首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary neuronal cultures were made from eight-day-old embryonic chick telencephalon. Ten-day-old cultures were used to study the release ofd-[3H]aspartate andl-[3H]glutamate. Thed-[3H]aspartate release was stimulated by increasing potassium concentrations, but it was not calcium dependent. In contrast, the potassium dependentl-[3H]glutamate release was calcium dependent, and furthermorel-[3H]glutamate release was optimal at potassium concentrations<30 mM. The inhibitors of glutamate uptake, dihydrokainate and 1-aminocyclobutane-trans-1,3-dicarboxylic acid (CACB), also referred to as cis-1-aminocyclobutane-1,3-dicarboxylate, were used in the release experiments. Dihydrokainate had no effect on aspartate release, whereas CACB increased both the basal efflux ofd-[3H]aspartate and the potassium evoked release. CACB had no effect on the potassium stimulatedl-glutamate release. We believe thatl-glutamate is released mainly by a vesicular mechanism from the presumably glutamatergic neurons present in our culture.d-aspartate release observed by us, could be mediated by a transporter protein. The cellular origin of this release remains to be assessed.  相似文献   

2.
In this study, we have further characterized the morphology and physiology of the neuroglandular synapse between the identified buccal neuron, B4, and the salivary gland ofHelisoma. We demonstrate that the coupling coefficient between salivary cells within an individual acinus is approximately 1.0. We also demonstrate that synapses within the salivary gland are located near a superficial muscle layer. We examine the effects of glutamate on the salivary gland and on the B4-salivary gland EPSP.l-glutamate produces a transient, rapid onset depolarization of salivary gland cells. The response is mimicked by high concentrations ofl-homocysteic acid, but not by NMDA,l-aspartate,d-glutamate or kainate. The response is blocked by the presence ofl- ord-glutamate in the bath, but not by CNQX, DNQX, DGG,d-AP5, orl-AP3. The depolarization is primarily dependent on the presence of calcium in the bathing solution. When eitherl- ord-glutamate is present in the bathing solution, the amplitude of the B4-salivary gland EPSP is reversibly reduced. The similar pharmacological properties of the response of the salivary gland to glutamate and the B4 epsp indicate thatl-glutamate is a strong candidate for the fast excitatory neurotransmitter at theHelisoma neuroglandular synapse.  相似文献   

3.
Astrocytes have been proposed to regulate the extracellular space in the brain, even if rather little is known about their specific functions. One possibility for obtaining more knowledge on the functions of astroglial cells is to examine how they respond on exposure to pharmacological agents. Na+-valproate is an anticonvulsive drug which is used in the treatment of several types of epilepsy. The mechanisms of action of the drug are not fully understood, but the GABA-ergic system, both in neurons and astrocytes, has been shown to be affected. In the present study, the effects of valproate were investigated on astroglial cells in primary cultures from newborn rat cerebral cortex. The transport of the drug itself and its effects on the transport of the amino acid transmitters glutamate, aspartate and -aminobutyric acid (GABA) into astrocytes were examined. The [3H]valproate transport into the astrocytes was increased after exposure tol-glutamate but notl-aspartate. On the other hand, after acute exposure for the drug, the transport of [3H]l-glutamate and [3H]l-aspartate decreased, as also did the affinity but not the transport capacity for the [3H]GABA uptake. However, after 5 days chronic valproate exposure, no effects could be seen on the uptake kinetics ofl-glutamate orl-aspartate. For GABA, the affinity decreased, while the transport capacity remained unchanged compared with controls. The results showed that valproate, glutamate, aspartate and GABA were capable of interacting significantly with each others transport into the astrocytes.  相似文献   

