首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abe S  Takeda J 《Plant physiology》1988,87(2):389-394
When dielectrophoresis and electrofusion of barley (Hordeum vulgare var Moor) leaf protoplasts were assayed in the presence of 0.1 to 1 millimolar lanthanum ion (La3+) in the basal medium (0.7 molar mannitol, 1 millimolar piperazine-N, N-bis[2-ethanesulfonic acid]-Na [pH 6.7], 0.1 millimolar CaCl2), dielectrophoresis and induction of electrofusion were strongly inhibited. The latter remained inhibited and the former recovered by about 60% after washing the La3+ -treated protoplasts without EDTA. These inhibitions were almost completely abolished by washing the La3+ -treated protoplasts with 1 millimolar EDTA. Inductively coupled plasma atomic emission spectroscopic analysis revealed that protoplasts retained a considerable amount of La3+ after washing without EDTA and released most of the bound La3+ by washing with 1 millimolar EDTA. This tightly bound La3+ seemed responsible for the inhibition of electrofusion and dielectrophoresis that was observed in the La3+ -treated protoplasts after washing. ζ-potentials of protoplasts were -39.0±3.2 millivolts, -16.7 ± 2.6 millivolts, and virtually zero in media containing 0, 0.1, and 0.3 millimolar La3+ (I = 7.2 millimolar), respectively, and had a positive value (+ 14.2 ± 2.2 millivolts) in the presence of 1 millimolar La3+. These effects of La3+ on ζ-potentials were easily abolished by washing without EDTA. This indicates that charged species located at the surface of plasma membrane of protoplasts cannot account for the sites at which La3+ exerts its inhibition of dielectrophoresis and electrofusion. In contrast, the promotion of spherical fusion and the reduction of broken fusion products observed in the presence of La3+ were almost completely abolished by washing without EDTA. Our results also indicate that the initial induction and development of electrofusion can be studied independently.  相似文献   

2.
Abe S  Takeda J 《Plant physiology》1986,81(4):1151-1155
Calmodulin antagonists, trifluoperazine, chlorpromazine, calmidazolium, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), strongly inhibited the electrofusion of barley (Hordeum vulgare L. cv Moor) protoplasts with a marked increase of broken fusion products, after 60 minutes of incubation. W-5, a dechlorinated analog of W-7, was found less effective for the inhibition than W-7. Ethyleneglycol-bis(β- aminoethylether)-N,N′-tetraacetic acid a Ca2+ chelator, La3+, a surface Ca2+ antagonist, and verapamil, a Ca2+ channel blocker, also inhibited electrofusion. Dielectrophoresis was inhibited by La3+. A microtubule inhibitor, vinblastine, inhibited electrofusion strongly while colchicine, slightly. A microfilament inhibitor, cytochalasin B, promoted fused cells to become spherical while phalloidin did not affect electrofusion.  相似文献   

3.
The effects of gibberellic acid (GA3) and Ca2+ on the synthesis and secretion of α-amylase from protoplasts of barley (Hordeum vulgare L. cv Himalaya) aleurone were studied. Protoplasts undergo dramatic morphological changes whether or not the incubation medium contains GA3, CaCl2, or both. Incubation of protoplasts in medium containing both GA3 and Ca2+, however, causes an increase in the α-amylase activity of both incubation medium and tissue extract relative to controls incubated in GA3 or Ca2+ alone. Isoelectric focusing shows that adding Ca2+ to incubation media containing GA3 increases the levels of α-amylase isozymes having high isoelectric points (pI). In the presence of GA3 alone, only isozymes with low pIs accumulate. The increase in α-amylase activity in the incubation medium begins after 36 hours of incubation, and secretion is complete after about 72 hours. Protoplasts require continuous exposure to Ca2+ to maintain elevated levels of α-amylase release. Immunoelectrophoresis shows that Ca2+ stimulates the release of low-pI α-amylase isozymes by 3-fold and high-pI isozymes by 30-fold over controls incubated in GA3 alone. Immunochemical data also show that the half-maximum concentration for this response is between 5 and 10 millimolar CaCl2. The response is not specific for Ca2+ since Sr2+ can substitute, although less effectively than Ca2+. Pulse-labeling experiments show that α-amylase isozymes produced by aleurone protoplasts in response to GA3 and Ca2+ are newly synthesized. The effects of Ca2+ on the process of enzyme synthesis and secretion is not mediated via an effect of this ion on α-amylase stability or on protoplast viability. We conclude that Ca2+ directly affects the process of enzyme synthesis and transport. Experiments with protoplasts also argue against the direct involvement of the cell wall in Ca2+-stimulated enzyme release.  相似文献   

