首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The objective of this simulation study was to compare the effect of the number of QTL and distribution of QTL variance on the accuracy of breeding values estimated with genomewide markers (MEBV). Three distinct methods were used to calculate MEBV: a Bayesian Method (BM), Least Angle Regression (LARS) and Partial Least Square Regression (PLSR). The accuracy of MEBV calculated with BM and LARS decreased when the number of simulated QTL increased. The accuracy decreased more when QTL had different variance values than when all QTL had an equal variance. The accuracy of MEBV calculated with PLSR was affected neither by the number of QTL nor by the distribution of QTL variance. Additional simulations and analyses showed that these conclusions were not affected by the number of individuals in the training population, by the number of markers and by the heritability of the trait. Results of this study show that the effect of the number of QTL and distribution of QTL variance on the accuracy of MEBV depends on the method that is used to calculate MEBV.  相似文献   

2.

Background

Although simulation studies show that combining multiple breeds in one reference population increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using genotypes of Holstein-Friesian and Jersey cows.

Methods

Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low, very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000 Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP modelsincluding a random across- and a within-breed animal effect.

Results

For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased, especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with and without a random within-breed animal effect, probably because of insufficient power to separate across- and within-breed animal effects.

Conclusions

Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12711-015-0124-6) contains supplementary material, which is available to authorized users.  相似文献   

3.
Kernel number per ear (KNE) is a maize yield component and an important breeding target for improving grain yield. As a complex quantitative trait, KNE has been assumed to be controlled by a set of quantitative trait loci (QTLs) with minor effects. Identification and genetic evaluation of these QTLs are prerequisites for improving KNE with a molecular breeding approach. In this study, we developed the chromosome segment introgression line SL19-41, which exhibited 95.60% recovery of the Ye478 background and showed a higher KNE and grain yield. The plant architecture and flowering time of SL19-41 were not significantly different from those of Ye478. We employed introgression line (IL)-derived mapping populations and identified a major QTL, KNE4, which is partially dominant. KNE4 was validated in a backcross population and a set of sub-introgression lines and was delimited to a 440-kb genomic region in Bin4.07. An allele included in the introgression fragment had a synergistic effect, noticeably increasing KNE and showing the potential to improve KNE in Ye478. Subsequently, the association between sequence polymorphism in the QTL interval and KNE variation revealed a putative candidate gene that encoded a long-chain acyl-CoA synthetase responsible. This result provides an available locus for the molecular improvement of KNE and for the isolation of functional genes underlying this QTL.  相似文献   

4.
Estimated breeding values (EBVs) and genomic enhanced breeding values (GEBVs) for milk production of young genotyped Holstein bulls were predicted using a conventional BLUP – Animal Model, a method fitting regression coefficients for loci (RRBLUP), a method utilizing the realized genomic relationship matrix (GBLUP), by a single-step procedure (ssGBLUP) and by a one-step blending procedure. Information sources for prediction were the nation-wide database of domestic Czech production records in the first lactation combined with deregressed proofs (DRP) from Interbull files (August 2013) and domestic test-day (TD) records for the first three lactations. Data from 2627 genotyped bulls were used, of which 2189 were already proven under domestic conditions. Analyses were run that used Interbull values for genotyped bulls only or that used Interbull values for all available sires. Resultant predictions were compared with GEBV of 96 young foreign bulls evaluated abroad and whose proofs were from Interbull method GMACE (August 2013) on the Czech scale. Correlations of predictions with GMACE values of foreign bulls ranged from 0.33 to 0.75. Combining domestic data with Interbull EBVs improved prediction of both EBV and GEBV. Predictions by Animal Model (traditional EBV) using only domestic first lactation records and GMACE values were correlated by only 0.33. Combining the nation-wide domestic database with all available DRP for genotyped and un-genotyped sires from Interbull resulted in an EBV correlation of 0.60, compared with 0.47 when only Interbull data were used. In all cases, GEBVs had higher correlations than traditional EBVs, and the highest correlations were for predictions from the ssGBLUP procedure using combined data (0.75), or with all available DRP from Interbull records only (one-step blending approach, 0.69). The ssGBLUP predictions using the first three domestic lactation records in the TD model were correlated with GMACE predictions by 0.69, 0.64 and 0.61 for milk yield, protein yield and fat yield, respectively.  相似文献   

5.

