首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The Na+,K+-ATPase plays a key role in the regulation of ion fluxes and membrane repolarization in the CNS. We have studied glucocorticoid effects on biosynthesis of the Na+,K+-ATPase and on ouabain binding in the ventral horn of the spinal cord using intact rats, adrenalectomized (ADX) rats, and ADX rats receiving dexamethasone (ADX + DEX) during 4 days. Cryostat sections from spinal cords were incubated with a 35S-oligonucleotide coding for the α3-subunit or a 3H-cDNA coding for the β1-subunit of the Na+,K+-ATPase using in situ hybridization techniques. In ventral horn motoneurons, grain density per cell and grain density per area of some for both probes were slightly reduced in ADX rats but significantly increased in the ADX + DEX group, using ANOVA and the Bonferroni's test. Statistical analysis of frequency histograms of neuronal densities further indicated a significant shift to the right for intact rats compared with ADX rats for both probes. Concomitantly, [3H]ouabain binding to membrane preparations from ventral horns was reduced in ADX rats and restored to normal by DEX administration. No effect of adrenalectomy or DEX treatment was obtained in the dorsal horn. In conclusion, glucocorticoids positively modulate the mRNA for the α3-subunit and the β1-subunit of the Na+,K+-ATPase and recover ouabain binding to normal values. The increments of the synthesis and activity of an enzyme affecting membrane repolarization and synaptic neurotransmission are consistent with the alleged stimulatory effect of glucocorticoids on spinal cord function.  相似文献   

2.
Short-term (48h) adrenalectomy (ADX) resulted in a deficit in the retention of a passive avoidance response. An inverted U-shaped dose-response relationship was found following immediate post-learning administration of adrenaline (A). A in a dose range of 0.005 - 5 micrograms/kg s.c. facilitated later retention. While corticosterone (CS) replacement alone had no effect, pretreatment with CS (300 micrograms/kg) was followed by a shift in the dose-response curve of A in ADX rats. Ten thousand times higher doses of A were required to improve retention behavior. Administration of the potent synthetic glucocorticoid dexamethasone failed to affect the responsiveness to A. It is concluded that corticosterone decreases the efficacy by which adrenaline affects later retention behavior of ADX rats. The specificity of corticosterone in this interaction suggests the involvement of the corticosterone receptor system which has its predominant localization in hippocampal neurons.  相似文献   

3.
Islet cells undergo major changes in structure and function to meet the demand for increased insulin secretion during pregnancy, but the nature of the hormonal interactions and signaling events is incompletely understood. Here, we used the glucose-responsive MIN6 beta-cell line treated with prolactin (PRL), progesterone (PRG), and dexamethasone (DEX, a synthetic glucocorticoid), all elevated during late pregnancy, to study their effects on mechanisms of insulin secretion. DEX alone or combined with PRL and PRG inhibited insulin secretion in response to 16 mM glucose-stimulating concentrations. However, in the basal state (3 mM glucose), the insulin levels in response to DEX treatment were unchanged, and the three hormones together maintained higher insulin release. There were no changes of protein levels of GLUT2 or glucokinase (GK), but PRL or PRG treatment increased GK activity, whereas DEX had an inhibitory effect on GK activity. alpha-Ketoisocaproate (alpha-KIC)-stimulated insulin secretion was also reduced by DEX alone or combined with PRL and PRG, suggesting that DEX may inhibit distal steps in the insulin-exocytotic process. PRL treatment increased the concentration of intracellular cAMP in response to 16 mM glucose, suggesting a role for cAMP in potentiation of insulin secretion, whereas DEX alone or combined with PRL and PRG reduced cAMP levels by increasing phosphodiesterase (PDE) activity. These data provide evidence that PRL and to a lesser extent PRG, which increase in early pregnancy, enhance basal and glucose-stimulated insulin secretion in part by increasing GK activity and amplifying cAMP levels. Glucocorticoid, which increases throughout gestation, counteracts only glucose-stimulated insulin secretion under high glucose concentrations by dominantly inhibiting GK activity and increasing PDE activity to reduce cAMP levels. These adaptations in the beta-cell may play an important role in maintaining the basal hyperinsulinemia of pregnancy while limiting the capacity of PRL and PRG to promote glucose-stimulated insulin secretion during late gestation.  相似文献   