4.
Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca2+). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca2+-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel''s activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca2+ and PIP2 in regulating BK channel activity. In the absence of Ca2+, RCK1 structural elements limit channel activation through a decrease in the channel''s PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca2+ coordination site (Asp367 or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys392 and Arg393) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca2+, the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca2+ engaging Asp367. Our results demonstrate that, along with Ca2+ and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.  相似文献   

5.
The cytosolic (group IV) phospholipase A2 (cPLA2s) family contains six members. We have prepared recombinant proteins for human α, mouse β, human γ, human δ, human ϵ, and mouse ζ cPLA2s and have studied their interfacial kinetic and binding properties in vitro. Mouse cPLA2β action on phosphatidylcholine vesicles is activated by anionic phosphoinositides and cardiolipin but displays a requirement for Ca2+ only in the presence of cardiolipin. This activation pattern is explained by the effects of anionic phospholipids and Ca2+ on the interfacial binding of mouse cPLA2β and its C2 domain to vesicles. Ca2+-dependent binding of mouse cPLA2β to cardiolipin-containing vesicles requires a patch of basic residues near the Ca2+-binding surface loops of the C2 domain, but binding to phosphoinositide-containing vesicles does not depend on any specific cluster of basic residues. Human cPLA2δ also displays Ca2+- and cardiolipin-enhanced interfacial binding and activity. The lysophospholipase, phospholipase A1, and phospholipase A2 activities of the full set of mammalian cPLA2s were quantified. The relative level of these activities is very different among the isoforms, and human cPLA2δ stands out as having relatively high phospholipase A1 activity. We also tested the susceptibility of all cPLA2 family members to a panel of previously reported inhibitors of human cPLA2α and analogs of these compounds. This led to the discovery of a potent and selective inhibitor of mouse cPLA2β. These in vitro studies help determine the regulation and function of the cPLA2 family members.  相似文献   

6.
The molecular mechanism underlying the characteristic high apparent Ca2+ affinity of SERCA2b relative to SERCA1a and SERCA2a isoforms was studied. The C-terminal tail of SERCA2b consists of an 11th transmembrane helix (TM11) with an associated 11-amino acid luminal extension (LE). The effects of each of these parts and their interactions with the SERCA environment were examined by transient kinetic analysis of the partial reaction steps in the Ca2+ transport cycle in mutant and chimeric Ca2+-ATPase constructs. Manipulations to the LE of SERCA2b markedly increased the rate of Ca2+ dissociation from Ca2E1. Addition of the SERCA2b tail to SERCA1a slowed Ca2+ dissociation, but only when the luminal L7/8 loop of SERCA1 was simultaneously replaced with that of SERCA2, thus suggesting that the LE interacts with L7/8 in Ca2E1. The interaction of LE with L7/8 is also important for the low rate of the Ca2E1P → E2P conformational transition. These findings can be rationalized in terms of stabilization of the Ca2E1 and Ca2E1P forms by docking of the LE near L7/8. By contrast, low rates of E2P dephosphorylation and E2 → E1 transition in SERCA2b depend critically on TM11, particularly in a SERCA2 environment, but do not at all depend on the LE or L7/8. This indicates that interaction of TM11 with SERCA2-specific sequence element(s) elsewhere in the structure is critical in the Ca2+-free E2/E2P states. Collectively these properties ensure a higher Ca2+ affinity of SERCA2b relative to other SERCA isoforms, not only on the cytosolic side, but also on the luminal side.  相似文献   

