首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
BackgroundSerological diagnosis of Zika virus (ZIKV) infection is challenging because of the antibody cross-reactivity among flaviviruses. At the same time, the role of Nucleic Acid Testing (NAT) is limited by the low proportion of symptomatic infections and the low average viral load. Here, we compared the diagnostic performance of commercially available IgM, IgAM, and IgG ELISAs in sequential samples during the ZIKV and chikungunya (CHIKV) epidemics and co-circulation of dengue virus (DENV) in Brazil and Venezuela.Methodology/Principal findingsAcute (day of illness 1–5) and follow-up (day of illness ≥ 6) blood samples were collected from nine hundred and seven symptomatic patients enrolled in a prospective multicenter study between June 2012 and August 2016. Acute samples were tested by RT-PCR for ZIKV, DENV, and CHIKV. Acute and follow-up samples were tested for IgM, IgAM, and IgG antibodies to ZIKV using commercially available ELISAs. Among follow-up samples with a RT-PCR confirmed ZIKV infection, anti-ZIKV IgAM sensitivity was 93.5% (43/46), while IgM and IgG exhibited sensitivities of 30.3% (10/33) and 72% (18/25), respectively. An additional 24% (26/109) of ZIKV infections were detected via IgAM seroconversion in ZIKV/DENV/CHIKV RT-PCR negative patients. The specificity of anti-ZIKV IgM was estimated at 93% and that of IgAM at 85%.Conclusions/SignificanceOur findings exemplify the challenges of the assessment of test performance for ZIKV serological tests in the real-world setting, during co-circulation of DENV, ZIKV, and CHIKV. However, we can also demonstrate that the IgAM immunoassay exhibits superior sensitivity to detect ZIKV RT-PCR confirmed infections compared to IgG and IgM immunoassays. The IgAM assay also proves to be promising for detection of anti-ZIKV seroconversions in sequential samples, both in ZIKV PCR-positive as well as PCR-negative patients, making this a candidate assay for serological monitoring of pregnant women in future ZIKV outbreaks.  相似文献   

2.
3.
BackgroundAs the three major arthropod-borne viruses, dengue virus (DENV), chikungunya virus (CHIKV), and zika virus (ZIKV) are posing a growing threat to global public health and socioeconomic development. Our study aimed to systematically review the global seroprevalences of these arboviruses from existing publications.MethodsArticles published between Jan 01, 2000 and Dec 31, 2019 in the databases of Embase, Pubmed and Web of Science were searched and collected. Countries or areas with known local presence of Aedes vector mosquitoes were included. Random effects model was utilized to estimate the pooled seroprevalences and the proportion of inapparent infection.ResultsOut of 1375, a total of 133 articles involving 176,001 subjects were included for our analysis. The pooled seroprevalences of DENV, CHIKV and ZIKV were 38%, 25% and 18%, respectively; and their corresponding proportions of inapparent infections were 80%, 40% and 50%. The South-East Asia Region had the highest seroprevalences of DENV and CHIKV, while the Region of the Americas had the highest seroprevalence of ZIKV. The seroprevalences of DENV and CHIKV were similar when comparing developed and developing countries, urban and rural areas, or among different populations. In addition, we observed a decreased global seroprevalences in the new decade (2010–2019) comparing to the decade before (2000–2009) for CHIKV. For ZIKV, the positive rates tested with the nucleic acid detection method were lower than those tested with the antibody detection method. Lastly, numerous cases of dual seropositivity for CHIKV and DENV were reported.ConclusionsOur results revealed a varied prevalence of arbovirus infections in different geographical regions and countries, and the inapparent infection accounted an unneglected portion of infections that requires more attention. This study will shed lights on our understanding of the true burden of arbovirus infections and promote appropriate vaccination in the future.  相似文献   