4.
When rats were subjected to the stress of burns, tumors, or partial hepatectomy, a notable new peak of glucocorticoid binding protein appeared on DEAE-cellulose chromatography. This peak accompanied the original peak, which was the only dominant peak in intact rats. The appearance of the new binding protein was concomitant with a high rise in serum corticosterone levels. The new peak was eluted with 0.12-0.14 M NaCl and another, small new peak with 0.02-0.03 M NaCl, while the original peak of intact rats was eluted with 0.05-0.08 M NaCl. In rats adrenalectomized prior to the stress, the new peaks did not appear. To mimic these stressful conditions which provoked a burst of endogenous glucocorticoid, rats were administered with an exogenous high dose of dexamethasone (100 micrograms/100 g B.W.) in vivo. The new peak eluted with 0.12-0.14 M NaCl was again observed and was more dominant in the hormone-treated rats than the stressed rats. These three peaks eluted with 0.02-0.03 M, 0.05-0.08 M, and 0.12-0.14 M NaCl are called here Peak A, B, and C, respectively. This is the first demonstration of the effect of physiological changes in serum levels of glucocorticoid hormone on the nature of glucocorticoid binding protein by DEAE-cellulose chromatography.  相似文献   

5.
In rats with dorsal hippocampectomy, glucocorticoid receptors in the hypothalamus and anterior pituitary, as well as the pituitary transcortin-like compound, are preserved, in spite of a 60% depletion of glucocorticoid receptors in the hippocampus. In the hippocampectomized group, basal levels of serum corticosterone (CORT) were increased, although there was a normal response to ether stress. Inhibition of the response to ether with dexamethasone (DEX) was dose-dependent: whereas 100 micrograms/kg completely suppressed serum CORT, 10 micrograms/kg were ineffective. However, we observed a reduced sensitivity to DEX inhibition with 25 micrograms/kg in hippocampectomized animals. These results indicate that the hippocampus is involved in negative feedback mechanisms, although different doses of DEX are needed for this demonstration. The inhibition of serum CORT due to 100 micrograms/kg DEX suggests that negative feedback at sites other than the hippocampus was still operative, in agreement with normal levels of glucocorticoid receptors in the anterior pituitary and hypothalamus of hippocampectomized rats.  相似文献   

6.
Circulating glucocorticoid (GC) levels are thought to modulate the basal activity of pro-opiomelanocortin (POMC) neurons within the mediobasal hypothalamus (MBH) of the male rat. In a recent study we demonstrated that Fos-immunoreactivity (Fos-IR) was spontaneously induced throughout the dark phase of the light/dark cycle within a large population of these MBH neurons. Here, we have investigated the effect of adrenalectomy on the nocturnal expression of Fos protein within POMC neurons. To this aim, groups of intact (IN), adrenalectomized (ADX) and sham-operated (sham) rats were killed 7 days after surgery (or no surgery) at times when Fos-IR is known to show either nadir (at light offset) or peak (6 h after light offset) values within MBH POMC neurons. Brains were processed for Fos- and/or POMC-immunohistochemistry. The results showed that, at both times studied, 7-day adrenalectomy did not affect the number of POMC/Fos double-stained neurons within the MBH. The rostro-caudal pattern of distribution of such labeled neurons throughout the MBH of ADX rats was also similar to that of IN or sham rats. The present data demonstrate that the nocturnal induction of Fos within MBH POMC neurons is not controlled via the nychtemeral rhythm of secretion of the adrenal gland. Furthermore, this study shows that basal levels of circulating GC do not alter the nocturnal peak of Fos synthesis within POMC neurons.  相似文献   