4.
The binding of [3H]AMPA (Dl--amino-3-hydroxy-5-methylisoxazole-4-propionic acid), a ligand for the putative quisqualate excitatory amino acid receptor subtype, was evaluated using centrifugation and filtration receptor binding techniques in rat brain crude synaptosomal membrane preparations. Maximal specific binding of [3H]AMPA occurred in Triton X-100 treated membranes in the presence of the chaotropic agent potassium thiocyanate (KSCN). The effects of KSCN on binding were reversible and optimal at 100 mM. Supernatant obtained from detergent-treated membranes inhibited specific [3H]AMPA and [3H]kainic acid binding, suggesting the presence of an inhibitory agent which was tentatively identified as glutamate. Using centrifugation, saturation analysis revealed two distinct binding sites in both the absence and presence of KSCN. The chaotrope was most effective in increasing binding at the low affinity binding site, enhancing the affinity (K d) without a concommitant change in the total number of binding sites. Using filtration, a single binding site was detected in Triton-treated membranes. Like the data obtained by centrifugation, KSCN enhanced the affinity of the receptor (K d value=10 nM) without altering the number of binding sites (B max=1.2 pmol/mg protein). The rank order of potency of various glutamate analogs in the [3H]AMPA binding assay was quisqualate > AMPA > l-glutamate > kainate > d-glutamate, consistent with the labeling of a quisqualate-type excitatory amino acid receptor subtype.l-glutamic acid diethylester, and 2-amino-7-phosphonoheptanoic acid (AP7) were inactive. The present technique provides a rapid, reliable assay for the evaluation of quisqualate-type excitatory amino acid agonists and/or antagonists that may be used to discover more potent and selective agents.  相似文献   

5.
Summary We have investigated transport of the amino acid glutamine across the surface membranes of prophase-arrestedXenopus laevis oocytes. Glutamine accumulation was linear with time for 30 min; it was stereospecific with aK m of 0.12±0.02mm andV max of 0.92±0.17 pmol/oocyte · min forl-glutamine. Transport ofl-glutamine was Na+-dependent, the cation not being replaceable with Li+, K+, choline, tris(hydroxymethyl)-aminomethane (Tris), tetramethylammonium (TMA) or N-methyld-glucamine NMDG); external Cl appeared to be necessary for full activation of Na+-dependent glutamine transport. Two external Na+ may be required for the transport of one glutamine molecule.l-glutamine transport (at 50 m glutamine) was inhibited by the presence of other amino acids:l-alanine,d-alanine,l-leucine,l-asparagine andl-arginine (about 60% inhibition at 1mm);l-histidine,l-valine and glycine (25 to 40% inhibition at 1mm);l-serine,l-lysine,l-phenylalanine andl-glutamate (45 to 55% inhibition at 10mm). N-methylaminoisobutyric acid (meAIB) had no effect at 10mm, but 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) inhibited Na+/glutamine transport by about 50% at 10mm.l-glutamine was a competitive inhibitor of the Na+-dependent transport ofl-alanine,d-alanine andl-arginine; this evidence is consistent with the existence of a single system transporting all four amino acids. Glutamine uptake in oocytes appears to be catalyzed by a transport system distinct from the cotransport Systems A, ASC, N and Gly, although it resembles System B0,+.  相似文献   

6.
Summary The Na+/glucose cotransporter from rabbit intestinal brush border membranes has been cloned, sequenced, and expressed inXenopus oocytes. Injection of cloned RNA into oocytes increased Na+/sugar cotransport by three orders of magnitude. In this study, we have compared and contrasted the transport properties of this cloned protein expressed inXenopus oocytes with the native transporter present in rabbit intestinal brush borders. Initial rates of14C--methyl-d-glucopyranoside uptake into brush border membrane vesicles andXenopus oocytes were measured as a function of the external sodium, sugar, and phlorizin concentrations. Sugar uptake into oocytes and brush borders was Na+-dependent (Hill coefficient 1.5 and 1.7), phlorizin inhibitable (K i 6 and 9 m), and saturable (-methyl-d-glucopyranosideK m 110 and 570 m). The sugar specificity was examined by competition experiments, and in both cases the selectivity wasd-glucose>-methyl-d-glucopyranoside>d-galactose>3-O-methyl-d-glucoside. In view of the close similarity between the properties of the cloned protein expressed in oocytes and the native brush border transporter, we conclude that we have cloned the classical Na+/glucose cotransporter.  相似文献   