4.
Chikungunya virus (CHIKV) caused a large outbreak in Puerto Rico in 2014, followed by a Zika virus (ZIKV) outbreak in 2016. Communities Organized for the Prevention of Arboviruses (COPA) is a cohort study in southern Puerto Rico, initiated in 2018 to measure arboviral disease risk and provide a platform to evaluate interventions. To identify risk factors for infection, we assessed prevalence of previous CHIKV infection and recent ZIKV and DENV infection in a cross-sectional study among COPA participants. Participants aged 1–50 years (y) were recruited from randomly selected households in study clusters. Each participant completed an interview and provided a blood specimen, which was tested by anti-CHIKV IgG ELISA assay and anti-ZIKV and anti-DENV IgM MAC-ELISA assays. We assessed individual, household, and community factors associated with a positive result for CHIKV or ZIKV after adjusting for confounders. During 2018–2019, 4,090 participants were enrolled; 61% were female and median age was 28y (interquartile range [IQR]: 16–41). Among 4,035 participants tested for CHIKV, 1,268 (31.4%) had evidence of previous infection. CHIKV infection prevalence was lower among children 1–10 years old compared to people 11 and older (adjusted odds ratio [aOR] 2.30; 95% CI 1.71–3.08). Lower CHIKV infection prevalence was associated with home screens (aOR 0.51; 95% CI 0.42–0.61) and air conditioning (aOR 0.64; 95% CI 0.54–0.77). CHIKV infection prevalence also varied by study cluster of residence and insurance type. Few participants (16; 0.4%) had evidence of recent DENV infection by IgM. Among 4,035 participants tested for ZIKV, 651 (16%) had evidence of recent infection. Infection prevalence increased with older age, from 7% among 1–10y olds up to 19% among 41–50y olds (aOR 3.23; 95% CI 2.16–4.84). Males had an increased risk of Zika infection prevalence compared with females (aOR 1.31; 95% CI 1.09–1.57). ZIKV infection prevalence also decreased with the presence of home screens (aOR 0.66; 95% CI 0.54–0.82) and air conditioning (aOR 0.69; 95% CI 0.57–0.84). Similar infection patterns were observed for recent ZIKV infection prevalence and previous CHIKV infection prevalence by age, and the presence of screens and air conditioners in the home decreased infection risk from both viruses by as much as 50%.  相似文献   

5.
Zika virus (ZIKV) is a significant global health threat due to its potential for rapid emergence and association with severe congenital malformations during infection in pregnancy. Despite the urgent need, accurate diagnosis of ZIKV infection is still a major hurdle that must be overcome. Contributing to the inaccuracy of most serologically-based diagnostic assays for ZIKV, is the substantial geographic and antigenic overlap with other flaviviruses, including the four serotypes of dengue virus (DENV). Within this study, we have utilized a novel T cell receptor (TCR) sequencing platform to distinguish between ZIKV and DENV infections. Using high-throughput TCR sequencing of lymphocytes isolated from DENV and ZIKV infected mice, we were able to develop an algorithm which could identify virus-associated TCR sequences uniquely associated with either a prior ZIKV or DENV infection in mice. Using this algorithm, we were then able to separate mice that had been exposed to ZIKV or DENV infection with 97% accuracy. Overall this study serves as a proof-of-principle that T cell receptor sequencing can be used as a diagnostic tool capable of distinguishing between closely related viruses. Our results demonstrate the potential for this innovative platform to be used to accurately diagnose Zika virus infection and potentially the next emerging pathogen(s).  相似文献   

6.
BackgroundWith the arrival of chikungunya (CHIKV) and zika (ZIKV) viruses in Mexico, there was a decrease in diagnosed dengue virus (DENV) cases. During the first years of cocirculation (2015–2017), the algorithms established by epidemiological surveillance systems and the installed capacity limited us to one diagnostic test per sample, so there was an underestimation of cases until September 2017, when a multiplex algorithm was implemented. Therefore, the objective of this study was determine the impact of the introduction of CHIKV and ZIKV on the incidence of diagnosed DENV in endemic areas of Mexico, when performing the rediagnosis, using the multiplex algorithm, in samples from the first three years of co-circulation of these arboviruses.Methodology and principal findingsFor this, 1038 samples received by the Central Laboratory of Epidemiology between 2015 and 2017 were selected for this work. Viruses were identified by multiplex RT-qPCR, and the χ2 test was used to compare categorical variables. With the new multiplex algorithm, we identified 2.4 times the rate of arbovirosis as originally reported, evidencing an underestimation of the incidence of the three viruses. Even so, significantly less dengue was observed than in previous years. The high incidence rates of chikungunya and Zika coincided with periods of dengue decline. The endemic channel showed that the cases caused by DENV rose again after the circulation of CHIKV and ZIKV decreased. In addition, 23 cases of coinfection were identified, with combinations between all viruses.Conclusions and significanceThe results obtained in this study show for the first time the real impact on the detected incidence of dengue after the introduction of CHIKV and ZIKV in Mexico, the degree of underestimation of these arboviruses in the country, as well as the co-infections between these viruses, whose importance clinical and epidemiological are still unknown.  相似文献   