7.
1.  Studies were performed to determine the changes in immunoreactive (IR) type II glucocorticoid receptors of the ventral horn of the spinal cord produced by adrenalectomy (ADX), dexamethasone (DEX) treatment, and spinal cord transection in rats.
2.  These treatments did not significantly affect the number of IR neurons of the ventral horn; however, staining intensity was enhanced after ADX and decreased following 4 days of DEX. A similar response pattern was observed for glial-type cells.
3.  In control rats, about half of the ventral horn motoneurons were surrounded by immunoreactive glial perineuroral cells. These perineuronal cells increased after ADX (77% of counted neurons) and decreased following DEX treatment (32%;P < 0.05).=">
4.  Two days after transection, staining was intensified in ventral horn motoneurons and glial cells located in the spinal cord below the lesion. Immunoreactive perineuronal cells increased to 85% of counted neurons, from a value of 66% in sham-operated rats (P < 0.05).=">
5.  These findings suggest considerable plasticity of the spinal cord GCR in response to changes in hormonal levels and experimental lesions. It is possible that factors involved in cell to cell communication with transfer of hypothetical regulatory molecules may play roles in GCR regulation and the increased immunoreaction of glia associated with neurons following transection and ADX.
  相似文献   

8.
After confirming that adrenalectomy per se does not affect skeletal muscle protein synthesis rates, we examined whether endogenously produced glucocorticoids modulate the effect of physiological insulin concentrations on protein synthesis in overnight-fasted rats 4 days after either a bilateral adrenalectomy (ADX), ADX with dexamethasone treatment (ADX + DEX), or a sham operation (Sham; n = 6 each). Rats received a 3-h euglycemic insulin clamp (3 mU. min(-1). kg(-1)). Rectus muscle protein synthesis was measured at the end of the clamp, and the phosphorylation states of protein kinase B (Akt), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), and ribosomal protein S6 kinase (p70(S6K)) were quantitated before and after the insulin clamp. The basal phosphorylation states of Akt, 4E-BP1, and p70(S6K) were similar between ADX and Sham rats. Insulin significantly enhanced the phosphorylation of Akt (P < 0.03), 4E-BP1 (P = 0.003), and p70(S6K) (P < 0.002) in ADX but not in Sham rats. Protein synthesis was significantly greater after insulin infusion in ADX than in Sham rats (P = 0.01). Glucocorticoid replacement blunted the effect of insulin on Akt, 4E-BP1, and p70(S6K) phosphorylation and protein synthesis. In conclusion, glucocorticoid deficiency enhances the insulin sensitivity of muscle protein synthesis, which is mediated by increased phosphorylation of translation initiation-regulatory proteins.  相似文献   

9.
The effects of naloxone (Nal) on basal and stress-induced PRL secretion were investigated in intact (N) adult male rats, as were its effects in rats with complete hypothalamic deafferentiation (CHD), in adrenalectomized (adrenX) rats, and in rats pretreated with dexamethasone (dex). Forty-five minutes subsequent to Nal administration (5mg/kg, BW, IP) basal serum levels of PRL were reduced by approximately 25% (p<0.05), in both N and CHD groups. PRL secretory responses to acute exposure to both photic and acoustic stress were markedly attenuated in Nal-injected, as compared to vehicle-injected animals. Basal serum PRL concentrations were elevated by 40% in adrenX rats (p<0.05), as compared to controls. In (p<0.05) in dex-treated rats, as compared to controls. In both these experimental groups, Nal administration caused significant reductions in serum PRL. This study demonstrates that stress-induced, as well as basal PRL secretion, is attenuated by Nal, and points to a hypothalamic site of action in this regard. Furthermore, these Nal effects are independent of glucocorticoid interactions with the CNS.  相似文献   

10.
To characterize the participation of vasopressin (AVP) and oxytocin (OT) in hypothalamus-pituitary-adrenal regulation after adrenalectomy (ADX), we evaluated corticosterone, ACTH, AVP and OT plasma concentrations and AVP and OT content of the paraventricular nucleus (PVN) at different periods (3 h, 1, 3, 7 and 14 days) in sham or ADX rats under basal conditions and after immobilization stress. ADX animals showed undetectable corticosterone levels, while sham animals showed a marked increase in corticosterone and ACTH 3 h after surgery, then lowering to basal control levels. ADX rats showed high basal ACTH levels with a triphasic response without changes after immobilization. After three hours, the ADX group showed higher OT levels than the sham group. OT was increased after immobilization stress in sham and ADX groups. AVP plasma levels did not change throughout the basal or stress studies in either group. There was a decrease in hypothalamic AVP content 1 and 3 days after ADX under basal and stress conditions. Plasma osmolality showed a significant decrease in the ADX group at 3, 7, and 14 days. In conclusion, there are different pituitary-adrenal axis set points after removal of the glucocorticoid negative feedback. The role of vasopressinergic and oxytocinergic neurons in the ACTH secretion after ADX or immobilization stress appears to differ. Magnocellular AVP is unlikely to contribute to ACTH secretion in response to ADX or immobilization stress. On the other hand, OT is elicited by immobilization stress and might contribute to the ACTH secretion during short-term ADX.  相似文献   

