization of vinculin. Here, by using an immunomagnetic method, we isolated vinculin-containing vesicles induced by BK stimulation. By analyzing the presence of proteins involved in vesicle traffic, we suggest that vinculin can be delivered in the site of FA reassembly by a vesicular endocytic recycling pathway. We also observed the formation of vesicle-like structures containing vinculin in the cytosol of cells treated with lipid membrane-affecting agents, which caused dissipation of FAs due to their deleterious effect on membrane microdomains where FAs are inserted. However, these vesicles did not contain markers of the recycling endosomal compartment. Vinculin localization in vesicles has not been reported before, and this finding challenges the prevailing model of vinculin distribution in the cytosol. We conclude that the endocytic recycling pathway of vinculin could represent a physiological mechanism to reuse the internalized vinculin to reassembly new FAs, which occurs after long time of BK stimulation, but not after treatment with membrane-affecting agents.  相似文献   

3.
A 110-115-kD protein is present at levels 27-fold higher in migratory epithelium in the rat cornea than in stationary epithelium. This protein represents 2.7% of the total protein in migratory epithelium 6-h postabrasion wound and 0.1% of the total protein in stationary epithelium. Our findings demonstrate that this 110-115-kD protein is vinculin. In Western blots comparing proteins from migratory and control epithelium, antibody against vinculin cross-reacted with the 110-115-kD protein. Using immunoslot blots, vinculin was determined to be present at maximal levels 6 h postabrasion wound, at levels 22- and 8-fold higher than control at 18 and 48 h, respectively, returning to control levels 72 h postwounding. Vinculin was also localized by indirect immunohistochemistry in migrating corneal epithelium. 3-mm scrape wounds were allowed to heal in vivo for 20 h. In flat mounts of these whole wounded corneas, vinculin was localized as punctate spots in the leading edge of migrating epithelium. In cryostat sections, vinculin was localized as punctate spots along the basal cell membranes of the migrating sheet adjacent to the basement membrane and in patches between cells as well as diffusely throughout the cell. Only very diffuse localization with occasional punctate spots between adjacent superficial cells was present in stationary epithelium. The increased synthesis of vinculin during migration and the localization of vinculin at the leading edge of migratory epithelium suggest that vinculin may be involved in cell-cell and cell-substrate adhesion as the sheet of epithelium migrates to cover a wound.  相似文献   

4.
The plasma membranes of the cells of the superficial layer of the eye lens and the lens fibres are in close intercellular contact, leaving an intermembrane space of approximately 20 nm or less throughout their entire length. This plasma membrane is underlaid by a filamentous, cytoplasmic web containing actin, proteins of the spectrin and band 4.1 families, alpha-actinin and vinculin. Using immunofluorescence microscopy and immunoblotting of gel electrophoretically separated proteins, we show that plakoglobin, the plaque protein common to desmosomal and nondesmosomal adhering junctions, is present in lens cells and is also a component of the subplasmalemmal coat of these cells. Plakoglobin also exists in the extended regions of intercellular contacts between cultured lenticular cells where it often colocalizes with vinculin but does not occur in other vinculin-rich plasma membrane regions such as the focal adhesions at the ventral cell surface. Plakoglobin associated with plasma membrane regions can also be identified in various other adhesive cultured cells, but it is not detected in cells and tissues that do not establish firm intercellular junctions such as erythrocytes, platelets, cultured myeloma cells and smooth muscle tissue. We conclude that plakoglobin occurs, at least in lens cells, throughout the entire subplasmalemmal coat, coexisting in this situation not only with vinculin but also with spectrin and 4.1 protein(s). This colocalization infers the presence of a distinct, complex type of membrane-skeleton assembly involving the actin filament-associated junctional plaque elements plakoglobin and vinculin together with actin-associated proteins of the spectrin and band 4.1 protein families.  相似文献   

