首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Normal male rats received six subcutaneous injections of 8.0 pmoles of tritiated 25-hydroxy vitamin D3 ([3H]25(OH)D3) or one intrajugular injection of 8.0 pmoles of high specific radioactivity [3H]-25(OH)D3. Lipid extracts of several tissues including the reproductive organs were subjected to sephadex LH-20 chromatography to determine the tissue distribution of the injected material and of the in vivo produced dihydroxylated cholecalciferol metabolites. The nature of the putative 25(OH)D3 and the 24,25-dihydroxy vitamin D3 (24,25(OH)2D3) from epididymis tissue was confirmed by high performance liquid chromatography (HPLC). The epididymis levels of 24,25(OH)2D3 were considerably higher in the cauda epididymis compared to kidney and caput epididymis levels. The other metabolites levels in this tissue were similar to those determined in the kidneys. The amounts of the three metabolites found in all other tissues were well below the cauda epididymis or kidney levels. The findings suggest a possible physiological role for 24,25(OH)2D3 in the epididymis, and are also consistent with data of others which indicated a possible action of 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) in rat reproductive tissues.  相似文献   

2.
The effect of 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] on 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] metabolism was examined in rats fed on a low-calcium diet. These rats exhibit hypocalcaemia, high urinary cyclic AMP excretion, a markedly elevated serum 1,25(OH)2D concentration and low serum concentrations of both 24,25(OH)2D and 25(OH)D. When the rats are treated orally with 1, 5 or 10 micrograms of 24,25(OH)2D3/100 g every day, there is a dramatic decrease in serum 1,25(OH)2D concentration in a dose-dependent manner concomitant with an increase in serum 24,25(OH)2D concentration. Serum calcium concentration and urinary cyclic AMP excretion are not significantly affected by the 24,25(OH)2D3 treatment, which suggests that parathyroid function is not affected by the 24,25(OH)2D3 treatment. The 25(OH)D3 1 alpha-hydroxylase activity measured in kidney homogenates is markedly elevated in rats on a low-calcium diet but is not affected by any doses of 24,25(OH)2D3. In contrast, recovery of intravenously injected [3H]1,25(OH)2D3 in the serum is decreased in 24,25(OH)2D3-treated rats. Furthermore, when [3H]1,25(OH)2D3 is incubated in vitro with kidney or intestinal homogenates of 24,25(OH)2D3-treated rats there is a decrease in the recovery of radioactivity in the total lipid extract as well as in the 1,25(OH)2D3 fraction along with an increase in the recovery of radioactivity in the water-soluble phase. These results are consistent with the possibility that 24,25(OH)2D3 has an effect on 1,25(OH)2D3 metabolism, namely that of enhancing the degradation of 1,25(OH)2D3. However, because a considerable proportion of the injected 24,25(OH)2D3 is expected to be converted into 1,24,25(OH)3D3 by renal 1 alpha-hydroxylase in 24,25(OH)2D3-treated rats, at least a part of the decrease in serum 1,25(OH)2D concentration may be due to a competitive inhibition by 24,25(OH)2D3 of the synthesis of 1,25(OH)2D3 from 25(OH)D3. Thus the physiological importance of the role of 24,25(OH)2D3 in regulating the serum 1,25(OH)2D concentration as well as the mechanism and metabolic pathway of degradation of 1,25(OH)2D3 remain to be clarified.  相似文献   

3.
The time course of in vivo metabolism of 24,25-dihydroxyvitamin D3 in rats has been examined. Several tissues were surveyed in an effort to discover new metabolites of 24,25-dihydroxyvitamin D3 and to estimate the concentrations of previously identified metabolites. Rapidly growing male rats were dosed with 24,25-dihydroxyvitamin D3 orally until plasma concentrations of 24,25-dihydroxyvitamin D3 were at steady state. 24,25-Dihydroxyvitamin [3-3H]D3 was then administered. At 10 min and 1, 6, 15, 24, 96, and 192 h after dosing, the animals were killed, and plasma, liver, intestine, and bones were analyzed with a newly developed gradient straight-phase high performance liquid chromatography system. The high performance liquid chromatography system is capable of base-line resolution of most of the major vitamin D metabolites. 24,25-Dihydroxyvitamin D3 clearance from plasma, liver, and kidney but not intestine followed a two-compartment model. 24,25-Dihydroxyvitamin D3 disappeared from plasma with a half-life of 0.55 h (fast phase) and 73.8 h (slow phase). Only two lipid-soluble metabolites of 24,25-dihydroxyvitamin D3 were detected: 24-oxo-25-hydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3. These compounds circulate at very low concentrations in the plasma (50 pg/ml of plasma).  相似文献   