7.
Mosquitoes are classified into approximately 3500 species and further grouped into 41 genera. Epidemiologically, they are considered to be among the most important disease vectors in the world and they can harbor a wide variety of viruses. Several mosquito viruses are considered to be of significant medical importance and can cause serious public health issues throughout the world. Such viruses are Japanese encephalitis virus (JEV), dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV). Others are the newly recognized mosquito viruses such as Banna virus (BAV) and Yunnan orbivirus (YNOV) with unclear medical significance. The remaining mosquito viruses are those that naturally infect mosquitoes but do not appear to infect humans or other vertebrates. With the continuous development and improvement of mosquito and mosquito-associated virus surveillance systems in China, many novel mosquito-associated viruses have been discovered in recent years. This review aims to systematically outline the history, characteristics, distribution, and/or current epidemic status of mosquito-associated viruses in China.  相似文献   

8.
BackgroundLike many countries from the Americas, Cuba is threatened by Aedes aegypti-associated arboviruses such as dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. Curiously, when CHIKV was actively circulating in the region in 2013–2014, no autochthonous transmission of this virus was detected in Havana, Cuba, despite the importation of chikungunya cases into this city. To investigate if the transmission ability of local mosquito populations could explain this epidemiological scenario, we evaluated for the first time the vector competence of two Ae. aegypti populations (Pasteur and Párraga) collected from Havana for dengue virus type 1 (DENV-1), CHIKV, and ZIKV.Methodology/Principal findingsMosquito populations were fed separately using blood containing ZIKV, DENV-1, or CHIKV. Infection, dissemination, and transmission rates, were estimated at 3 (exclusively for CHIKV), 7, and 14 days post exposure (dpe) for each Ae. aegypti population-virus combination. Both mosquito populations were susceptible to DENV-1 and ZIKV, with viral infection and dissemination rates ranging from 24–97% and 6–67% respectively. In addition, CHIKV disseminated in both populations and was subsequently transmitted. Transmission rates were low (<30%) regardless of the mosquito population/virus combination and no ZIKV was detected in saliva of females from the Pasteur population at any dpe.Conclusions/SignificanceOur study demonstrated the ability of Ae. aegypti from Cuba to transmit DENV, ZIKV, and CHIKV. These results, along with the widespread distribution and high abundance of this species in the urban settings throughout the island, highlight the importance of Ae. aegypti control and arbovirus surveillance to prevent future outbreaks.  相似文献   

9.
BackgroundEpidemic arbovirus transmission occurs among humans by mosquito bites and the sylvatic transmission cycles involving non-human primates (NHPs) still exists. However, limited data are available on the extent in NHPs infections and their role. In this study, we have developed and validated a high-throughput serological screening tool to study the circulation of multiple arboviruses that represent a significant threat to human health, in NHPs in Central Africa.Methodology/Principal findingsRecombinant proteins NS1, envelope domain-3 (DIII) for the dengue (DENV), yellow fever (YFV), usutu (USUV), west nile (WNV) and zika (ZIKV) and envelope 2 for the chikungunya (CHIKV) and o''nyong-nyong (ONNV) were coupled to Luminex beads to detect IgG directed against these viruses. Evaluation of test performance was made using 161 human sera of known arboviral status (66 negative and 95 positive). The sensitivity and specificity of each antigen were determined by statistical methods and ROC curves (except for ONNV and USUV). All NS1 antigens (except NS1-YFV), CHIKV-E2 and WNV-DIII had sensitivities and specificities > 95%. For the other DIII antigens, the sensitivity was low, limiting the interest of their use for seroprevalence studies. Few simultaneous reactions were observed between the CHIKV+ samples and the NS1 antigens to the non-CHIKV arboviruses. On the other hand, the DENV+ samples crossed-reacted with NS1 of all the DENV serotypes (1 to 4), as well as with ZIKV, USUV and to a lesser extent with YFV. A total of 3,518 samples of 29 species of NHPs from Cameroon and the Democratic Republic of Congo (DRC) were tested against NS1 (except YFV), E2 (CHIKV/ONNV) and DIII (WNV) antigens. In monkeys (n = 2,100), the global prevalence varied between 2 and 5% for the ten antigens tested. When we stratified by monkey’s biotope, the arboreal species showed the highest reactivity. In monkeys from Cameroon, the highest IgG prevalence were observed against ONNV-E2 and DENV2-NS1 with 3.95% and 3.40% respectively and in DRC, ONNV-E2 (6.63%) and WNV-NS1 (4.42%). Overall prevalence was low in apes (n = 1,418): ranging from 0% for USUV-NS1 to 2.6% for CHIKV-E2. However, a very large disparity was observed among collection site and ape species, e.g. 18% (9/40) and 8.2% (4/49) of gorillas were reactive with CHIKV-E2 or WNV-NS1, respectively in two different sites in Cameroon.Conclusions/SignificanceWe have developed a serological assay based on Luminex technology, with high specificity and sensitivity for simultaneous detection of antibodies to 10 antigens from 6 different arboviruses. This is the first study that evaluated on a large scale the presence of antibodies to arboviruses in NHPs to evaluate their role in sylvatic cycles. The overall low prevalence (<5%) in more than 3,500 NHPs samples from Cameroon and the DRC does not allow us to affirm that NHP are reservoirs, but rather, intermediate hosts of these viruses.  相似文献   