7.
Radioimmunoassays of platelet prostaglandins E1 and F in platelet rich plasma or platelet suspension, demonstrate that both PGE1 and PGF are present at higher concentrations than prostaglandins E2 and F. Gas chromatography — mass spectrometry determinations of prostaglandins E1 and E2 in resting washed platelets confirm this difference. Lastly, there is a greater incorporation of [1-14C] acetate into prostaglandins E1 and F compared to that into prostaglandins E2 and F.  相似文献   

8.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

9.
Cardiac cells express more than one isoform of the Na, K-ATPase (NKA), the heteromeric enzyme that creates the Na+ and K+ gradients across the plasmalemma. Cardiac isozymes contain one catalytic α-subunit isoform (α1, α2, or α3) associated with an auxiliary β-subunit isoform (β1 or β2). Past studies using biochemical approaches have revealed minor kinetic differences between isozymes formed by different α-β isoform combinations; these results make it difficult to understand the physiological requirement for multiple isoforms. In intact cells, however, NKA enzymes operate in a more complex environment, which includes a substantial transmembrane potential. We evaluated the voltage dependence of human cardiac NKA isozymes expressed in Xenopus oocytes, and of native NKA isozymes in rat ventricular myocytes, using normal mammalian physiological concentrations of Na+o and K+o. We demonstrate that although α1 and α3 pumps are functional at all physiologically relevant voltages, α2β1 pumps and α2β2 pumps are inhibited by ∼75% and ∼95%, respectively, at resting membrane potentials, and only activate appreciably upon depolarization. Furthermore, phospholemman (FXYD1) inhibits pump function without significantly altering the pump’s voltage dependence. Our observations provide a simple explanation for the physiological relevance of the α2 subunit (∼20% of total α subunits in rat ventricle): they act as a reserve and are recruited into action for extra pumping during the long-lasting cardiac action potential, where most of the Na+ entry occurs. This strong voltage dependence of α2 pumps also helps explain how cardiotonic steroids, which block NKA pumps, can be a beneficial treatment for heart failure: by only inhibiting the α2 pumps, they selectively reduce NKA activity during the cardiac action potential, leading to an increase in systolic Ca2+, due to reduced extrusion through the Na/Ca exchanger, without affecting resting Na+ and Ca2+ concentrations.  相似文献   

10.
Single-channel properties of the Xenopus inositol trisphosphate receptor (IP3R) ion channel were examined by patch clamp electrophysiology of the outer nuclear membrane of isolated oocyte nuclei. With 140 mM K+ as the charge carrier (cytoplasmic [IP3] = 10 μM, free [Ca2+] = 200 nM), the IP3R exhibited four and possibly five conductance states. The conductance of the most-frequently observed state M was 113 pS around 0 mV and ∼300 pS at 60 mV. The channel was frequently observed with high open probability (mean P o = 0.4 at 20 mV). Dwell time distribution analysis revealed at least two kinetic states of M with time constants τ < 5 ms and ∼20 ms; and at least three closed states with τ ∼1 ms, ∼10 ms, and >1 s. Higher cytoplasmic potential increased the relative frequency and τ of the longest closed state. A novel “flicker” kinetic mode was observed, in which the channel alternated rapidly between two new conductance states: F1 and F2. The relative occupation probability of the flicker states exhibited voltage dependence described by a Boltzmann distribution corresponding to 1.33 electron charges moving across the entire electric field during F1 to F2 transitions. Channel run-down or inactivation (τ ∼ 30 s) was consistently observed in the continuous presence of IP3 and the absence of change in [Ca2+]. Some (∼10%) channel disappearances could be reversed by an increase in voltage before irreversible inactivation. A model for voltage-dependent channel gating is proposed in which one mechanism controls channel opening in both the normal and flicker modes, whereas a separate independent mechanism generates flicker activity and voltage- reversible inactivation. Mapping of functional channels indicates that the IP3R tends to aggregate into microscopic (<1 μm) as well as macroscopic (∼10 μm) clusters. Ca2+-independent inactivation of IP3R and channel clustering may contribute to complex [Ca2+] signals in cells.  相似文献   