Background

With the advent of genomic selection, alternative relationship matrices are used in animal breeding, which vary in their coverage of distant relationships due to old common ancestors. Relationships based on pedigree (A) and linkage analysis (GLA) cover only recent relationships because of the limited depth of the known pedigree. Relationships based on identity-by-state (G) include relationships up to the age of the SNP (single nucleotide polymorphism) mutations. We hypothesised that the latter relationships were too old, since QTL (quantitative trait locus) mutations for traits under selection were probably more recent than the SNPs on a chip, which are typically selected for high minor allele frequency. In addition, A and GLA relationships are too recent to cover genetic differences accurately. Thus, we devised a relationship matrix that considered intermediate-aged relationships and compared all these relationship matrices for their accuracy of genomic prediction in a pig breeding situation.

Methods

Haplotypes were constructed and used to build a haplotype-based relationship matrix (GH), which considers more intermediate-aged relationships, since haplotypes recombine more quickly than SNPs mutate. Dense genotypes (38 453 SNPs) on 3250 elite breeding pigs were combined with phenotypes for growth rate (2668 records), lean meat percentage (2618), weight at three weeks of age (7387) and number of teats (5851) to estimate breeding values for all animals in the pedigree (8187 animals) using the aforementioned relationship matrices. Phenotypes on the youngest 424 to 486 animals were masked and predicted in order to assess the accuracy of the alternative genomic predictions.

Results

Correlations between the relationships and regressions of older on younger relationships revealed that the age of the relationships increased in the order A, GLA, GH and G. Use of genomic relationship matrices yielded significantly higher prediction accuracies than A. GH and G, differed not significantly, but were significantly more accurate than GLA.

Conclusions

Our hypothesis that intermediate-aged relationships yield more accurate genomic predictions than G was confirmed for two of four traits, but these results were not statistically significant. Use of estimated genotype probabilities for ungenotyped animals proved to be an efficient method to include the phenotypes of ungenotyped animals.  相似文献   

6.

Background

The predictive ability of genomic estimated breeding values (GEBV) originates both from associations between high-density markers and QTL (Quantitative Trait Loci) and from pedigree information. Thus, GEBV are expected to provide more persistent accuracy over successive generations than breeding values estimated using pedigree-based methods. The objective of this study was to evaluate the accuracy of GEBV in a closed population of layer chickens and to quantify their persistence over five successive generations using marker or pedigree information.

Methods

The training data consisted of 16 traits and 777 genotyped animals from two generations of a brown-egg layer breeding line, 295 of which had individual phenotype records, while others had phenotypes on 2,738 non-genotyped relatives, or similar data accumulated over up to five generations. Validation data included phenotyped and genotyped birds from five subsequent generations (on average 306 birds/generation). Birds were genotyped for 23,356 segregating SNP. Animal models using genomic or pedigree relationship matrices and Bayesian model averaging methods were used for training analyses. Accuracy was evaluated as the correlation between EBV and phenotype in validation divided by the square root of trait heritability.