10.
Chikungunya virus (CHIKV) is a mosquito‐transmitted alphavirus, and its infection can cause long‐term debilitating arthritis in humans. Currently, there are no licensed vaccines or therapeutics for human use to combat CHIKV infections. In this study, we explored the feasibility of using an anti‐CHIKV monoclonal antibody (mAb) produced in wild‐type (WT) and glycoengineered (?XFT) Nicotiana benthamiana plants in treating CHIKV infection in a mouse model. CHIKV mAb was efficiently expressed and assembled in plant leaves and enriched to homogeneity by a simple purification scheme. While mAb produced in ?XFT carried a single N‐glycan species at the Fc domain, namely GnGn structures, WT produced mAb exhibited a mixture of N‐glycans including the typical plant GnGnXF3 glycans, accompanied by incompletely processed and oligomannosidic structures. Both WT and ?XFT plant‐produced mAbs demonstrated potent in vitro neutralization activity against CHIKV. Notably, both mAb glycoforms showed in vivo efficacy in a mouse model, with a slight increased efficacy by the ?XFT‐produced mAbs. This is the first report of the efficacy of plant‐produced mAbs against CHIKV, which demonstrates the ability of using plants as an effective platform for production of functionally active CHIKV mAbs and implies optimization of in vivo activity by controlling Fc glycosylation.  相似文献   

11.
Dengue and chikungunya are acute viral infections with overlapping clinical symptoms. Both diseases are transmitted by common mosquito vectors resulting in their co‐circulation in a region. Molecular and serological tests specific for both dengue and chikungunya infections were performed on 87 acute phase blood samples collected from patients with suspected dengue/chikungunya infections in Delhi from September to December, 2011. RT‐PCR and IgM ELISA were performed to detect dengue virus (DENV) and chikungunya virus (CHIKV). NS1 and IgG ELISA were also performed to detect DENV specific antigen and secondary DENV infection. DENV infection was detected in 49%, CHIKV infection in 29% and co‐infection with DENV and CHIKV in 10% of the samples by RT‐PCR. DENV serotypes 1, 2 and 3 were detected in this study. Nine DENV‐1 strains, six DENV‐2 strains and 20 CHIKV strains were characterized by DNA sequencing and phylogenetic analysis of their respective envelope protein genes. DENV‐1 strains grouped in the American African genotype, DENV‐2 strains in the Cosmopolitan genotype and CHIKV strains in the East Central South African genotype by phylogenetic analysis. This is one of the few studies reporting the phylogeny of two dengue virus serotypes (DENV‐1 and DENV‐2) and CHIKV. Surveillance and monitoring of DENV and CHIKV strains are important for design of strategies to control impending epidemics.  相似文献   

12.

Background

The West Nile virus (WNV) capsid (C) protein is one of the three viral structural proteins, encapsidates the viral RNA to form the nucleocapsid, and is necessary for nuclear and nucleolar localization. The antigenic sites on C protein that are targeted by humoral immune responses have not been studied thoroughly, and well-defined B-cell epitopes on the WNV C protein have not been reported.