4.
A competitive protein-binding radioassay for 24,25-dihydroxyvitamin D [24,25-(OH)2D] in human serum has been developed. Whereas small amounts of [3H]24,25-(OH)2D must be biosynthesized in order to trace the efficiency of the extraction and chromatographic procedures, tritiated 25-hydroxyvitamin D3 ([3H]25-OHD3) can be used as the assay tracer. Since 25-OHD3 and 24,25-(OH)2D3 are equipotent in their competitive displacement of [3H]25-OHD3 from rat serum, 25-OHD3 can be used as the assay standard. Liquid-gel partition chromatography on small columns of Sephadex LH-20 can reliably isolate 24,25-(OH)2D by batch elution. The purity of biosynthesized [3H]24,25-(OH)2D3 and the 24,25-(OH)2D fraction isolated from serum was confirmed by high-pressure chromatography on 0.2 × 50 cm columns of 10-μm silica. Serum 24,25-(OH)2D levels averaged 16% of the serum 25-OHD concentrations in normal subjects. Since chronic hemodialysis patients, without kidneys, had normal serum 24,25-(OH)2D levels, significant extrarenal 25-hydroxycalciferol 24-hydroxylase activity occurs in these subjects. Since the present assay represents a reasonably simple extension of 25-OHD assay methodology, it should prove to be a useful technique in the analysis of clinical disorders of vitamin D metabolism.  相似文献   

5.
The metabolism of [3H]vitamin D3 was studied in cultured human keratinocytes (CHK). Intact CHK were incubated for 1, 6, 12, 24 and 48 h with [3H]vitamin D3 and the lipid soluble fractions from the media and cells were extracted by high-performance liquid chromatography (HPLC). Vitamin D3 and its metabolites, 25-OH-D3, 24,25(OH)2D3 and 1,25(OH)2D3 were added to the extracts, as markers, prior to HPLC. HPLC analysis of the lipid extracts did not reveal any monohydroxylated metabolites. CHK incubated for one hour with [3H]25-OH-D3 showed a 10 +/- 4% conversion to [3H]1,25(OH)2D3 whereas no conversion to [3H]1,25(OH)2D3 was observed in control CHKs that were boiled prior to incubation with [3H]25-OH-D3. These findings suggest that cultured neonatal keratinocytes are incapable of metabolizing vitamin D3 to 25-OH-D3.  相似文献   

6.
Developmental changes in responsiveness to vitamin D metabolites   总被引:1,自引:0,他引:1  
We have demonstrated that epiphyseal chondroblasts contain specific receptors for 24R,25-dihydroxy vitamin D3(24,25(OH)2D3) while diaphyseal osteoblasts contain specific receptors for 1 alpha 25-dihydroxy vitamin D3(1,25(OH)2D3). Both metabolites induce DNA synthesis and creatine kinase (CKBB) activity. We have also found that the responsiveness of rat kidney to these metabolites changes during development. In embryonic and early postnatal stages, the kidney responds to 24,25(OH)2D3, later to both 24,25(OH)2D3 and 1,25(OH)2D3, and the mature kidney only to 1,25(OH)2D3. These responses correlate with changes in the specific receptors present in the kidney. Furthermore, we have compared developmental changes in skeletal (epiphysis, diaphysis and mandibular condyle) and non-skeletal (kidney, cerebellum, cerebrum, liver and pituitary) tissue in both rat (a postnatal developer) and rabbit (a perinatal developer). Epiphyseal or diaphyseal chondroblasts at any stage of development were predominantly responsive to 24,25(OH)2D3, whereas osteoblasts were responsive to 1,25(OH)2D3. In contrast, condylar chondroblasts, kidney, cerebellum and pituitary responded to 24,25(OH)2D3 during early development and subsequently developed responsiveness to 1,25(OH)2D3. Using primary cell cultures from kidneys at different stages of maturation, we showed the same developmental pattern as in vivo. Chronic treatment of the cells with 24,25(OH)2D3, but not 1,25(OH)2D3, caused precocious development of responsiveness to 1,25(OH)2D3 in culture. We suggest that 24,25(OH)2D3 acts as a maturation factor, during early development in kidney, and probably in other tissues, possibly by induction of receptor to 1,25(OH)2D3, accompanied by down-regulation of its own receptor.  相似文献   