7.
Cell-free protein synthesis provides rapid and economical access to selectively 15N-labelled proteins, greatly facilitating the assignment of 15N-HSQC spectra. While the best yields are usually obtained with buffers containing high concentrations of potassium l-glutamate, preparation of selectively 15N-Glu labelled samples requires non-standard conditions. Among many compounds tested to replace the l-Glu buffer, potassium N-acetyl-l-glutamate and potassium glutarate were found to perform best, delivering high yields for all proteins tested, with preserved selectivity of 15N-Glu labelling. Assessment of amino-transferase activity by combinatorial 15N-labelling revealed that glutarate and N-acetyl-l-glutamate suppress the transfer of the 15N-α-amino groups between amino acids less well than the conventional l-Glu buffer. On balance, the glutarate buffer appears most suitable for the preparation of samples containing 15N-l-Glu while the conventional l-Glu buffer is advantageous for all other samples. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Antagonists were used to investigate the role of the excitatory amino acid,l-glutamate, in the swim motor program ofHirudo medicinalis. In previous experiments, focal application ofl-glutamate or its non-NMDA agonists onto either the segmental swim-gating interneuron (cell 204) or the serotonergic Retzius cell resulted in prolonged excitation of the two cells and often in fictive swimming. Since brief stimulation of the subesophageal trigger interneuron (cell Tr1) evoked a similar response, we investigated the role of glutamate at these synapses. Kynurenic acid and two non-NMDA antagonists, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and Joro spider toxin, effectively suppressed (1) the sustained activation of cell 204 and the Retzius cell following cell Tr1 stimulation and (2) the monosynaptic connection from cell Tr1 to cell 204 and the Retzius cell, but did not block spontaneous or DP nerve-activated swimming. Other glutamate blockers, including -d-glutamylaminomethyl sulfonic acid,l(+)-2-amino-3-phosphonoproprionic acid and 2-amino-5-phosphonopentanoic acid, were ineffective. DNQX also blocked both indirect excitation of cell 204 and direct depolarization of cell Tr1 in response to mechanosensory P cell stimulation. Our findings show the involvement of non-NMDA receptors in activating the swim motor program at two levels: (1) P cell input to cell Tr1 and (2) cell Tr1 input to cell 204, and reveal an essential role for glutamate in swim initiation via the cell Tr1 pathway.  相似文献   

9.
Two systems for l-glutamate transport were found in Salmonella typhimurium LT-2 GltU+ (glutamate utilization) mutants. The first one is similar to the glt system previously described in Escherichia coli; by transductional analysis the structural gene, gltS, coding for the transport protein was located at minute 80 of the chromosome as part of the operon gltC-gltS, and its regulator, the gltR gene, near minute 90; the gltS gene product transports both l-glutamate and l-aspartate, is sodium independent, and is -hydroxyaspartate sensitive. The second transport system, whose structural gene was called gltF and is located at minute 0, was l-glutamate specific, sodium independent, and -methylglutamate sensitive. Two aspartase activities occurred in S. typhimurium LT-2: the first one was present only in the GltU+ mutants, had a pH 6.4 optimum, was essential for both l-glutamate and l-aspartate metabolism, and mapped at minute 94, close to the ampC gene. The second one had a pH 7.2 optimum, could be induced by several amino acids, and thus may have a general role in nitrogen metabolism.  相似文献   

10.
It is proposed that the activity of an epidermal cotransport system for Na+ and dicarboxylic amino acids accounts for the small amounts of L-glutamate and L-aspartate in the otherwise amino-acid-rich blood plasma of insects. This Na+-dependent transport system is responsible for more than 95% of the uptake of these amino acids into the larval epidermis of the beetle Tenebrio molitor. Kinetic analysis of uptake showed that the Na+-dependent co-transporter has medium affinity for L-glutamate and L-aspartate. The K m for L-glutamate uptake was 146 mol·l-1, and the maximum velocity of uptake (V max) was 12.1 pmol·mm-2 of epidermal sheet per minute. The corresponding values for L-aspartate were 191 mol·l-1 and 8.4 pmol·mm-2·min-1. The Na+/L-glutamate co-transporter has a stoichiometry of at least two Na+ ions for each L-glutamate-ion transported (n=217). The co-transporter has an affinity for Na+ equivalent to a K m of 21 mmol · l-1 Na+. Na+ is the only external ion apparently required to drive L-glutamate uptake. Li+ substitutes weakly for Na+. Removal of external K+ or addition of ouabain decreases uptake slowly over 1 h, suggesting that these treatments dissipate the Na+/K+ gradient by inhibiting epidermal Na+/K+ ATPase. Several structural analogues of L-glutamate inhibit the medium-affinity uptake of L-glutamate. The order of potency with which these competitive inhibitors block glutamate uptake is L-cysteatethreo-3-hydroxy-Dl-aspartate > D-aspartateL-aspartate> L-cysteine sulphinate > L-homocysteateD-glutamate. L-trans-Pyrrolidine-2,4-dicarboxylate, a potent inhibitor of L-glutamate uptake in mammalian synaptosomes, is a relatively weak blocker of epidermal uptake. The epidermis takes up substantially more L-glutamate by this Na+-dependent system than tissues such as skeletal muscle and ventral nerve cord. The epidermis may be a main site regulating blood L-glutamate levels in insects with high blood [Na+]. Because L-glutamate and L-aspartate stimulate skeletal muscle in insects, a likely role for epidermal L-glutamate/L-aspartate transporter is to keep the level of these excitatory amino acids in the blood below the postsynaptic activation thresholds.Abbreviation ac acetate - Ch choline - CNS central nervous system - cpm counts per minute - CDTA trans-1,2-diaminocyclohexane-N,N,N,N-tetraacetic acids - HPLC high performance liquid chromatography - K m Michaelis constant - n app apparent number - NMG N-methyl-D-glucamine - Pipes Piperazine-N,N-bis-[2-ethanesulfonic acid] - SD standard deviation - TEA tetraethyl-ammonium - V velocity of uptake - V max maximum velocity of uptake  相似文献   