5.
Vinculin, a cytoskeletal substrate of protein kinase C   总被引:22,自引:0,他引:22  
Vinculin, a cytoskeletal protein localized at adhesion plaques, is a phosphoprotein containing phosphoserine, phosphothreonine, and phosphotyrosine. Vinculin has been previously shown to be a substrate for pp60src, a phosphotyrosine protein kinase, but the kinase(s) responsible for phosphorylation of the other amino acid residues is unknown. The present report examines the phosphorylation of vinculin by various serine- and threonine-specific protein kinases. Only protein kinase C, the calcium-activated phospholipid-dependent protein kinase, phosphorylates vinculin at a significant rate (24 nmol/min/mg) and displays marked specificity for vinculin. Both calcium and phosphatidylserine were required for vinculin phosphorylation by protein kinase C. In addition, both phorbol 12,13-dibutyrate (10 nM) and phorbol 12-myristate 13-acetate (10 nM) stimulated vinculin phosphorylation by protein kinase C at a limiting calcium concentration (10(-6) M). Tryptic peptide analysis revealed two major sites of phosphorylation. One site contained phosphoserine and the other contained phosphothreonine. When compared with tryptic maps of vinculin phosphorylated by src kinase, no overlapping phosphorylated peptides were found. The present findings coupled with the plasma membrane location of both these proteins suggest that vinculin may be a physiologic substrate for protein kinase C.  相似文献   

6.
Cell migration is a complex process, requiring coordination of many subcellular processes including membrane protrusion, adhesion, and contractility. For efficient cell migration, cells must concurrently control both transmission of large forces through adhesion structures and translocation of the cell body via adhesion turnover. Although mechanical regulation of protein dynamics has been proposed to play a major role in force transmission during cell migration, the key proteins and their exact roles are not completely understood. Vinculin is an adhesion protein that mediates force-sensitive processes, such as adhesion assembly under cytoskeletal load. Here, we elucidate the mechanical regulation of vinculin dynamics. Specifically, we paired measurements of vinculin loads using a Förster resonance energy transfer-based tension sensor and vinculin dynamics using fluorescence recovery after photobleaching to measure force-sensitive protein dynamics in living cells. We find that vinculin adopts a variety of mechanical states at adhesions, and the relationship between vinculin load and vinculin dynamics can be altered by the inhibition of vinculin binding to talin or actin or reduction of cytoskeletal contractility. Furthermore, the force-stabilized state of vinculin required for the stabilization of membrane protrusions is unnecessary for random migration, but is required for directional migration along a substrate-bound cue. These data show that the force-sensitive dynamics of vinculin impact force transmission and enable the mechanical integration of subcellular processes. These results suggest that the regulation of force-sensitive protein dynamics may have an underappreciated role in many cellular processes.  相似文献   

7.
Cell migration involves many steps, including membrane protrusion and the development of new adhesions. Here we have investigated whether there is a link between actin polymerization and integrin engagement. In response to signals that trigger membrane protrusion, the actin-related protein (Arp)2/3 complex transiently binds to vinculin, an integrin-associated protein. The interaction is regulated, requiring phosphatidylinositol-4,5-bisphosphate and Rac1 activation, and is sufficient to recruit the Arp2/3 complex to new sites of integrin aggregation. Binding of the Arp2/3 complex to vinculin is direct and does not depend on the ability of vinculin to associate with actin. We have mapped the binding site for the Arp2/3 complex to the hinge region of vinculin, and a point mutation in this region selectively blocks binding to the Arp2/3 complex. Compared with WT vinculin, expression of this mutant in vinculin-null cells results in diminished lamellipodial protrusion and spreading on fibronectin. The recruitment of the Arp2/3 complex to vinculin may be one mechanism through which actin polymerization and membrane protrusion are coupled to integrin-mediated adhesion.  相似文献   