7.
8.
The influence of short-(7 days) and long-term (28 days) hypokinesia on 25-hydroxyvitamin D3 metabolism was investigated in rats fed on a normal calcium (0.6%), normal phosphorus (0.6%), vitamin D-supplemented diet. The animals were given a single intraperitoneal dose of tritiated [26,27-3H]25(OH)D3 (200 pmol) eighteen hours before sacrifice. [3H]Labelled vitamin D3 metabolites were separated by high performance liquid chromatographic procedure, and their radioactivity levels in serum, kidney, intestinal mucosa and femoral bone were measured. Long-term hypokinesia resulted in decreased levels of [3H]1.25(OH)2D3 and increased levels of [3H]24.25(OH)2D3 in serum and kidney (3.15 +/- 0.62 vs. 4.33 +/- 0.41% and 5.34 +/- 0.69 vs. 3.76 +/- 0.29% for [3H]1.25(OH)2D3 and [3H]24.25(OH)2D3 in serum; 7.52 +/- 0.69 vs. 11.6 +/- 0.79% and 9.33 +/- 0.55 vs. 5.94 +/- 0.24% for those in kidney). The levels of [3H]1.25(OH)2D3 as well as of [3H] 24.25(OH)2D3 were decreased in intestinal mucosa and bone (21.5 +/- 1.46 vs. 30.1 +/- 3.04% and 7.30 +/- 0.58 vs. 9.18 +/- 0.78% for [3H]1.25(OH)2D3 and [3H]24.25(OH)2D3 in intestinal mucosa; 6.39 +/- 06.5 vs. 11.5 +/- 1.64% and 7.78 +/- 0.71 vs. 13.9 +/- 1.28% for those in bone). The data obtained suggest a suppressed synthesis of 1.25(OH)2D3 and enhanced production of 24.25(OH)2D3 in kidney as well as a diminished binding of 24.25(OH)2D3 in intestinal mucosa and bone in hypothetic rats. Possible causes of variations in biosynthesis of vitamin D3 active metabolites, and role of these variations in the disorders of calcium metabolism and bone state during hypokinesia are discussed.  相似文献   

9.
Responses of cultured cartilage cells to metabolites of vitamin D3 were studied. Cells were obtained from the epiphyseal growth plate of rachitic chicks and were exposed to physiological and pharmacological concentrations of three metabolites of vitamin D3, 25 hydroxyvitamin D3 (25(OH)D3), 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). 1,25(OH)2D3 was found to reduce L-[U-14C]leucine incorporation into proteins and Na2 35SO4 incorporation into proteoglycans. The synthesis of 24,25(OH)2D3 from 25(OH)D3 was stimulated upon addition of 1,25(OH)2D3 to the cultures. Physiological concentrations of 24,25(OH)2D3 stimulated protein and proteoglycan synthesis. These findings support the notion that vitamin D3, through its active dihydroxylated metabolites, is directly involved in cartilage cells metabolism and healing of rickets.  相似文献   

