首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic simulations were run to compare the effects of nine breeding schemes, using full-sib mating, on the rate of purging of inbreeding depression due to mutations with equal deleterious effect on viability at unlinked loci in an outbred population. A number of full-sib mating lines were initiated from a large outbred population and maintained for 20 generations (if not extinct). Selection against deleterious mutations was allowed to occur within lines only, between lines or equal within and between lines, and surviving lines were either not crossed or crossed following every one or three generations of full-sib mating. The effectiveness of purging was indicated by the decreased number of lethal equivalents and the increased fitness of the purged population formed from crossing surviving lines after 20 generations under a given breeding scheme. The results show that the effectiveness of purging, the survival of the inbred lines and the inbreeding level attained are generally highest with between-line selection and lowest with within-line selection. Compared with no crossing, line crossing could lower the risk of extinction and the inbreeding coefficient of the purged population substantially with little loss of the effectiveness of purging. Compromising between the effectiveness of purging, and the risk of extinction and inbreeding coefficient, the breeding scheme with equal within- and between-line selection and crossing alternatively with full-sib mating is generally the most desirable scheme for purging deleterious mutations. Unless most deleterious mutations have relatively large effects on fitness in species with reproductive ability high enough to cope with the depressed fitness and thus increased risk of extinction with inbreeding, it is not justified to apply a breeding programme aimed at purging inbreeding depression by inbreeding and selection to a population of conservation concern.  相似文献   

2.
Sánchez L  Bijma P  Woolliams JA 《Genetics》2003,164(4):1589-1595
Here we present the strategy that achieves the lowest possible rate of inbreeding (DeltaF) for a population with unequal numbers of sires and dams with random mating. This new strategy results in a DeltaF as much as 10% lower than previously achieved. A simple and efficient approach to reducing inbreeding in small populations with sexes of unequal census number is to impose a breeding structure where parental success is controlled in each generation. This approach led to the development of strategies for selecting replacements each generation that were based upon parentage, e.g., a son replacing its sire. This study extends these strategies to a multigeneration round robin scheme where genetic contributions of ancestors to descendants are managed to remove all uncertainties about breeding roles over generations; i.e., male descendants are distributed as equally as possible among dams. In doing so, the sampling variance of genetic contributions within each breeding category is eliminated and consequently DeltaF is minimized. Using the concept of long-term genetic contributions, the asymptotic DeltaF of the new strategy for random mating, M sires and d dams per sire, is phi/(12M), where phi = [1 + 2((1)/(4))(d)]. Predictions were validated using Monte Carlo simulations. The scheme was shown to achieve the lowest possible DeltaF using pedigree alone and showed that further reductions in DeltaF below that obtained from random mating arise from preferential mating of relatives and not from their avoidance.  相似文献   

3.
Breeding designs for recombinant inbred advanced intercross lines   总被引:2,自引:0,他引:2       下载免费PDF全文
Rockman MV  Kruglyak L 《Genetics》2008,179(2):1069-1078
Recombinant inbred lines derived from an advanced intercross, in which multiple generations of mating have increased the density of recombination breakpoints, are powerful tools for mapping the loci underlying complex traits. We investigated the effects of intercross breeding designs on the utility of such lines for mapping. The simplest design, random pair mating with each pair contributing exactly two offspring to the next generation, performed as well as the most extreme inbreeding avoidance scheme at expanding the genetic map, increasing fine-mapping resolution, and controlling genetic drift. Circular mating designs offer negligible advantages for controlling drift and exhibit greatly reduced map expansion. Random-mating designs with variance in offspring number are also poor at increasing mapping resolution. Given equal contributions of each parent to the next generation, the constraint of monogamy has no impact on the qualities of the final population of inbred lines. We find that the easiest crosses to perform are well suited to the task of generating populations of highly recombinant inbred lines.  相似文献   

4.

Background

The risk of long-term unequal contribution of mating pairs to the gene pool is that deleterious recessive genes can be expressed. Such consequences could be alleviated by appropriately designing and optimizing breeding schemes i.e. by improving selection and mating procedures.

Methods

We studied the effect of mating designs, random, minimum coancestry and minimum covariance of ancestral contributions on rate of inbreeding and genetic gain for schemes with different information sources, i.e. sib test or own performance records, different genetic evaluation methods, i.e. BLUP or genomic selection, and different family structures, i.e. factorial or pair-wise.

Results

Results showed that substantial differences in rates of inbreeding due to mating design were present under schemes with a pair-wise family structure, for which minimum coancestry turned out to be more effective to generate lower rates of inbreeding. Specifically, substantial reductions in rates of inbreeding were observed in schemes using sib test records and BLUP evaluation. However, with a factorial family structure, differences in rates of inbreeding due mating designs were minor. Moreover, non-random mating had only a small effect in breeding schemes that used genomic evaluation, regardless of the information source.