Results

Pedigree relationships in outbred populations are reduced by 50% at each meiosis, therefore accuracy is expected to decrease by the square root of 0.5 every generation, as observed for pedigree-based EBV (Estimated Breeding Values). In contrast the GEBV accuracy was more persistent, although the drop in accuracy was substantial in the first generation. Traits that were considered to be influenced by fewer QTL and to have a higher heritability maintained a higher GEBV accuracy over generations. In conclusion, GEBV capture information beyond pedigree relationships, but retraining every generation is recommended for genomic selection in closed breeding populations.  相似文献   

7.
Climate change and the increasing demand for sustainable energy resources require urgent strategies to increase the accuracy of selection in tree breeding (associated with higher gain). We investigated the combined pedigree and genomic-based relationship approach and its impact on the accuracy of predicted breeding values using data from 5-year-old Eucalyptus grandis progeny trial. The number of trees that can be genotyped in a tree breeding population is limited; therefore, the combined approach can be a feasible and efficient strategy to increase the genetic gain and provide more accurate predicted breeding values. We calculated the accuracy of predicted breeding values for two growth traits, diameter at breast height and total height, using two evaluation approaches: the combined approach and the classical pedigree-based approach. We also investigated the influence of two different trait heritabilities as well as the inclusion of competition genetic effects or environmental heterogeneity in an individual-tree mixed model on the estimated variance components and accuracy of breeding values. The genomic information of genotyped trees is automatically propagated to all trees with the combined approach, including the non-genotyped mothers. This increased the accuracy of overall breeding values, except for the non-genotyped trees from the competition model. The increase in the accuracy was higher for the total height, the trait with low heritability. The combined approach is a simple, fast, and accurate genomic selection method for genetic evaluation of growth traits in E. grandis and tree species in general. It is simple to implement in a traditional individual-tree mixed model and provides an easy extension to individual-tree mixed models with competition effects and/or environmental heterogeneity.  相似文献   

8.
Large fruit size is a critical trait for any new sweet cherry (Prunus avium L.) cultivar, as it is directly related to grower profitability. Therefore, determining the genetic control of fruit size in relevant breeding germplasm is a high priority. The objectives of this study were (1) to determine the number and positions of quantitative trait loci (QTL) for sweet cherry fruit size utilizing data simultaneously from multiple families and their pedigreed ancestors, and (2) to estimate fruit size QTL genotype probabilities and genomic breeding values for the plant materials. The sweet cherry material used was a five-generation pedigree consisting of 23 founders and parents and 424 progeny individuals from four full-sib families, which were phenotyped for fruit size and genotyped with 78 RosCOS single nucleotide polymorphism and 86 simple sequence repeat markers. These data were analyzed by a Bayesian approach implemented in FlexQTL? software. Six QTL were identified: three on linkage group (G) 2 with one each on groups 1, 3, and 6. Of these QTL, the second G2 QTL and the G6 QTL were previously discovered while other QTL were novel. The predicted QTL genotypes show that some QTL were segregating in all families while other QTL were segregating in a subset of the families. The progeny varied for breeding value, with some progeny having higher breeding values than their parents. The results illustrate the use of multiple pedigree-linked families for integrated QTL mapping in an outbred crop to discover novel QTL and predict QTL genotypes and breeding values.  相似文献   

9.
10.

Background

Genomic selection is a recently developed technology that is beginning to revolutionize animal breeding. The objective of this study was to estimate marker effects to derive prediction equations for direct genomic values for 16 routinely recorded traits of American Angus beef cattle and quantify corresponding accuracies of prediction.

Methods

Deregressed estimated breeding values were used as observations in a weighted analysis to derive direct genomic values for 3570 sires genotyped using the Illumina BovineSNP50 BeadChip. These bulls were clustered into five groups using K-means clustering on pedigree estimates of additive genetic relationships between animals, with the aim of increasing within-group and decreasing between-group relationships. All five combinations of four groups were used for model training, with cross-validation performed in the group not used in training. Bivariate animal models were used for each trait to estimate the genetic correlation between deregressed estimated breeding values and direct genomic values.

Results

Accuracies of direct genomic values ranged from 0.22 to 0.69 for the studied traits, with an average of 0.44. Predictions were more accurate when animals within the validation group were more closely related to animals in the training set. When training and validation sets were formed by random allocation, the accuracies of direct genomic values ranged from 0.38 to 0.85, with an average of 0.65, reflecting the greater relationship between animals in training and validation. The accuracies of direct genomic values obtained from training on older animals and validating in younger animals were intermediate to the accuracies obtained from K-means clustering and random clustering for most traits. The genetic correlation between deregressed estimated breeding values and direct genomic values ranged from 0.15 to 0.80 for the traits studied.