8.
The ultrastructural localization of three cytoskeletal proteins, alpha- actinin, tropomyosin, and vinculin, in the brush border of epithelial cells of chicken small intestine and the smooth muscle cells of chicken gizzard was studied by immunofluorescence and immunonelectron microscope labeling of frozen sections of lightly fixed, intact tissues. In the immunoelectron microscope studies, a recently described new type of electron-dense antibody conjugate, imposil-antibody, has been successfully used, along with ferritin-antibody conjugates, in single and double immunolabeling experiments. In the intestinal brush border shows that vinvulin is sharply confined to the junctional complex close to the membrane region of the zonula adherens, in distinct contrast to the more diffuse distributions of the other two proteins. In the smooth muscle cells, the labeling patterns show that vinculin is sharply confined to the membrane-associated dense plaques, closer to the membrane than the alpha-Actinin is also present in the cytoplastic dense bodies, from which vinculin is absent. Tropomyosin is present diffusely distributed in the cytoplasm, but absent from both dense plaques and dense bodies. These findings with the muscle cells demonstrate, therefore, that the dense plaques and dense bodies are chemically and structurally distinct entities. The results with both tissues, along with those in previous papers (Geiger, 1979, Cell. 18:193-205.; Geiger et al., 1980, Proc. Natl. Acad. Sci. U. S. A. 77:4127-4131), suggest that vinculin may play an important and widespread role in the linkage of actin-containing microfilament bundles to membranes.  相似文献   

9.
Vinculin is a major cytoskeletal component in striated muscle, where it has been reported to form a rib-like structure between the cell membrane and the Z-disk termed a costamere. This arrangement of vinculin has been purported to be involved in the alignment of the myofibrils. However, the three-dimensional arrangement of vinculin in relation to the Z-disk of the myofibril was not known. In the present study, we examined the distribution of vinculin in striated muscle with monospecific antibodies using immunofluorescence and laser scanning confocal microscopy. Isolated cardiac and skeletal muscle cells from a variety of species, tissue sections, and neonatal myocytes with developing myofibrils were examined. Optical sectioning in the X-Y and X-Z planes demonstrated that vinculin immunoreactivity was heaviest at the periphery of the cell; however, the immunoreactivity was also distributed within the Z-disk although at a relatively reduced level. This distribution is potentially significant in understanding the physiological significance of vinculin in striated muscle function and in myofibrillogenesis.  相似文献   

10.
Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus   总被引:138,自引:0,他引:138  
B M Sefton  T Hunter  E H Ball  S J Singer 《Cell》1981,24(1):165-174
Vinculin, a protein associated with the cytoplasmic face of the focal adhesion plaques which anchor actin-containing microfilaments to the plasma membrane and attach a cell to the substratum, contains 8-fold more phosphotyrosine in cells transformed by Rous sarcoma virus than in uninfected cells. Because the transforming protein of RSV, p60src, is a protein kinase that modifies cellular proteins through the phosphorylation of tyrosine and because phosphotyrosine is a very rare modified amino acid, this result is a very rare modified amino acid, this result suggests that vinculin is a primary substrate of p60src. Only trace amounts of phosphotyrosine were detected in myosin heavy chains, alpha-actinin, filamin, and the intermediate filament protein vimentin. The modification of vinculin by p60src may be responsible in part for the disruption of the microfilament organization and for the changes in cell shape and adhesiveness which accompany transformation by Rous sarcoma virus.  相似文献   

11.
Changes in cell morphology and motility are mediated by the actin cytoskeleton. Recent advances in our understanding of the regulators of microfilament structure and dynamics have shed light on how these changes are controlled, and efforts continue to define all the structural and signaling components involved in these processes. The actin cytoskeleton-associated protein talin binds to integrins, vinculin, and actin. We report a new binding partner for talin that we have named layilin, which contains homology with C-type lectins, is present in numerous cell lines and tissue extracts, and is expressed on the cell surface. Layilin colocalizes with talin in membrane ruffles, and is recruited to membrane ruffles in cells induced to migrate in in vitro wounding experiments and in peripheral ruffles in spreading cells. A ten–amino acid motif in the layilin cytoplasmic domain is sufficient for talin binding. We have identified a short region within talin''s amino-terminal 435 amino acids capable of binding to layilin in vitro. This region overlaps a binding site for focal adhesion kinase.  相似文献   