11.
The synthesis of 2-decarboxy-2-(tetrazol-5-yl)prostaglandins of the E1, E2, F1α and F2α series is described together with their biological effects on gerbil colon smooth muscle and rat blood pressure.  相似文献   

12.
The synthesis of 2-decarboxy-2-(tetrazol-5-yl)prostaglandins of the E1, E2, F1α and F2α series is described together with their biological effects on gerbil colon smooth muscle and rat blood pressure.  相似文献   

13.
We investigated the modulation of cGMP-gated ion channels in single cone photoreceptors isolated from a fish retina. A new method allowed us to record currents from an intact outer segment while controlling its cytoplasmic composition by superfusion of the electropermeabilized inner segment. The sensitivity of the channels to agonists in the intact outer segment differs from that measured in membrane patches detached from the same cell. This sensitivity, measured as the ligand concentration necessary to activate half-maximal currents, K 1/2, also increases as Ca2+ concentration decreases. In electropermeabilized cones, K 1/2 for cGMP is 335.5 ± 64.4 μM in the presence of 20 μM Ca2+, and 84.3 ± 12.6 μM in its absence. For 8Br-cGMP, K 1/2 is 72.7 ± 11.3 μM in the presence of 20 μM Ca2+ and 15.3 ± 4.5 μM in its absence. The Ca2+-dependent change in agonist sensitivity is larger in extent than that measured in rods. In electropermeabilized tiger salamander rods, K 1/2 for 8Br-cGMP is 17.9 ± 3.8 μM in the presence of 20 μM Ca2+ and 7.2 ± 1.2 μM in its absence. The Ca2+-dependent modulation is reversible in intact cone outer segments, but is progressively lost in the absence of divalent cations, suggesting that it is mediated by a diffusible factor. Comparison of data in intact cells and detached membrane fragments from cones indicates that this factor is not calmodulin. At 40 μM 8Br-cGMP, the Ca2+-dependent change in sensitivity in cones is half-maximal at K Ca = 286 ± 66 nM Ca2+. In rods, by contrast, K Ca is ∼50 nM Ca2+. The difference in magnitude and Ca2+ dependence of channel modulation between photoreceptor types suggests that this modulation may play a more significant role in the regulation of photocurrent gain in cones than in rods.  相似文献   

14.
Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.  相似文献   

15.
This study establishes some correlations between molecular structure and surface function of six prostaglandins in a model membrane system. Using spread films at the air/water interface, we determined surface pressure and surface potential of PGs A1, A2, E1, E2, F and F. All the PGs formed films with low pressure (0 to 9 dyne/cm) and relatively low surface potentials (ΔV = 10 to 250 mV). On 0.15 M NaCl, the π and ΔV values were in the order E1 > F > A1 > F > A1 > F2α = A2 > E2 and F > E1 > A1 > A2 > F > E2 respectively. Clearly, the cis unsaturation in the carboxylic chain of the PG2 series conferred greater instability to the films, as indicated by the lowest π and ΔV values. Also, members of the PG1 series penetrated films of dipalmitoyl phosphatidyl choline (DPPC) better than PG2 did, the ablest being E1 (Δπ = 12 dyne/cm) and the poorest F2α (Δπ = 2 dyne/cm); penetration of E1 and F2α was independent of the initial pressure (πi) of the DPPC film, whereas with A1 and F Δπ decreased as πi increased. The PGs expressed marked discriminating capacities for the electrolyte, as indicated by differences in their π and ΔV responses to Na+ and Ca++ as well as for the lipid, as indicated by different penetration (Δπ values) into DPPC films.  相似文献   