11.
Chen XQ  Du JZ 《Regulatory peptides》2002,105(3):197-201
We reported that hypoxia inhibited the growth hormone (GH) and induced somatostatin (SS) release from the hypothalamic median eminence (ME) of rats. This study is designed to examine the SS mRNA alterations in the periventricular nucleus (PeN) of the hypothalamus in rats and the possible involvement of glucocorticoid (GC) during hypoxia. Rats were exposed to hypoxia in a simulated hypobaric chamber. SS mRNA levels in the PeN were tested by in situ hybridization. Hypoxia of 5-km altitude (10.8% O(2)) for 2, 5 and 24 h increased the SS mRNA expression by 34.72%, 50.31% and 95.05% (p<0.05), respectively. Severe hypoxia of 7-km altitude (8.2% O(2)) enhanced the SS expression by 79.08% (p<0.01), 74.90% (p<0.01) and 71.40% (p<0.05), respectively. Prolonged hypoxia (5 km for 5 days) exposure augmented a 2.5-fold SS mRNA (p<0.001). One week post adrenalectomy (ADX), SS mRNA level was significantly increased. During hypoxia, 5 km for 5 h, SS mRNA in ADX rats was not further increased. An increased SS mRNA was showed by pretreatment with low dose of dexamethasone (DEX) (125 microg/kg, i.p.) to ADX animals but this increase was depressed by a high dose of DEX (500 microg/kg, i.p.). The data suggested that (1) hypoxia stimulated the expression of SS mRNA in the PeN of rat hypothalamus. (2) Increased circulating GC levels might play a role in upregulating the SS mRNA in the rat PeN during hypoxia.  相似文献   

12.
Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists improve insulin sensitivity and lipemia partly through enhancing adipose tissue proliferation and capacity for lipid retention. The agonists also reduce local adipose glucocorticoid production, which may in turn contribute to their metabolic actions. This study assessed the effects of a PPARgamma agonist in the absence of glucocorticoids (adrenalectomy, ADX). Intact, ADX, and intact pair-fed (PF) rats were treated with the PPARgamma agonist rosiglitazone (RSG) for 2 wk. RSG increased inguinal (subcutaneous) white (50%) and brown adipose tissue (6-fold) weight but not that of retroperitoneal (visceral) white adipose tissue. ADX but not PF reduced fat accretion in both inguinal and retroperitoneal adipose depots but did not affect brown adipose mass. RSG no longer increased inguinal weight in ADX and PF rats but increased brown adipose mass, albeit less so than in intact rats. RSG increased cell proliferation in white (3-fold) and brown adipose tissue (6-fold), as assessed microscopically and by total DNA, an effect that was attenuated but not abrogated by ADX. RSG reduced the expression of the glucocorticoid-activating enzyme 11beta-hydroxysteroid dehydrogenase 1 (11beta-HSD1) in all adipose depots. RSG improved insulin sensitivity (reduction in fasting insulin and homeostasis model assessment of insulin resistance, both -50%) and triacylglycerolemia (-75%) regardless of the glucocorticoid status, these effects being fully additive to those of ADX and PF. In conclusion, RSG partially retained its ability to induce white and brown adipose cell proliferation and brown adipose fat accretion and further improved insulin sensitivity and lipemia in ADX rats, such effects being therefore independent from the PPARgamma-mediated modulation of glucocorticoids.  相似文献   