12.
The focal contact forms beneath F-actin-rich ribs, or cytoplasmic precursors, present in the lamellipodia of fibroblasts. The basal part of the precursor is retained at the contact as the initial adhesion plaque. We have examined the distribution of talin in the lamellipodia and adhesion plaques of chicken embryo fibroblasts relative to the process of focal contact formation. Motility of single cells was recorded with differential interference contrast or interference reflection microscopy before fixation and fluorescent staining for talin, F-actin, and vinculin. Talin is present along the extreme edge of the lamellipodium, where it is further concentrated into a series of nodes. The nodes of talin are present at the tips of both larger and finer F-actin-rich ribs and at small structural nodes at the edge of the lamellipodium. We suggest that the talin in the nodes functions, via a cross-linking activity, in the convergence of actin filaments at the membrane during development of the ribs. Talin accumulates de novo in the adhesion plaque, independent of that at the tip of the precursor, in response to contact with the substrate. This second accumulation of talin at the focal contact starts before vinculin, consistent with a sequential binding of talin at the membrane and of vinculin to talin. The results imply that talin functions independently at two steps during formation of the focal contact: the development of the F-actin-rich precursor of the contact; and development of the contact-associated adhesion plaque, both involving organization of F-actin at the membrane.  相似文献   

13.
The cytoskeletal protein vinculin, a putative actin--plasma-membrane linker, has been shown by hydrophobic photo-labeling to interact in vitro directly with bilayers of acidic phospholipids [Niggli et al. (1986) J. Biol. Chem. 261, 6912-6918]. In order to demonstrate that such an interaction occurs also in intact cells, chicken embryo fibroblasts were incubated for 2 h with a 3H-labeled photoactivatable fatty acid, 11-(4-[3-(trifluoromethyl)-diazirinyl]phenyl)-[2-3H]undecanoic acid. This resulted in biosynthetic incorporation into cellular lipids of a fraction of the fatty acid added. Following photolysis, vinculin was immunoprecipitated from different subcellular fractions using a specific polyclonal anti-vinculin antibody. The protein was recovered from both the cytosolic and the crude membrane fraction. Vinculin from both fractions incorporated label, but the membrane-associated population was at least eight times more strongly photolabeled than the cytosolic protein. Moreover, photolysis increased only labeling of the membrane-bound but not of the cytosolic protein. These results suggest that the direct interaction of vinculin with the hydrophobic core of the phospholipid layer observed in vitro may also be relevant in intact cells, and may be involved in its function as a linker protein.  相似文献   

14.
Cytoskeletal reorganization of the smooth muscle cell in response to contractile stimulation may be an important fundamental process in regulation of tension development. We used confocal microscopy to analyze the effects of cholinergic stimulation on localization of the cytoskeletal proteins vinculin, paxillin, talin and focal adhesion kinase (FAK) in freshly dissociated tracheal smooth muscle cells. All four proteins were localized at the membrane and throughout the cytoplasm of unstimulated cells, but their concentration at the membrane was greater in acetylcholine (ACh)-stimulated cells. Antisense oligonucleotides were introduced into tracheal smooth muscle tissues to deplete paxillin protein, which also inhibited contraction in response to ACh. In cells dissociated from paxillin-depleted muscle tissues, redistribution of vinculin to the membrane in response to ACh was prevented, but redistribution of FAK and talin was not inhibited. Muscle tissues were transfected with plasmids encoding a paxillin mutant containing a deletion of the LIM3 domain (paxillin LIM3 dl 444–494), the primary determinant for targeting paxillin to focal adhesions. Expression of paxillin LIM3 dl in muscle tissues also inhibited contractile force and prevented cellular redistribution of paxillin and vinculin to the membrane in response to ACh, but paxillin LIM3 dl did not inhibit increases in intracellular Ca2+ or myosin light chain phosphorylation. Our results demonstrate that recruitment of paxillin and vinculin to smooth muscle membrane is necessary for tension development and that recruitment of vinculin to the membrane is regulated by paxillin. Vinculin and paxillin may participate in regulating the formation of linkages between the cytoskeleton and integrin proteins that mediate tension transmission between the contractile apparatus and the extracellular matrix during smooth muscle contraction. tissue transfection; plasmids; cytoskeleton; talin; immunofluorescence  相似文献   