10.
It is well documented that Vitamin D3 metabolites and synthetic analogs are metabolized to their epimers of the hydroxyl group at C-3 of the A-ring. We investigated the C-3 epimerization of Vitamin D3 metabolites in various cultured cells and basic properties of the enzyme responsible for the C-3 epimerization. 1alpha,25-Dihydroxyvitamin D3 [1alpha,25(OH)2D3], 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] were metabolized to the respective C-3 epimers in UMR-106 (rat osteosarcoma), MG-63 (human osteosarcoma), Caco-2 (human colon adenocarcinoma), LLC-PK1 (porcine kidney) and HepG2 (human hepatoblastoma)] cells, although the differences existed in the amount of each C-3 epimer formed with different cell types. In terms of maximum velocity (Vmax) and Michaelis constant (Km) values for the C-3 epimerization in microsome fraction of UMR-106 cells, 25(OH)D3 exhibited the highest specificity for the C-3 epimerization among 1alpha,25(OH)2D3, 25(OH)D3 and 24,25(OH)2D3. C-3 epimerization activity was not inhibited by various cytochrome P450 inhibitors and antiserum against NADPH cytochrome P450 reductase. Neither CYP24, CYP27A1, CYP27B1 nor 3(alpha --> beta) -hydroxysteroid epimerase (HSE) catalyzed the C-3 epimerization in vitro. Based on these results, the enzyme responsible for the C-3 epimerization of Vitamin D3 are thought to be different from already-known cytochrome P450-related Vitamin D metabolic enzymes and HSE.  相似文献   

11.
Kidney homogenates from chicks fed a vitamin D-deficient diet for 10 days and supplemented with 6.5 nmol of vitamin D3 48 hr prior to sacrifice metabolized invitro [3H]-25-hydroxyvitamin D3 (25-OH-D3) to 24,25-dihydroxyvitamin D3 [24,25-(OH)2-D3] and 3 other metabolites (peaks A, C and E). When the homogenates were incubated with purified [3H]-24,25-(OH)2-D3, 3 similar metabolites (peaks A′, C′ and E′) were produced. On high pressure liquid chromatography, peaks A, C and E migrated to exactly the same respective positions as peaks A′, C′ and E′. Kidney homogenates from D-deficient chicks failed to produce these metabolites from [3H]-25-OH-D3 or [3H]-24,25-(OH)2-D3. These results strongly suggest that the new metabolites reported here are synthesized via 24,25-(OH)2-D3 in the kidney of chicks supplemented with vitamin D3.  相似文献   

12.
There is increasing evidence that the vitamin D metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) has endocrine actions. In the current work, we report that an endogenous binding protein for 24,25(OH)2D3 is catalase, based on sequence analysis of the isolated protein. An antibody (Ab 365) generated against equivalent protein recognized bovine catalase and a 64 kDa band in subcellular fractions of chick intestine. A commercially available anti-catalase antibody reduced specific [3H]24,25(OH)2D3 binding in subcellular fractions of chick intestine by greater than 65%, relative to the same fractions treated with an unrelated antibody (Ab 099). The same commercially available anti-catalase was able to block the inhibitory actions of 24,25(OH)2D3 on 32P uptake in isolated intestinal epithelial cell suspensions. We subsequently characterized binding of steroid to commercially available catalase, and found that between 0 and 5 nM of enzyme added to subcellular fraction P2 (20,000g, 10-min post-nuclear pellet) resulted in a linear increase in the amount of [3H]24,25(OH)2D3 specifically bound. Additional studies indicated that 25(OH)D3 was an effective competitor for binding, whereas 1,25(OH)2D3 only poorly displaced [3H]24,25(OH)2D3. Saturation analyses with added catalase yielded a physiologically relevant affinity constant (KD=5.6+/-2.7 nM) and a Bmax=209+/-34 fmols/mg protein, comparable to previous studies using purified basal lateral membranes or vesicular fractions. Moreover, in a study on subcellular fractions isolated from chickens of varying ages, we found that in females, both specific [3H]24,25(OH)2D3 binding and catalase activity increased from 7- to 58-week-old birds, whereas in males, elevated levels of both parameters were expressed in preparations of 7- and 58-week-old birds. The data suggest that signal transduction may occur through modulation of hydrogen peroxide production.  相似文献   