11.
Summary Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment.45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(K m (Ca2+)=0.4 m) and ATP(K m (ATP)=3.9 m), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl or NO 3 . Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanidem-chlorophenylhydrazone (CCCP) and VO 4 3– which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves.  相似文献   

12.
The two-microelectrode voltage clamp technique was used to examine the kinetics and substrate specificity of the cloned renal Na+/myo-inositol cotransporter (SMIT) expressed in Xenopus oocytes. The steady-state myo-inositol-induced current was measured as a function of the applied membrane potential (V m ), the external myo-inositol concentration and the external Na+ concentration, yielding the kinetic parameters: K 0.5 MI , K 0.5 Na , and the Hill coefficient n. At 100 mM NaCl, K 0.5 MI was about 50 m and was independent of V m . At 0.5 mm myo-inositol, K 0.5 Na ranged from 76 mm at V m =–50 mV to 40 mm at V m =–150 mV. n was voltage independent with a value of 1.9±0.2, suggesting that two Na+ ions are transported per molecule of myo-inositol. Phlorizin was an inhibitor with a voltage-dependent apparent K I of 64 m at V m =–50 mV and 130 m at V m = –150 mV. To examine sugar specificity, sugar-induced steady-state currents (at V m =–150 mV) were recorded for a series of sugars, each at an external concentration of 50 mm. The substrate selectivity series was myo-inositol, scyllo-inositol > l-fucose > l-xylose > l-glucose, d-glucose, -methyl-d-glucopyranoside > d-galactose, d-fucose, 3-O-methyl-d-glucose, 2-deoxy-d-glucose > d-xylose. For comparison, oocytes were injected with cRNA for the rabbit intestinal Na+/glucose cotransporter (SGLT1) and sugar-induced steady-state currents (at V m =–150 mV) were measured. For oocytes expressing SGLT1, the sugar selectivity was: d-glucose, -methyl-d-glucopyranoside, d-galactose, d-fucose, 3-O-methyl-d-glucose > d-xylose, l-xylose, 2-deoxy-d-glucose > myo-inositol, l-glucose, l-fucose. The ability of SMIT to transport glucose and SGLT1 to transport myo-inositol was independently confirmed by monitoring the Na+-dependent uptake of 3H-d-glucose and 3H-myo-inositol, respectively. In common with SGLT1, SMIT gave a relaxation current in the presence of 100 mm Na+ that was abolished by phlorizin (0.5 mm). This transient current decayed with a voltage-sensitive time constant between 10 and 14 msec. The presteady-state current is apparently due to the reorientation of the cotransporter protein in the membrane in response to a change in V m . The kinetics of SMIT is accounted for by an ordered six-state nonrapid equilibrium model. Present address: W.M. Keck Biotechnology Resource Laboratory, Boyer Center for Molecular Medicine, Rm, 305A, Yale University, 295 Congress Ave., New Haven, Connecticut 06536-0812 Present address: National Institute for Physiological Sciences, Department of Cell Physiology, Okazaka, 444, JapanContributed equally to this workWe thank John Welborn for the HPLC analysis of the sugar substrates. This work was supported by grants from the National Institutes of Health DK19567, DK42479 and NS25554.  相似文献   