Conclusions

These results suggest that genomic estimates of genetic merit can be produced in beef cattle at a young age but the recurrent inclusion of genotyped sires in retraining analyses will be necessary to routinely produce for the industry the direct genomic values with the highest accuracy.  相似文献   

11.
The uptake of genomic selection (GS) by the swine industry is still limited by the costs of genotyping. A feasible alternative to overcome this challenge is to genotype animals using an affordable low-density (LD) single nucleotide polymorphism (SNP) chip panel followed by accurate imputation to a high-density panel. Therefore, the main objective of this study was to screen incremental densities of LD panels in order to systematically identify one that balances the tradeoffs among imputation accuracy, prediction accuracy of genomic estimated breeding values (GEBVs), and genotype density (directly associated with genotyping costs). Genotypes using the Illumina Porcine60K BeadChip were available for 1378 Duroc (DU), 2361 Landrace (LA) and 3192 Yorkshire (YO) pigs. In addition, pseudo-phenotypes (de-regressed estimated breeding values) for five economically important traits were provided for the analysis. The reference population for genotyping imputation consisted of 931 DU, 1631 LA and 2103 YO animals and the remainder individuals were included in the validation population of each breed. A LD panel of 3000 evenly spaced SNPs (LD3K) yielded high imputation accuracy rates: 93.78% (DU), 97.07% (LA) and 97.00% (YO) and high correlations (>0.97) between the predicted GEBVs using the actual 60 K SNP genotypes and the imputed 60 K SNP genotypes for all traits and breeds. The imputation accuracy was influenced by the reference population size as well as the amount of parental genotype information available in the reference population. However, parental genotype information became less important when the LD panel had at least 3000 SNPs. The correlation of the GEBVs directly increased with an increase in imputation accuracy. When genotype information for both parents was available, a panel of 300 SNPs (imputed to 60 K) yielded GEBV predictions highly correlated (⩾0.90) with genomic predictions obtained based on the true 60 K panel, for all traits and breeds. For a small reference population size with no parents on reference population, it is recommended the use of a panel at least as dense as the LD3K and, when there are two parents in the reference population, a panel as small as the LD300 might be a feasible option. These findings are of great importance for the development of LD panels for swine in order to reduce genotyping costs, increase the uptake of GS and, therefore, optimize the profitability of the swine industry.  相似文献   

12.
Narrow leaflet cultivars tend to have more seeds per pod than broad leaflet cultivars in soybean [Glycine max (L.) Merr.], which suggests that the leaflet-shape trait locus is tightly linked to or cosegregates with the trait locus controlling the number of seeds per pod (NSPP). Here, we attempted to further elucidate the relationship between leaflet shape and NSPP. A BC3F2 population from a cross between the ‘Sowon’ (narrow leaflets and high NSPP) and ‘V94-5152’ (broad leaflets and low NSPP) variants was used. The results of the molecular genetic analyses indicated that, although the NSPP characteristic, in particular, the occurrence of 4-seeded pods, is governed by additional modifying genes that are likely present in Sowon, the two traits cosegregate in the BC3F2 population. The mapping results generated using public markers demonstrated that the narrow leaflet-determining gene in Sowon is an allele of the previously highly studied ln gene on chromosome 20. A high-resolution map delimited the genomic region controlling both the leaflet shape and NSPP traits to a sequence length of 66 kb, corresponding to 0.7 cM. Among the three genes annotated in this 66 kb region, Glyma20g25000.1 appeared to be a good candidate for the Ln-encoding gene, owing to its 47.8% homology with the protein encoding for the JAGGED gene that regulates lateral organ development in Arabidopsis. Taken together, our results suggested that phenotypic variations for narrow leaflet and NSPP are predominantly from the pleiotropic effects of the ln gene. Thus, our results should provide a molecular framework for soybean breeding programs with the objective of improving soybean yield.  相似文献   