13.
The human promyelocytic leukemia cell line HL-60 undergoes macrophage-like differentiation after exposure to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active metabolite of vitamin D3. In the current study, we demonstrate that 1,25(OH)2D3 also regulates 25-hydroxyvitamin D3 [25(OH)D3] metabolism in HL-60 cells. The presence of 1,25(OH)2D3 in the culture medium of HL-60 cells stimulated the conversion of 7-10% of the substrate [25(OH)D3] to a more polar metabolite, which was identified as 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] from the elution positions on sequential HPLC systems and the sensitivity to periodate treatment. The HL-60 subclone HL-60 blast, which is unresponsive to 1,25(OH)2D3 in terms of differentiation, also responded to 1,25(OH)2D3 treatment with the production of 24,25(OH)2D3. Maximal stimulation of 24,25(OH)2D3-synthesis (approximately 7 pmol/5 X 10(6) cells) in HL-60 cells was noted with a 12-h exposure to 10(-9) M 1,25(OH)2D3. The ability of vitamin D3 metabolites other than 1,25(OH)2D3 to induce the synthesis of 24,25(OH)2D3 in HL-60 cells was, with the exception of 1 alpha-hydroxyvitamin D3, in correlation with their reported affinities for the specific 1,25(OH)2D3 receptor which is present in HL-60 cells. Treatment of HL-60 cells with phorbol diesters abolished the 1,25(OH)2D3 responsiveness, while treatment with dimethylsulfoxide and interferon gamma did not markedly alter the 25(OH)D3 metabolism of HL-60 cells. Small amounts (approximately 1% of substrate) of two 25(OH)D3 metabolites, which comigrated with 5(E)- and 5(Z)-19-nor-10-keto-25-hydroxyvitamin D3 on two HPLC solvent systems, were synthesized by HL-60 cells, independently from 1,25(OH)2D3 treatment or stage of cell differentiation. Our results indicate that 1,25(OH)2D3 influences 25(OH)D3 metabolism of HL-60 cells independently from its effects on cell differentiation.  相似文献   

14.
We have examined the ability of blood-derived monocytes and macrophages isolated from a patient with alveolar rhabdomyosarcoma and hypercalcaemia, to form 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) or 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25(OH)2D3) from 25-hydroxyvitamin D3 (25(OH)D3). Adherent monocyte-macrophage cells incubated with 25(OH)D3 over the initial 2 days in culture synthesized 1.9 pmol 24,25(OH)2D3/h/incubation (representing 0.63 pmol/h/10(6) cells), whereas macrophages synthesized 1.03 and 1.15 pmol 1 alpha,25(OH)2D3/h/incubation after 1 and 4 weeks in culture respectively. In a further experiment synthesis of 1 alpha,25(OH)2D3 by long-term cultured macrophages fell from 2.25 to 0.04 pmol/h/incubation following exposure to 10 nM 1 alpha,25(OH)2D3 for 7 days, whereas 24,25(OH)2D3 synthesis was induced (0.46 pmol/h/incubation). The vitamin D3 metabolites were identified by co-chromatography with authentic 24,25(OH)2D3 or 1 alpha,25(OH)2D3 in three different high-performance liquid chromatography systems. Serum 1 alpha,25(OH)2D3 in the patient was markedly suppressed at 5 pg/ml (normal 20-50 pg/ml) indicating that raised 1 alpha,25(OH)2D3 was not the cause of the hypercalcaemia, but rather, that raised calcium may have suppressed renal 1 alpha,25(OH)2D3 synthesis. Administration of APD (3-amino-1-hydroxypropylidine-1,1-bisphosphonate) corrected the hypercalcaemia in the patient suggesting that increased bone resorption was responsible for the raised calcium. The results of this study show for the first time that immature blood derived monocyte-macrophage cells can synthesize 24,25(OH)2D3 before they mature into macrophages able to synthesize 1 alpha,25(OH)2D3.  相似文献   