13.
Uteroglobin (UG) or Clara cell protein (CC16), the main secretory product of bronchiolar Clara cells, plays an important protective role in the respiratory tract against inflammatory processes. In the lung, protein secretion is regulated by glucocorticoids, but also proinflammatory cytokines, such as interferon-gamma (IFN-) and TNF-, have been found to modulate the expression of this peptide. We have previously demonstrated that the acute exposure to an organophosphoreted insecticide induces an enhanced production of UG/CC16 by Clara cells. In the present report, we worked with intact and adrenalectomised (ADX) animals to study the mechanism involved in the UG/CC16 increase caused by the insecticide and the role played by a glucocorticoid (dexamethasone; DEX). In intact rats we found that DEX treatment could not reproduce such an increase of UG/CC16 synthesis with pharmacological doses. In ADX rats, even though glucocorticoid deprivation provoked a strong inhibition of UG/CC16 synthesis, the exposure to the organophosphoreted insecticide stimulated the synthesis of the protein, shown by the great accumulation of secretory granules in the cytoplasm of Clara cells and the increase of UG/CC16 detected by immunocytochemistry and western blot. These results imply that glucocorticoids are not essential to trigger the increase of UG/CC16 in response to an injury, and they also suggest an involvement of other molecules associated with inflammation. In coincidence with these observations, we have found that IFN-, a proinflammatory cytokine, increased after insecticide exposition in both groups, intact and ADX, mainly in ADX rats. The stimulation of UG/CC16 synthesis occurring during inflammatory processes of the respiratory tract caused by acute inhalation of a toxicant appears to be functional without the intervention of glucocorticoids and mediated by IFN- as a mechanism for local control of the inflammatory response.  相似文献   

14.
Both corticosterone and prolactin (PRL) levels increase in response to stress. In these studies we examined the effect of corticosterone on the PRL response to both physical (footshock) and psychological (novel environment) stress. Three groups of rats were used: sham adrenalectomized (SHAM), adrenalectomized (ADX), and adrenalectomized with corticosterone replacement (ADX+CORT). The corticosterone-treated animals received 80 ug corticosterone/ml drinking water. Blood samples were drawn via an indwelling cannula and PRL values determined using radioimmunoassay. ADX rats showed a consistently greater PRL response to being placed on a platform above water (novel environment) or when receiving intermittant footshock than did ADX+CORT rats. The PRL response of the latter group was similar to that of the SHAM animals. These findings indicate that corticosterone levels of an animal can significantly attenuate the magnitude of the PRL response to both physical and psychological stress. These findings further emphasize that the PRL response to stress is dependent not only upon the immediate action of the stressor, but also the prior stress history of the animal.  相似文献   

15.
In humans there is a circadian rhythm of leptin concentrations in plasma with a minimum in the early morning and a maximum in the middle of the night. By taking blood samples from adult male rats every 3 hr for 24 hr, we determined that a circadian rhythm of plasma leptin concentrations also occurs in the rat with a peak at 0130h and a minimum at 0730h. To determine if this rhythm is controlled by nocturnally released hormones, we evaluated the effect of hormones known to be released at night in humans, some of which are also known to be released at night in rats. In humans, prolactin (PRL), growth hormone (GH), and melatonin are known to be released at night, and adrenocorticotropic hormone (ACTH) release is inhibited. In these experiments, conscious rats were injected intravenously with 0.5 ml diluent or the substance to be evaluated just after removal of the first blood sample (0.3 ml), and additional blood samples (0.3 ml) were drawn every 10 min thereafter for 2 hr. The injection of highly purified sheep PRL (500 microg) produced a rapid increase in plasma leptin that persisted for the duration of the experiment. Lower doses were ineffective. To determine the effect of blockade of PRL secretion on leptin secretion, alpha bromoergocryptine (1.5 mg), a dopamine-2-receptor agonist that rapidly inhibits PRL release, was injected. It produced a rapid decline in plasma leptin within 10 min, and the decline persisted for 120 min. The minimal effective dose of GH to lower plasma leptin was 1 mg/rat. Insulin-like growth factor (IGF-1) (10 microg), but not IGF-2 (10 microg), also significantly decreased plasma leptin. Melatonin, known to be nocturnally released in humans and rats, was injected at a dose of 1 mg/rat during daytime (1100h) or nighttime (2300h). It did not alter leptin release significantly. Dexamethasone (DEX), a potent glucocorticoid, was ineffective at a 0. 1-mg dose but produced a delayed, significant increase in leptin, manifest 100-120 min after injection of a 1 mg dose. Since glucocorticoids decrease at night in humans at the time of the maximum plasma concentrations of leptin, we hypothesize that this increase in leptin from a relatively high dose of DEX would mimic the response to the release of corticosterone following stress in the rat and that glucocorticoids are not responsible for the circadian rhythm of leptin concentration. Therefore, we conclude that an increase in PRL secretion during the night may be responsible, at least in part, for the nocturnal elevation of leptin concentrations observed in rats and humans.  相似文献   