13.
The genomic breeding value accuracy of scarcely recorded traits is low because of the limited number of phenotypic observations. One solution to increase the breeding value accuracy is to use predictor traits. This study investigated the impact of recording additional phenotypic observations for predictor traits on reference and evaluated animals on the genomic breeding value accuracy for a scarcely recorded trait. The scarcely recorded trait was dry matter intake (DMI, n = 869) and the predictor traits were fat–protein-corrected milk (FPCM, n = 1520) and live weight (LW, n = 1309). All phenotyped animals were genotyped and originated from research farms in Ireland, the United Kingdom and the Netherlands. Multi-trait REML was used to simultaneously estimate variance components and breeding values for DMI using available predictors. In addition, analyses using only pedigree relationships were performed. Breeding value accuracy was assessed through cross-validation (CV) and prediction error variance (PEV). CV groups (n = 7) were defined by splitting animals across genetic lines and management groups within country. With no additional traits recorded for the evaluated animals, both CV- and PEV-based accuracies for DMI were substantially higher for genomic than for pedigree analyses (CV: max. 0.26 for pedigree and 0.33 for genomic analyses; PEV: max. 0.45 and 0.52, respectively). With additional traits available, the differences between pedigree and genomic accuracies diminished. With additional recording for FPCM, pedigree accuracies increased from 0.26 to 0.47 for CV and from 0.45 to 0.48 for PEV. Genomic accuracies increased from 0.33 to 0.50 for CV and from 0.52 to 0.53 for PEV. With additional recording for LW instead of FPCM, pedigree accuracies increased to 0.54 for CV and to 0.61 for PEV. Genomic accuracies increased to 0.57 for CV and to 0.60 for PEV. With both FPCM and LW available for evaluated animals, accuracy was highest (0.62 for CV and 0.61 for PEV in pedigree, and 0.63 for CV and 0.61 for PEV in genomic analyses). Recording predictor traits for only the reference population did not increase DMI breeding value accuracy. Recording predictor traits for both reference and evaluated animals significantly increased DMI breeding value accuracy and removed the bias observed when only reference animals had records. The benefit of using genomic instead of pedigree relationships was reduced when more predictor traits were used. Using predictor traits may be an inexpensive way to significantly increase the accuracy and remove the bias of (genomic) breeding values of scarcely recorded traits such as feed intake.  相似文献   

14.

Background

The theory of genomic selection is based on the prediction of the effects of genetic markers in linkage disequilibrium with quantitative trait loci. However, genomic selection also relies on relationships between individuals to accurately predict genetic value. This study aimed to examine the importance of information on relatives versus that of unrelated or more distantly related individuals on the estimation of genomic breeding values.

Methods

Simulated and real data were used to examine the effects of various degrees of relationship on the accuracy of genomic selection. Genomic Best Linear Unbiased Prediction (gBLUP) was compared to two pedigree based BLUP methods, one with a shallow one generation pedigree and the other with a deep ten generation pedigree. The accuracy of estimated breeding values for different groups of selection candidates that had varying degrees of relationships to a reference data set of 1750 animals was investigated.

Results

The gBLUP method predicted breeding values more accurately than BLUP. The most accurate breeding values were estimated using gBLUP for closely related animals. Similarly, the pedigree based BLUP methods were also accurate for closely related animals, however when the pedigree based BLUP methods were used to predict unrelated animals, the accuracy was close to zero. In contrast, gBLUP breeding values, for animals that had no pedigree relationship with animals in the reference data set, allowed substantial accuracy.

Conclusions

An animal''s relationship to the reference data set is an important factor for the accuracy of genomic predictions. Animals that share a close relationship to the reference data set had the highest accuracy from genomic predictions. However a baseline accuracy that is driven by the reference data set size and the overall population effective population size enables gBLUP to estimate a breeding value for unrelated animals within a population (breed), using information previously ignored by pedigree based BLUP methods.  相似文献   

15.