13.
Using an NMR based approach, employing both solution state and high resolution magic angle spinning (HR MAS) 1H NMR spectroscopy, in conjunction with an array of statistical methods, we report cerebral metabolic deficits in a mouse model of Batten disease (Cln3 null mutant mice). Batten disease is the most common progressive neurodegenerative disorder of childhood and is caused by mutations in the Cln3 gene. In particular, brain tissue from Cln3 mice was characterised by increased concentrations of glutamine, myo-inositol, scyllo-inositol, aspartate and lactate, alongside decreased concentrations of N-acetyl-l-aspartate (NAA), N-acetyl-l-glutamate (NAG), γ-amino butyric acid (GABA), glutamate and creatine. Accompanying changes in lipid deposition were also detected in intact cortical tissue by HR MAS 1H NMR spectroscopy. To realise the true potential of metabolomic datasets necessitates a comprehensive analysis of the data, such that useful biological information can be extracted and used to generate hypotheses which can be further tested and refined. We found that using a combination of univariate and multivariate analyses, a maximal number of metabolic deficits were successfully identified. In particular the complementary nature of the statistical approaches allowed the definition of changes which were relative, absolute or simply a change in variance, allowing a greater understanding of the disease processes detected.  相似文献   

14.
Two classes of ornithine-nonutilizing (oru) mutants of Pseudomonas aeruginosa PAO were investigated. Strains carrying the oru-310 mutation were entirely unable to grow on l-ornithine as the only carbon and nitrogen source and were affected in the assimilation of a variety of nitrogen sources (e.g., amino acids, nitrate). The oru-310 mutation caused changes in the regulation of the catabolic NAD-dependent glutamate dehydrogenase; this enzyme was no longer inducible by glutamate but instead could be induced by ammonia. The oru-310 locus was cotransducible with car-9 and tolA in the 10 min region of the chromosome. An oru-314 mutant was severely handicapped in ornithine medium but could grow when a good carbon source was added; the mutant also showed pleiotropic growth effects related to nitrogen metabolism. The oru-314 mutation affected the regulation of the anabolic NADP-dependent glutamate dehydrogenase, which was no longer repressed by glutamate but showed normal derepression in the presence of ammonia. The oru-314 locus was mapped by transduction near met-9011 at 55 min. Both oru mutants could grow on l-glutamate, l-proline, or l-ornithine amended with 2-oxoglutarate, albeit slowly. We speculate that insufficient 2-oxoglutarate concentrations might account, at least in part, for the Oru- phenotype of the mutants.  相似文献   

15.
Summary We have examined transport and membrane binding of 6-diazo-5-oxo-l-norleucine (DON, a photoactive diazo-analogue of glutamine) and their relationships to glutamine transport in Xenopus laevis oocytes. DON uptake was stereospecific and saturable (V max of 0.44 pmol/oocyte · min and a K m of 0.065 mm). DON uptake was largely Nau+ dependent (80% at 50 m DON) and inhibited (>75%) by glutamine and arginine (substrates of the System B0,+ transporter) at 1 mm. Glutamine and DON show mutual competitive inhibition of Na+-dependent transport. Preincubation of oocytes in medium containing 0.1 mm DON for 24 or 48 hr depressed the V max for System B0,+ transport (as measured by Na+-dependent glutamine uptake), this effect was highly specific (neither d-DON nor the System B0,+ substrates glutamine and d-alanine showed any independent effect) and required Na+ ions. Glutamine (1 mm in preincubation medium) protected transport from inhibition by DON. The possibility that specific inactivation of System B0,+ by DON reflects attachment of DON to the transporter was tested by examining the binding of [14C]DON to Xenopus oocyte membranes. Oocytes incubated in 100 mm NaCl in the presence of [14C]DON for up to 48 hr showed 2.4-fold higher 14C-binding to membranes than oocytes incubated in choline chloride. Na+-dependent DON binding (31 ± 11 fmol/g membrane protein) was suppressed by external glutamine, arginine or alanine and was largely confined to a membrane protein fraction of 48–65 kDa (as assessed by SDS-polyacrylamide gel electrophoresis). The present studies indicate that DON and glutamine uptake in oocytes are both mediated by System B0,+ and demonstrate that DON binding to a particular membrane protein fraction is associated with inactivation of the transporter, offering the prospect of using [14C]DON as a covalent label for the transport protein in order to facilitate its isolation and subsequent biochemical characterization.This work was supported by The Wellcome Trust, Action Research for the Crippled Child, Ajinomoto GmbH, Pfrimmer GmbH, the Rank Prize Funds, the Medical Research Council and the University of Dundee. We are grateful to Dr. C.I. Pogson (Wellcome Research Laboratories) and Drs. J.C. Ellory and B. Elford (University of Oxford) for gifts of [14C]DON.  相似文献   