16.
L M Mai  J T Pan 《Life sciences》1990,47(14):1243-1251
The roles of oxytocin (OT) and vasopressin (AVP) on both basal and estrogen-induced prolactin (PRL) secretion were examined. Adult female Sprague-Dawley rats that were ovariectomized for 3 weeks and received estrogen treatment for 1 week were used. Intravenous administration of hormones and serial blood sampling were accomplished through indwelling intraatrial catheters which were implanted two days before. Plasma PRL levels were measured by radioimmunoassay. Oxytocin at a dose of 20 micrograms/rat stimulated a moderate PRL release in the morning and lower doses (5 and 10 micrograms) were without effect. Vasopressin was most effective at a dose of 5 micrograms/rat in stimulating PRL release, while consecutive injections of higher doses (10 and 20 micrograms) were less effective. In contrast, TRH, ranging from 1 to 8 micrograms/rat, induced a dose-dependent increases in PRL secretion. Using the effective dosages determined from the morning studies, repeated injections of either OT, AVP or their specific antagonists MPOMeOVT [( 1-(beta-mercapto-beta, beta-cyclopentamethylene propanoic acid), 2-(O-methyl)tyrosine, 8-ornithine]-vasotocin) and d (CH2)5Tyr(Me)AVP ([1-(beta-mercapto-beta, beta-cyclo-pentamethylene propionic acid), 2-(O-methyl)tyrosine, 8-arginine]-vasopressin), were given hourly between 1300 to 1800 h and blood samples were obtained hourly from 1100 to 1900 h. It was found that either OT or AVP significantly reduced the afternoon PRL surge, while their antagonists were not as effective. When OT or AVP were administered together with their specific antagonists, the inhibitory effects of either hormone on PRL surge were reversed. Thus it is concluded that both OT and AVP assume a non-specific stress-like effect on PRL release, in which basal secretion is stimulated and surge secretion is inhibited.  相似文献   

17.
The migration of gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode to the preoptic area (POA) from embryonic day 13 is important for successful reproduction during adulthood. Whether maternal glucocorticoid exposure alters GnRH neuronal morphology and number in the offspring is unknown. This study determines the effect of maternal dexamethasone (DEX) exposure on enhanced green fluorescent protein (EGFP) driven by GnRH promoter neurons (TG-GnRH) in transgenic rats dual-labelled with GnRH immunofluorescence (IF-GnRH). The TG-GnRH neurons were examined in intact male and female rats at different postnatal ages, as a marker for GnRH promoter activity. Pregnant females were subcutaneously injected with DEX (0.1 mg/kg) or vehicle daily during gestation days 13–20 to examine the number of GnRH neurons in P0 male offspring. The total number of TG-GnRH neurons and TG-GnRH/IF-GnRH neuronal ratio increased from P0 and P5 stages to P47–52 stages, suggesting temporal regulation of GnRH promoter activity during postnatal development in intact rats. In DEX-treated P0 males, the number of IF-GnRH neurons decreased within the medial septum, organum vasculosom of the lamina terminalis (OVLT) and anterior hypothalamus. The percentage of TG-GnRH neurons with branched dendritic structures decreased in the OVLT of DEX-P0 males. These results suggest that maternal DEX exposure affects the number and dendritic development of early postnatal GnRH neurons in the OVLT/POA, which may lead to altered reproductive functions in adults.  相似文献   