16.
Combined patch-clamp and Fura-2 measurements were performed on chinese hamster ovary (CHO) cells co-expressing two channel proteins involved in skeletal muscle excitation-contraction (E-C) coupling, the ryanodine receptor (RyR)-Ca2+ release channel (in the membrane of internal Ca2+ stores) and the dihydropyridine receptor (DHPR)-Ca2+ channel (in the plasma membrane). To ensure expression of functional L-type Ca2+ channels, we expressed α2, β, and γ DHPR subunits and a chimeric DHPR α1 subunit in which the putative cytoplasmic loop between repeats II and III is of skeletal origin and the remainder is cardiac. There was no clear indication of skeletal-type coupling between the DHPR and the RyR; depolarization failed to induce a Ca2+ transient (CaT) in the absence of extracellular Ca2+ ([Ca2+]o). However, in the presence of [Ca2+]o, depolarization evoked CaTs with a bell-shaped voltage dependence. About 30% of the cells tested exhibited two kinetic components: a fast transient increase in intracellular Ca2+ concentration ([Ca2+]i) (the first component; reaching 95% of its peak <0.6 s after depolarization) followed by a second increase in [Ca2+]i which lasted for 5–10 s (the second component). Our results suggest that the first component primarily reflected Ca2+ influx through Ca2+ channels, whereas the second component resulted from Ca2+ release through the RyR expressed in the membrane of internal Ca2+ stores. However, the onset and the rate of Ca2+ release appeared to be much slower than in native cardiac myocytes, despite a similar activation rate of Ca2+ current. These results suggest that the skeletal muscle RyR isoform supports Ca2+-induced Ca2+ release but that the distance between the DHPRs and the RyRs is, on average, much larger in the cotransfected CHO cells than in cardiac myocytes. We conclude that morphological properties of T-tubules and/or proteins other than the DHPR and the RyR are required for functional “close coupling” like that observed in skeletal or cardiac muscle. Nevertheless, some of our results imply that these two channels are potentially able to directly interact with each other.  相似文献   

17.
The mechanism whereby events in and around the catalytic site/head of Ca2+-ATPase effect Ca2+ release to the lumen from the transmembrane helices remains elusive. We developed a method to determine deoccluded bound Ca2+ by taking advantage of its rapid occlusion upon formation of E1PCa2 and of stabilization afforded by a high concentration of Ca2+. The assay is applicable to minute amounts of Ca2+-ATPase expressed in COS-1 cells. It was validated by measuring the Ca2+ binding properties of unphosphorylated Ca2+-ATPase. The method was then applied to the isomerization of the phosphorylated intermediate associated with the Ca2+ release process E1PCa2E2PCa2E2P + 2Ca2+. In the wild type, Ca2+ release occurs concomitantly with EP isomerization fitting with rate-limiting isomerization (E1PCa2E2PCa2) followed by very rapid Ca2+ release. In contrast, with alanine mutants of Leu119 and Tyr122 on the cytoplasmic part of the second transmembrane helix (M2) and Ile179 on the A domain, Ca2+ release in 10 μm Ca2+ lags EP isomerization, indicating the presence of a transient E2P state with bound Ca2+. The results suggest that these residues function in Ca2+ affinity reduction in E2P, likely via a structural rearrangement at the cytoplasmic part of M2 and a resulting association with the A and P domains, therefore leading to Ca2+ release.  相似文献   