15.
The effect of 24,25(OH)2D3 on 1,25(OH)2D3-induced hypercalcemia was studied in normal rats. Serum (S) levels and urinary excretion of Ca2+ (UCaV) were measured in (a) control rats, (b) rats receiving a daily sc injection of 54 ng 1,25(OH)2D3, (c) rats receiving 24,25(OH)2D3 in the same dose and same manner, and (d) rats receiving 1,25(OH)2D3 + 24,25(OH)2D3. The animals were housed in metabolic cages and 24-hr urine specimens were collected. After 24 hr SCa2+ increased similarly with 1,25(OH)2D3 and with 1,25(OH)2D3 + 24,25(OH)2D3, while 24,25(OH)2D3 alone did not change SCa2+. UCaV after 24 hr increased significantly less (P less than 0.025) with 1,25(OH)2D3 + 24,25(OH)2D3 than with 1,25(OH)2D3 alone. After 5 days of 1,25(OH)2D3, SCa2+ rose from 5.1 +/- 0.15 to 6.29 +/- 0.08 whereas 1,25(OH)2D3 + 24,25(OH)2D3 effected a greater increase in SCa2+ up to 6.63 +/- 0.09 (P less than 0.01). 24,25(OH)2D3 alone did not change SCa2+. UCaV after 5 days of treatment rose similarly with 1,25(OH)2D3 and with 1,25(OH)2D3 + 24,25(OH)2D3. After 10 days of 1,25(OH)2D3 SCa2+ was 6.17 +/- 0.15 meq/liter while with the combination SCa2+ rose to 6.74 +/- 0.2 (P less than 0.025). 24,25(OH)2D3 alone did not change SCa2+. These results show that (a) 24,25(OH)2D3 alone does not alter SCa2+ in normal rats, (b) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 enhances the hypercalcemic response to 1,25(OH)2D3 without a parallel increase in UCaV, and (c) it is suggested that the effect of 24,25(OH)2D3 on serum Ca2+ level, at least partly, may result from its hypocalciuric effect.  相似文献   

16.
Khanal RC  Smith NM  Nemere I 《Steroids》2007,72(2):158-164
Phosphate homeostasis is controlled in part by absorption from the intestine, and reabsorption in the kidney. While the effect of Vitamin D metabolites on enterocytes is well documented, in the current study we assess selected responses in primary cultures of kidney cells. Time course studies revealed a rapid stimulation of phosphate uptake in cells treated with 1,25(OH)(2)D(3), relative to controls. Dose-response studies indicated a biphasic curve with optimal stimulation at 300 pM 1,25(OH)(2)D(3) and inhibition at 600 pM seco-steroid. Antibody 099--against the 1,25D(3)-MARRS receptor - abolished stimulation by the steroid hormone. Moreover, phosphate uptake was mediated by the protein kinase C pathway. The metabolite 24,25(OH)(2)D(3), which was found to inhibit the rapid stimulation of phosphate uptake in intestinal cells, had a parallel effect in cultured kidney cells. Finally, the 24,25(OH)(2)D(3) binding protein, catalase, was assessed for longer term down regulation. In both intestinal epithelial cells and kidney cells incubated with 24,25(OH)(2)D(3) for 5-24h, both the specific activity of the enzyme and protein levels were decreased relative to controls, while 1,25(OH)(2)D(3) increased both parameters over the same time periods. We conclude that the Vitamin D metabolites have similar effects in both kidney and intestine, and that 24,25(OH)(2)D(3) may have effects at the level of gene expression.  相似文献   

17.
The yolk sac of the pregnant rat which functions as a true placenta is a target organ for vitamin D. This tissue can hydroxylate in position 24 both 25-hydroxy- and 1,25-dihydroxyvitamin D3 (25-OHD3 and 1,25-(OH)2D3). The present report describes an in vitro model for the study of 1,25-(OH)2D3 action on the further metabolism of 25-OH[3H]D3 and 1,25-(OH)2[3H]D3 by yolk sac. The tissue explants were preincubated with 1,25-(OH)2D3 for 18 h in a serum-free culture medium. Physiological concentrations of 1,25-(OH)2D3 were the most effective in stimulating (7.5-fold) the 1,25-(OH)2D3 24-hydroxylase, while the 25-OHD3 24-hydroxylase stimulation (4-fold) required a 1,25-(OH)2D3 concentration of 10(-7) M. The stimulating effect of 1,25-(OH)2D3 on the 1,25-(OH)2D3 24-hydroxylase was temperature-dependent, and, since its was inhibited by actinomycin D and cycloheximide, required de novo protein synthesis. 1,24,25-(OH)3D3, 25-OHD3, and 24,25-(OH)2D3 were 10- to 1000-fold less potent than 1,25-(OH)2D3 in inducing the 1,25-(OH)2D3 hydroxylase. Our results strongly suggest that 1,25-(OH)2D3 regulated the 1,25-(OH)2D3 24-hydroxylase by a receptor-mediated process. Furthermore, 1,25-(OH)2D3 at 10(-9) M induced within 4 h an increase of its own degradation and the formation of an as yet unidentified major 1,25-(OH)2[3H]D3 metabolite. We conclude that the yolk sac can participate in the regulation of 1,25-(OH)2D3 concentration in the fetoplacental unit.  相似文献   