15.
A capping process of epidermal growth factor receptors (EGF-Rs) was used for the study of the relation between the receptors and the actin-binding proteins (spectrin, vinculin, annexin I) that may be involved in EGF-R-cytoskeleton interaction. In intact, adherent A431 cells, EGF-Rs were diffusively distributed on the cell surface. Spectrin, vinculin, and annexin I were located beneath the plasma membrane. An abundance of EGF-Rs as well as submembrane proteins was observed in regions of membrane ruffles and cell-cell contacts. Annexin I was localized also in cytoplasm being attached to filamentous structures surrounding the nucleus and extending to the cell periphery. Under polyvalent ligand treatment, EGF-Rs of adherent cells were aggregated on one side of the cell. Spectrin, vinculin, and annexin I dislocated together with EGF-Rs and were concentrated under plasma membrane at regions where cap formation took place. In suspended A431 cells only spectrin was located under the plasma membrane whereas annexin I and vinculin were diffusively distributed through the cells. During cap formation only spectrin was colocalized with EGF-Rs. The results confirmed the major role of spectrin as a receptor-microfilament linking protein.  相似文献   

16.
Vinculin regulates both cell-cell and cell-matrix junctions and anchors adhesion complexes to the actin cytoskeleton through its interactions with the vinculin binding sites of alpha-actinin or talin. Activation of vinculin requires a severing of the intramolecular interactions between its N- and C-terminal domains, which is necessary for vinculin to bind to F-actin; yet how this occurs in cells is not resolved. We tested the hypothesis that talin and alpha-actinin activate vinculin through their vinculin binding sites. Indeed, we show that these vinculin binding sites have a high affinity for full-length vinculin, are sufficient to sever the head-tail interactions of vinculin, and they induce conformational changes that allow vinculin to bind to F-actin. Finally, microinjection of these vinculin binding sites specifically targets vinculin in cells, disrupting its interactions with talin and alpha-actinin and disassembling focal adhesions. In their native (inactive) states the vinculin binding sites of talin and alpha-actinin are buried within helical bundles present in their central rod domains. Collectively, these results support a model where the engagement of adhesion receptors first activates talin or alpha-actinin, by provoking structural changes that allow their vinculin binding sites to swing out, which are then sufficient to bind to and activate vinculin.  相似文献   

17.
An integral sialoglycoprotein with Mr approximately 130,000 (Sgp 130) and highest expression in adult chicken gizzard smooth muscle has been recently identified as an excellent candidate for classification as a plasma membrane protein natively associated (directly or indirectly) with actin microfilaments (Rogalski, A.A., and S.J. Singer, 1985, J. Cell Biol., 101:785-801). In this study, the relative in situ distributions of the Sgp 130 integral species (a designation that also includes non-smooth muscle molecular forms) and the peripheral protein, vinculin, have been simultaneously revealed for the first time in selected cultured cells and tissues abundant in microfilament-membrane attachment sites, particularly, smooth and cardiac muscle. Specific antibody probes against Sgp 130 (mouse mAb 30B6) and vinculin (affinity-purified rabbit antibody) were used in double indirect immunofluorescent and immunoelectron microscopic experiments. In contrast to the widespread distributions of vinculin at microfilament-membrane attachment sites, Sgp 130 has been shown to exhibit striking site-specific variation in its abundancy levels in the plasma membrane. Sgp 130 and vinculin were found coincidentally concentrated at focal contact sites in cultured chick embryo fibroblasts and endothelial cells, membrane dense plaques of smooth muscle, and sarcolemma dense plaque sites overlying the Z line in cardiac muscle. However, at the fascia adherens junctional sites of cardiac muscle where vinculin is sharply confined, Sgp 130 was immunologically undetectable in both intact and EGTA-uncoupled tissue. This latter result was confirmed with immunoblotting experiments using isolated forms of the fascia adherens. The double immunolabeling studies of this report establish Sgp 130 as a major integral protein component of nonjunctional membrane dense plaque structures and raise the possibility that the 130-kD integral sialoglycoprotein (Sgp 130) and vinculin assume stable transmembrane associations at these particular microfilament-membrane attachment sites. Nonjunctional dense plaques are further suggested to be a molecularly distinct class of plasma membrane structures rather than a subgroup of adherens junctions. Our data also support a hypothesis that Sgp 130 is involved in plasma membrane force coupling events but not in junctional-related cell-cell coupling.  相似文献   