Results

In this study, we generated a WNV C protein-specific monoclonal antibody (mAb) and defined the linear epitope recognized by the mAb by screening a 12-mer peptide library using phage-display technology. The mAb, designated as 6D3, recognized the phages displaying a consensus motif consisting of the amino acid sequence KKPGGPG, which is identical to an amino acid sequence present in WNV C protein. Further fine mapping was conducted using truncated peptides expressed as MBP-fusion proteins. We found that the KKPGGPG motif is the minimal determinant of the linear epitope recognized by the mAb 6D3. Western blot (WB) analysis demonstrated that the KKPGGPG epitope could be recognized by antibodies contained in WNV- and Japanese encephalitis virus (JEV)-positive equine serum, but was not recognized by Dengue virus 1-4 (DENV1-4)-positive mice serum. Furthermore, we found that the epitope recognized by 6D3 is highly conserved among the JEV serocomplex of the Family Flaviviridae.

Conclusion

The KKPGGPG epitope is a JEV serocomplex-specific linear B-cell epitope recognized by the 6D3 mAb generated in this study. The 6D3 mAb may serve as a novel reagent in development of diagnostic tests for JEV serocomplex infection. Further, the identification of the B-cell epitope that is highly conserved among the JEV serocomplex may support the rationale design of vaccines against viruses of the JEV serocomplex.  相似文献   

13.
Deng YQ  Dai JX  Ji GH  Jiang T  Wang HJ  Yang HO  Tan WL  Liu R  Yu M  Ge BX  Zhu QY  Qin ED  Guo YJ  Qin CF 《PloS one》2011,6(1):e16059
Flaviviruses are a group of human pathogenic, enveloped RNA viruses that includes dengue (DENV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses. Cross-reactive antibodies against Flavivirus have been described, but most of them are generally weakly neutralizing. In this study, a novel monoclonal antibody, designated mAb 2A10G6, was determined to have broad cross-reactivity with DENV 1-4, YFV, WNV, JEV, and TBEV. Phage-display biopanning and structure modeling mapped 2A10G6 to a new epitope within the highly conserved flavivirus fusion loop peptide, the (98)DRXW(101) motif. Moreover, in vitro and in vivo experiments demonstrated that 2A10G6 potently neutralizes DENV 1-4, YFV, and WNV and confers protection from lethal challenge with DENV 1-4 and WNV in murine model. Furthermore, functional studies revealed that 2A10G6 blocks infection at a step after viral attachment. These results define a novel broadly flavivirus cross-reactive mAb with highly neutralizing activity that can be further developed as a therapeutic agent against severe flavivirus infections in humans.  相似文献   

14.
Dengue virus (DENV) and Zika virus (ZIKV) are flaviviruses transmitted to humans by their common vector, Aedes mosquitoes. DENV infection represents one of the most widely spread mosquito‐borne diseases whereas ZIKV infection occasionally re‐emerged in the past causing outbreaks. Although there have been considerable advances in understanding the pathophysiology of these viruses, no effective vaccines or antiviral drugs are currently available. In this study, we evaluated the antiviral activity of carnosine, an endogenous dipeptide (β‐alanyl‐l ‐histidine), against DENV serotype 2 (DENV2) and ZIKV infection in human liver cells (Huh7). Computational studies were performed to predict the potential interactions between carnosine and viral proteins. Biochemical and cell‐based assays were performed to validate the computational results. Mode‐of‐inhibition, plaque reduction, and immunostaining assays were performed to determine the antiviral activity of carnosine. Exogenous carnosine showed minimal cytotoxicity in Huh7 cells and rescued the viability of infected cells with EC50 values of 52.3 and 59.5 μM for DENV2 and ZIKV infection, respectively. Based on the mode‐of‐inhibition assays, carnosine inhibited DENV2 mainly by inhibiting viral genome replication and interfering with virus entry. Carnosine antiviral activity was verified with immunostaining assay where carnosine treatment diminished viral fluorescence signal. In conclusion, carnosine exhibited significant inhibitory effects against DENV2 and ZIKV replication in human liver cells and could be utilized as a lead peptide for the development of effective and safe antiviral agents against DENV and ZIKV.  相似文献   