16.
Corynebacterium glutamicum effectively secretes L-glutamate when growing under biotin limitation. The secretion of glutamate was studied with respect to kinetic and energetic parameters: rate of glutamate uptake and efflux, specificity of transport, dependence of efflux on the energy state of the cell, concentration gradient of glutamate and ions, and membrane potential. By comparing these parameters when measured in biotin-limited, i.e. producer cells, and biotin-supplemented, i.e. non-producer cells, respectively, the following conclusions could be drawn: 1. The efflux of L-glutamate in C. glutamicum cannot be explained by passive permeation of this amino acid through the plasma membrane, as it has been assumed in the generally accepted model of glutamate secretion in biotin-limited cells. 2. It is unlikely that the efflux of glutamate occurs via an inversion of the glutamate uptake system. 3. Based on our results concerning the specificity and the kinetics of glutamate transport as well as the observed regulation phenomena, we conclude that secretion of glutamate in C. glutamicum occurs by a special efflux carrier system.Abbreviations dw dry weight - OD optical density - TPP tetraphenyl phosphonium bromide  相似文献   

17.
Neurotransmitter l-glutamate released at central synapses is taken up and “recycled” by astrocytes using glutamate transporter molecules such as GLAST and GLT. Glutamate transport is essential for prevention of glutamate neurotoxicity, it is a key regulator of neurotransmitter metabolism and may contribute to mechanisms through which neurons and glia communicate with each other. Using immunocytochemistry and image analysis we have found that extracellular d-aspartate (a typical substrate for glutamate transport) can cause redistribution of GLAST from cytoplasm to the cell membrane. The process appears to involve phosphorylation/dephosphorylation and requires intact cytoskeleton. Glutamate transport ligands l -trans-pyrrolidine-2,4-dicarboxylate and dl-threo-3-benzyloxyaspartate but not anti,endo-3,4-methanopyrrolidine dicarboxylate have produced similar redistribution of GLAST. Several representative ligands for glutamate receptors whether of ionotropic or metabotropic type, were found to have no effect. In addition, extracellular ATP induced formation of GLAST clusters in the cell membranes by a process apparently mediated by P2 receptors. The present data suggest that GLAST can rapidly and specifically respond to changes in the cellular environment thus potentially helping to fine-tune the functions of astrocytes. The authors J.-W. Shin and K. T. D. Nguyen have contributed equally.  相似文献   

18.
We examined the effect of the glutamate uptake inhibitorl-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) on the neurotoxicity ofl-glutamate in organotypic cultures of rat spinal cord. Eighteen-day-old cultures were incubated with 500 μMl-glutamate, 1 mM PDC, or both. After 72 hours, the tissues were stained for acetylcholinesterase (AChE), and the ventral horn AChE-positive neurons (VHANs) analyzed using morphometry. Neitherl-glutamate nor PDC affected AChE staining, but in combination they produced markedly reduced AChE staining in the dorsal horn and a significant decrease in the number of VHANs (especially the smaller VHANs) as compared with the control. Moreover, treatment with 200 μM PDC for 2 weeks preferentially affected the smaller VHANs. The neurotoxicity ofl-glutamate plus PDC was blocked by the N-methyl-d-aspartate (NMDA) antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). Results suggest that glutamate uptake system has an important protective function in the aggravation of acute neuronal damage.  相似文献   

19.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

20.
The glutamate dehydrogenase (gdh) gene of Escherichia coli was transferred into an ammonium assimilation deficient mutant (Asm-) of Rhizobium japonicum (CJ9) using plasmid pRP301, a broad host range derivative of RP4. Exconjugants capable of growth on ammonia as sole N-source occurred at a frequency of 6.8×10-6. Assimilatory GDH (NADP+) activity was detected in the strain carrying the E. coli gdh gene and the pattern of ammonia assimilation via GDH was similar to that of the Asm+ wild type strain. However, GDH mediated ammonia assimilation was not subject to regulation by l-glutamate. Nitrogenase activity was expressed ex planta in R. japonicum CJ9 harbouring the gdh gene, however, the presence of the gdh gene did not restore symbiotic effectiveness to the CJ9 Asm- strain in nodules. The gdh plasmid was maintained in approximately 90% of the isolates recovered from soybean nodules.Abbreviations gdh glutamate dehydrogenase - Asm- mutant ammonia assimilation deficient mutant  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号