18.
Mesophyll protoplasts isolated from in vitro-grown Nicotiana tabacum L. shoots were subjected to electrofusion.Dielectrophoresis was induced by an AC field of 50 V cm-1 inter-electrode distance and 0.5 MHz oscillation frequency. Fusion was effected by two 0.7 kV cm-1 DC pulses, each of 50 s duration, applied within one second of each other. Various chemical treatments were tested for their effects on dielectrophoresis efficiencies (percentages of protoplasts that made contact with at least one other protoplast under the AC field), fusion efficiencies (percentages of protoplasts participating in fusion events), cell lysis (percentages of protoplasts bursting during the electrofusion processes), overall viabilities of fusion products 24 h post-fusion and overall plating efficiencies 7 d post-fusion (percentages of fusion-derived cells that had undergone division). The various attributes assessed on the electrofusion of protoplasts in the control treatment, 10% mannitol, differed considerably for experiments carried out on different days. Relative to the control treatment, only the Ca2+ treatments, and to a lesser extent lipase treatment reduced dielectrophoresis efficiencies. Polyamines, cytochalasins and Ca2+ treatments significantly reduced cell lysis percentages. All electrofusion facilitators tested (except for spermine at 150 mg l-1, the cytochalasins B and D, and Ca2+ treatments) increased fusion efficiencies to more than 1.5 times those obtained with the standard 10% mannitol electrofusion medium. Ca2+ treatments increased overall viabilities of fusion products by more than 1.5 times. With the exception of the prostaglandins, lecithin and CaCl2 treatments, overall plating efficiencies were reduced by treatment of protoplasts with fusion facilitators. Substantial increases in overall plating efficiencies over those observed in the control treatment were obtained using prostaglandin F2a, lecithin and CaCl2.2H2O treatments. The implications of the results are discussed.Abbreviations AC alternating current, approx.-approximately - BA benzylaminopurine, cv.-cultivar - DC direct current, diam.-diameter - FDA fluorescein diacetate - MS Murashige & Skoog (1962) - NAA napthaleneacetic acid - PCM protoplast culture medium - PIM protoplast isolation medium - PPM protoplast purification medium - rpm revolutions per minute - SD(n) standard deviation of a variate - SEM standard error of the mean  相似文献   

19.
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. LY294002 (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes.  相似文献   

20.
Calcium is a ubiquitous second messenger in urinary bladder smooth muscle (UBSM). In this study, small discrete elevations of intracellular Ca2+, referred to as Ca2+ sparklets have been detected in an intact detrusor smooth muscle electrical syncytium using a TIRF microscopy Ca2+ imaging approach. Sparklets were virtually abolished by the removal of extracellular Ca2+ (0.035±0.01 vs. 0.23±0.07 Hz/mm2; P<0.05). Co-loading of smooth muscle strips with the slow Ca2+ chelator EGTA-AM (10 mM) confirmed that Ca2+ sparklets are restricted to the cell membrane. Ca2+ sparklets were inhibited by the calcium channel inhibitors R-(+)-Bay K 8644 (1 μM) (0.034±0.02 vs. 0.21±0.08 Hz/mm2; P<0.05), and diltiazem (10 μM) (0.097±0.04 vs. 0.16±0.06 Hz/mm2; P<0.05). Ca2+ sparklets were unaffected by inhibition of P2X1 receptors α,β-meATP (10 μM) whilst sparklet frequencies were significantly reduced by atropine (1 μM). Ca2+ sparklet frequency was significantly reduced by PKC inhibition with Gö6976 (100 nM) (0.030±0.01 vs. 0.30±0.1 Hz/mm2; P<0.05), demonstrating that Ca2+ sparklets are PKC dependant. In the presence of CPA (10 μM), there was no apparent change in the overall frequency of Ca2+ sparklets, although the sparklet frequencies of each UBSM became statistically independent of each other (Spearman''s rank correlation 0.2, P>0.05), implying that Ca2+ store mediated signals regulate Ca2+ sparklets. Under control conditions, inhibition of store operated Ca2+ entry using ML-9 (100 μM) had no significant effect. Amplitudes of Ca2+ sparklets were unaffected by any agonists or antagonists, suggesting that these signals are quantal events arising from activation of a single channel, or complex of channels. The effects of CPA and ML-9 suggest that Ca2+ sparklets regulate events in the cell membrane, and contribute to cytosolic and sarcoplasmic Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号