18.
The effect on prolactin (PRL) secretion of acute administration of new octapeptide analogs of somatostatin (SS) with an enhanced and prolonged growth hormone inhibitory activity was investigated in rats under various pretreatment conditions with estrogen and antidopaminergic drugs. Analog D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), at a dose of 5 micrograms/100 g body wt, did not decrease basal PRL levels in thiopental-anesthetized female rats, untreated or treated with estrogen benzoate (EB) (8 micrograms/rat) for 5 days. When haloperidol was used to elevate PRL level, a single injection of RC-121 inhibited PRL release in EB-pretreated female rats or untreated female and male rats. Analog D-Phe-Cys-Trp-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160), which has a potency similar to RC-121 in the tests on inhibition of GH, in a dose of 0.2 microgram/100 g body wt, did not lower the elevated PRL level induced by alpha-methyl-p-tyrosine and/or pretreatment with EB (100 micrograms/rat, 3 and 6 days before) in pentobarbital-anesthetized male rats. However, both analogs RC-121 and RC-160, in doses of 0.2 microgram/100 g body wt, decreased the PRL levels elevated by prolonged pretreatment with EB (100 micrograms/rat, twice a week for 3 weeks) in male rats. These results indicate that acute administration of these SS analogs can induce a prolonged inhibition of PRL release when PRL is acutely elevated by haloperidol or chronically elevated by 3 weeks of estrogen administration. Future additional studies are required to investigate the effects of chronic administration of these SS analogs on PRL levels.  相似文献   

19.
Glucocorticoids (GCs) are commonly reported to be immunosuppressive. Studies that support this involve the administration of synthetic GCs such as dexamethasone at high pharmacological doses and using in vitro assay systems that may have limited relevance to the role of GCs during normal in vivo immune responses. Therefore, the following experiments tested the conclusion that GCs are generally immunosuppressive. Adult male Sprague Dawley rats received adrenalectomy (ADX) or sham surgery. ADX rats were given either basal corticosterone (CORT) replacement in their drinking water (25 microg/ml) or no CORT. Rats were immunized with keyhole limpet hemocyanin (KLH), and blood samples were taken. ADX rats with no CORT replacement had reduced anti-KLH IgM and IgG responses compared with sham-operated controls. ADX rats that received basal CORT replacement had partially restored anti-KLH IgM, but still had suppressed anti-KLH IgG. Administration of GC receptor type I (RU28318) and type II (RU40555) receptor antagonists also reduced the anti-KLH IgM and IgG responses. ADX rats that received both basal CORT replacement and low dose injections of CORT on days 5 and 7 after KLH had anti-KLH IgG levels equal to those of sham-operated controls. Finally, the GC elevation 4-7 days after immunization may play a role in stimulating the IgM to IgG2a switch. GC receptor blockade reduced the anti-KLH IgG2a and splenic IFN-gamma, but not the anti-KLH IgG1, response. Given that IFN-gamma is an important regulator of the IgM to IgG2a switch, it is possible that the small rise in GC found 4-7 days after KLH facilitates IgG2a isotype switching.  相似文献   

20.
M H Morehead  R R Gala 《Life sciences》1987,41(12):1491-1498
Experiments were performed to determine whether restraint stress decreases the two prolactin (PRL) surges in pseudopregnant (PSP) rats in a manner similar to the stress-induced decrease of the proestrous PRL surge. Adrenal involvement as well as adaptation of the response was also investigated. Vaginal cycles were followed and animals exhibiting 2-3 normal cycles were cervically stimulated (CS) electromechanically to induce PSP. In one experiment the effect of adrenalectomy (ADX) on the nocturnal surge (NS) was investigated and was found to have no effect. In another set of experiments the effect of restraint stress was investigated. Immediately following an initial sample, the animals to be stressed had their hind legs tied together with plastic coated bell wire. Subsequent samples were taken for 3 hours. Restraint stress decreased the NS to 15% of the initial value within 30 minutes. ADX did not alter this response. Furthermore, 6-9 days of 3 hours of restraint stress did not attenuate the stress-induced decrease of the NS. Restraint stress also depressed the diurnal surge in PSP rats. These results indicate that restraint stress applied during the two PRL surges of PSP results in significant decreases in plasma PRL and that this response is not altered by ADX or by habituation to the stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号