18.
Vinculin is a highly conserved protein involved in cell proliferation, migration, and adhesion. However, the effects of vinculin on gastric cancer (GC) remain unclear. Therefore, we aimed to explore the functional role of vinculin in GC, as well as its underlying mechanism. Expression of vinculin in patients with GC was analyzed by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Overall survival was evaluated by the Kaplan-Meier method with the log-rank test. The relationship between vinculin and clinicopathological characteristics of patients with GC was further identified. In addition, we assessed the expression of vinculin in GC cell lines. Besides, vinculin was suppressed or overexpressed by transfection with small interfering (si-vinculin) or pcDNA-vinculin and then cell viability, cell apoptosis, and/or migration was respectively examined by the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide assay, flow cytometer, and scratch assay, respectively. Moreover, the cell cycle- and apoptosis-related proteins were detected by Western blot analysis. The expression of vinculin was significantly increased in the GC tissues and cells compared with the nontumor tissues or cells. Vinculin protein positive staining was mainly located in the cell membrane and cytoplasm. Moreover, vinculin was significantly associated with Tumor Node Metastasis (TNM) and poor differentiation. Patients with high vinculin levels had significantly worse overall survival than those with low levels. Suppression of vinculin significantly decreased cell viability and migration and promoted cell apoptosis. However, overexpression of vinculin statistically increased cell viability but had no effects on cell apoptosis. Vinculin promotes GC proliferation and migration and predicts poor prognosis in patients with GC.  相似文献   

19.
J Q Zhang  B Elzey  G Williams  S Lu  D J Law  R Horowits 《Biochemistry》2001,40(49):14898-14906
N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.  相似文献   

20.
Vinculin phosphorylation in both chick embryo fibroblasts and Swiss 3T3 cells was increased by either calcium or biologically active phorbol esters. Increased phosphorylation of vinculin was noted as early as 10 min following phorbol 12-myristate 13-acetate treatment and was maximal at about 1 h. Maximal increases in phosphorylation were noted at approximately 100 nM phorbol 12-myristate 13-acetate. Phorbol 12,13-dibutyrate (80 nM), a less potent phorbol ester, resulted in smaller increases in vinculin phosphorylation than phorbol 12-myristate 13-acetate at equimolar concentrations. Phorbol, dibutyryl cAMP, and dibutyryl cGMP had no significant effect on phosphorylation. No correlation was found between vinculin phosphorylation and the morphological changes induced by phorbol esters. Tryptic peptide analysis of vinculin revealed multisite phosphorylation. Phosphorylation of only three of the peptides was significantly increased following phorbol 12-myristate 13-acetate treatment. Phosphoamino acid analysis revealed increases at both serine and threonine residues. The low level of phosphotyrosine present in control cells was not significantly increased by phorbol 12-myristate 13-acetate treatment. These findings combined with studies of vinculin phosphorylation by purified protein kinase C (Werth, D. K., Niedel, J. E., and Pastan I. (1983) J. Biol. Chem. 258, 11423-11426) suggest the hypothesis that protein kinase C may be involved in regulation of phosphorylation of vinculin, a cytoskeletal protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号