15.
Usutu (USUV) and Zika (ZIKV) viruses are emerging arboviruses of significant medical and veterinary importance. These viruses have not been studied as well as other medically important arboviruses such as West Nile (WNV), dengue (DENV), or chikungunya (CHIKV) viruses. As such, information regarding the behavior of ZIKV and USUV viruses in the laboratory is dated. Usutu virus re-emerged in Austria in 2001 and has since spread throughout the European and Asian continents causing significant mortality among birds. Zika virus has recently appeared in the Western Hemisphere and has exhibited high rates of birth defects and sexual transmission. Information about the characteristics of USUV and ZIKV viruses are needed to better understand the transmission, dispersal, and adaptation of these viruses in new environments. Since their initial characterization in the middle of last century, technologies and reagents have been developed that could enhance our abilities to study these pathogens. Currently, standard laboratory methods for these viruses are limited to 2–3 cell lines and many assays take several days to generate meaningful data. The goal of this study was to characterize these viruses in cells from multiple diverse species. Cell lines from 17 species were permissive to both ZIKV and USUV. These viruses were able to replicate to significant titers in most of the cell lines tested. Moreover, cytopathic effects were observed in 8 of the cell lines tested. These data indicate that a variety of cell lines can be used to study ZIKV and USUV infection and may provide an updated foundation for the study of host-pathogen interactions, model development, and the development of therapeutics.  相似文献   

16.
17.
Dengue is the most prevalent human arboviral disease. The morbidity related to dengue infection supports the need for an early, quick and effective diagnostic test. Brazil is a hotspot for dengue, but no serological diagnostic test has been produced using Brazilian dengue virus isolates. This study aims to improve the development of immunodiagnostic methods for dengue virus (DENV) detection through the production and characterization of 22 monoclonal antibodies (mAbs) against Brazilian isolates of DENV-1, -2 and -3. The mAbs include IgG2bκ, IgG2aκ and IgG1κ isotypes, and most were raised against the envelope or the pre-membrane proteins of DENV. When the antibodies were tested against the four DENV serotypes, different reactivity patterns were identified: group-specific, subcomplex specific (DENV-1, -3 and -4 and DENV-2 and -3) and dengue serotype-specific (DENV-2 or -3). Additionally, some mAbs cross-reacted with yellow fever virus (YFV), West Nile virus (WNV) and Saint Louis encephalitis virus (SLEV). None of the mAbs recognized the alphavirus Venezuelan equine encephalitis virus (VEEV). Furthermore, mAbs D3 424/8G, D1 606/A12/B9 and D1 695/12C/2H were used to develop a capture enzyme-linked immunosorbent assay (ELISA) for anti-dengue IgM detection in sera from patients with acute dengue. To our knowledge, these are the first monoclonal antibodies raised against Brazilian DENV isolates, and they may be of special interest in the development of diagnostic assays, as well as for basic research.  相似文献   

18.
Pu SY  Wu RH  Yang CC  Jao TM  Tsai MH  Wang JC  Lin HM  Chao YS  Yueh A 《Journal of virology》2011,85(6):2927-2941
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development.  相似文献   

19.
Dengue viruses (DENV serotypes 1–4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.  相似文献   

20.
The Zika virus (ZIKV) and dengue virus (DENV) flaviviruses exhibit similar replicative processes but have distinct clinical outcomes. A systematic understanding of virus–host protein–pro-tein interaction networks can reveal cellular pathways critical to viral replication and disease patho-genesis. Here we employed three independent systems biology approaches toward this goal. First, protein array analysis of direct interactions between individual ZIKV/DENV viral proteins and 20,240 human proteins revealed multiple conserved cellular pathways and protein complexes, including proteasome complexes. Second, an RNAi screen of 10,415 druggable genes identified the host proteins required for ZIKV infection and uncovered that proteasome proteins were crucial in this process. Third, high-throughput screening of 6016 bioactive compounds for ZIKV inhibition yielded 134 effective compounds, including six proteasome inhibitors that suppress both ZIKV and DENV replication. Integrative analyses of these orthogonal datasets pinpoint proteasomes as crit-ical host machinery for ZIKV/DENV replication. Our study provides multi-omics datasets for fur-ther studies of flavivirus–host interactions, disease pathogenesis, and new drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号