18.
In pregnant rats it has been possible to show that the distribution of cholecalciferol metabolites in their fetuses reflects the distribution of these metabolites in the blood. In these experiments, pregnant rats were maintained on a vitamin D deficient diet but were supplemented with radiolabelled cholecalciferol. The metabolites found were 25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol and, to a lesser extent, cholecalciferol. 1,25-Dihydroxycholecalciferol was not detected in fetal tissues, despite the ability of fetal kidney homogenates to hydroxylate 25-hydroxycholecalciferol in C-1. Kidney homogenates of newborn pups were found to possess marked activity of 25-hydroxycholecalciferol-24-hydroxylase, which was retained even in hypocalcemic pups born to pregnant rats that were fed a low-calcium diet. Injection of radiolabeled cholecalciferol to newborn pups resulted in the formation of 25-hydroxycholecalciferol and 24,25-dihydroxycholecalciferol. 1,25-Dihydroxycholecalciferol was not detected. Tissues thought of as target organs for vitamin D (in pregnant rats), namely, intestine, kidney and bone, were found to contain none or very little 1,25-dihydroxycholecalciferol. Mammary glands obtained from lactating rats were found to contain mainly the unchanged vitamin.  相似文献   

19.
Glucocorticoids may induce osteopenia in experimental animals and in man. In order to study the possible effects of vitamin D metabolites in the prevention of glucocorticoid-induced osteopenia in rats, we administered 1 alpha(OH)-vitamin D3, 24,25(OH)2-vitamin D3 or a combination of both metabolites, by intragastric intubation, to rats treated daily by intramuscular injections of 10 mg/kg cortisone acetate. Treatment with the vitamin D metabolites started after 1 month of glucocorticoid therapy, at the time osteopenia was already present. Cortisone acetate decreased the gain weight, increased alkaline phosphatase (AP) and decreased Ca serum levels. It also decreased tibial wet and ash weight and tibial Ca content. Computerized histomorphometry of sections from the upper tibia showed decreased epiphyseal bone volume and increased bone marrow volume; decreased height of hypertrophic cartilage in the growth plate and decreased amount of persisting cartilage in the metaphyseal bone trabeculae were also observed. Administration of 24,25(OH)2D3 alone did not reduce these glucocorticoid-induced bone changes and sometimes even worsened them. 1 alpha(OH)D3 reversed many of the deleterious effects of cortisone acetate. It reduced serum AP levels, increased serum Ca levels, increased bone ash weight, epiphyseal and metaphyseal bone volume, with a concomitant reduction in epiphyseal and metaphyseal bone marrow volume. The best results were obtained by a combination of 1 alpha(OH)D3 and 24,25(OH)2D3. It is presumed that both metabolites are needed to reduce the impact of glucocorticoids on bone. 1 alpha(OH)2D3 acts on the gut, increasing Ca absorption (which was decreased by glucocorticoids), and 24,25(OH)2D3 directly acts on bone to enhance bone formation and mineralization.  相似文献   

20.
The effect of 24,25(OH)2D3 on 1,25(OH)2D3-induced hypercalcemia was studied in parathyroidectomized (PTX) rats for 10 days. Serum (S) and urinary Ca excretion (UCaV) were measured in (a) control rats, (b) rats receiving a daily sc injection of 54 ng 1,25(OH)2D3, (c) rats receiving 24,25(OH)2D3 in the same dose and same manner, and (d) rats receiving 1,25(OH)2D3 + 24,25(OH)2D3. Our results show that (i) 24,25(OH)2D3 alone does not increase SCa2+ in PTX rats, (ii) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 enhances the hypercalcemic response to 1,25(OH)2D3 without a parallel increase in UCaV, (iii) combined administration of 1,25(OH)2D3 + 24,25(OH)2D3 reduces the rise in urinary excretion of Ca2+ compared with that of rats receiving 1,25(OH)2D3 alone for 10 days, and (iv) these alterations are independent of parathyroid hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号