Background

Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle.

Methods

Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls.

Results

For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy.All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least computing time.

Conclusions

The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection is not recommended.  相似文献   

16.
玉米穗行数QTL及其互作分析   总被引:2,自引:0,他引:2  
利用与穗行数有关的5个导入系及轮回亲本综3进行GriffingⅣ双列杂交发展分离群体,结合SSR标记和田间表型鉴定,分析玉米穗行数QTL及其相互作用。在导入系×综3所发展的5个F2群体中,仅在一个群体中检测到1个穗行数QTL,所解释的表型变异为10.68%。在导入系间杂交所发展的F2群体中检测到9个QTLs,分别位于第1、3、8染色体上,所解释的表型变异在4.53%-6.52%之间。另外,检测到2对QTL间互作,10对QTL与未检测到QTL的导入片段间的互作,单个F2群体中各类互作所解释的表型变异显著大于QTL所解释的表型变异。这些结果表明,基因互作在玉米穗行数形成中起着重要的作用。  相似文献   

17.
Application of AFLP markers for QTL mapping in the rabbit.   总被引:3,自引:0,他引:3  
Two rabbit (Oryctolagus cuniculus) inbred strains (AX/JU and IIIVO/JU) have been used for genetic analysis of quantitative traits related to dietary cholesterol susceptibility. Application of the AFLP (amplified fragment length polymorphism) technique with 15 primer combinations revealed 226 polymorphisms between the 2 inbred strains. A total of 57 animals from a backcross progeny (IIIVO/JU x [IIIVO/JU x AX/JU]F1) were available for the genetic analysis. These backcross animals were fed a commercial pelleted diet fortified with 0.3% w/w cholesterol during a test period that lasted five weeks. A male genetic map could be constructed, consisting of 12 linkage groups and 103 AFLP markers. Linkage analysis between the cholesterol-related traits and marker loci revealed a significant LOD score for the relative weight of adrenal glands in males (LOD score = 3.83), whereas suggestive linkages were found for basal serum total cholesterol levels in females (LOD score = 2.69), for serum total cholesterol response (area under the curve) in males (LOD score = 2.21), and for hematocrit in males (LOD score = 3.24).  相似文献   

18.
19.

Background

Numerous methods have been developed over the last decade to predict allelic identity at unobserved loci between pairs of chromosome segments along the genome. These loci are often unobserved positions tested for the presence of quantitative trait loci (QTL). The main objective of this study was to understand from a theoretical standpoint the relation between linkage disequilibrium (LD) and allelic identity prediction when using haplotypes for fine mapping of QTL. In addition, six allelic identity predictors (AIP) were also compared in this study to determine which one performed best in theory and application.

Results

A criterion based on a simple measure of matrix distance was used to study the relation between LD and allelic identity prediction when using haplotypes. The consistency of this criterion with the accuracy of QTL localization, another criterion commonly used to compare AIP, was evaluated on a set of real chromosomes. For this set of chromosomes, the criterion was consistent with the mapping accuracy of a simulated QTL with either low or high effect. As measured by the matrix distance, the best AIP for QTL mapping were those that best captured LD between a tested position and a QTL. Moreover the matrix distance between a tested position and a QTL was shown to decrease for some AIP when LD increased. However, the matrix distance for AIP with continuous predictions in the [0,1] interval was algebraically proven to decrease less rapidly up to a lower bound with increasing LD in the simplest situations, than the discrete predictor based on identity by state between haplotypes (IBS hap), for which there was no lower bound. The expected LD between haplotypes at a tested position and alleles at a QTL is a quantity that increases naturally when the tested position gets closer to the QTL. This behavior was demonstrated with pig and unrelated human chromosomes.

Conclusions

When the density of markers is high, and therefore LD between adjacent loci can be assumed to be high, the discrete predictor IBS hap is recommended since it predicts allele identity correctly when taking LD into account.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号