Conclusions

It was concluded that minimum coancestry remains an efficient mating design when BLUP is used for genetic evaluation or when the size of the population is small, whereas the effect of non-random mating is smaller in schemes using genomic evaluation.  相似文献   

5.
A dynamic method (DM) recently proposed for the management of captive subdivided populations was evaluated using the pilot species Drosophila melanogaster. By accounting for the particular genetic population structure, the DM determines the optimal mating pairs, their contributions to progeny and the migration pattern that minimize the overall coancestry in the population with a control of inbreeding levels. After a pre-management period such that one of the four subpopulations had higher inbreeding and differentiation than the others, three management methods were compared for 10 generations over three replicates: (1) isolated subpopulations (IS), (2) one-migrant-per-generation rule (OMPG), (3) DM aimed to produce the same or lower inbreeding coefficient than OMPG. The DM produced the lowest coancestry and equal or lower inbreeding than the OMPG method throughout the experiment. The initially lower fitness and lower variation for nine microsatellite loci of the highly inbred subpopulation were restored more quickly with the DM than with the OMPG method. We provide, therefore, an empirical illustration of the usefulness of the DM as a conservation protocol for captive subdivided populations when pedigree information is available (or can be deduced) and manipulation of breeding pairs is possible.  相似文献   

6.
BACKGROUND AND AIMS: A knowledge of natural populations' breeding systems is important in order to implement in situ and ex situ management and conservation practices. Using microsatellite markers, three Oryza glumaepatula populations from Brazil were studied to determine the breeding system and genetic structure parameters of this species. METHODS: Each population represented by ten families with ten individuals per family was studied using eight microsatellite primers. Families of the Rio Xingu population (XI) were obtained from the greenhouse, whereas families from Rio Solimoes (SO) and Rio Paraguay (PG) were collected from the wild. Amplified products electrophoresed on non-denaturing polyacrylamide gels were visualized with a silver staining procedure. The mating system parameters were analysed based on the mixed mating model (software MLTR) while genetic structure analyses of the three populations and their families were performed using the FSTAT software. KEY RESULTS: The mean numbers of alleles per loci were 2.5, 3.9 and 2.5, respectively for the XI, PG and SO populations. Compared with their families, higher values for the observed heterozygosity and gene diversity were estimated for the parental populations. The subdivision (based on R(ST)) and inbreeding (F(IS)) in the SO and PG populations had similar effects, while inbreeding was the main effect in the families. Multilocus outcrossing rates varied from 0.011 to 0.223 in the three populations, indicating divergence in the outcrossing rates among O. glumaepatula populations. For the species (considering SO and PG populations together) an intermediate value was observed (tm = 0.116). Biparental inbreeding varied from 0.008 to 0.123, contributing to the selfing rate in these populations. More than 50 % of the outcrossing occurred between related individuals. CONCLUSIONS: The results indicated divergence in the mating system among O. glumaepatula populations, with consequences for conservation practices. The mating system of this species was classified as mixed with a predominance of self-fertilization.  相似文献   

7.
Investigations are made of variations in an iterative methodology previously introduced for reducing inbreeding by including genetic relationships in selection decisions, using adjusted estimated breeding values (EBV). An alternative computing strategy for maximising the value of the population selection criterion is shown to involve less computation, which results in function values as great or greater than the original method. Alteration of weights for different types of relationships in the adjusted EBV has no detectable effect on genetic gain at a given level of inbreeding. Selection using the adjusted EBV method in one sex and truncation on EBV in the other sex results in less genetic gain at a given level of inbreeding than using adjusted EBV in both sexes, but results in more gain at a given level of inbreeding than three selection strategies that do not include genetic relationships in selection decisions. The advantage of the adjusted EBV method over these three methods is retained when selection is for a sexlimited trait.  相似文献   

8.
Stochastic modeling of dairy cattle populations using multiple ovulation and embryo transfer (MOET) was used to compare 15-year genetic responses with an artificial insemination (AI) program. MOET and AI techniques were simulated in four populations, two with 100 breeding females each and two with 400 breeding females. The selection goal was to maximize genetic progress in milk yield. The reduction in genetic variation due to inbreeding and linkage disequilibrium was accounted for in the simulation process. All four MOET breeding schemes studied achieved larger genetic responses than the realized and theoretical genetic gains from the current AI progeny testing populations. Strict restriction against inbred matings slowed genetic progress significantly in the small population but would not be consequential in the larger population. However, allowing inbred matings in the smaller population caused a rapid accumulation of inbreeding. Linkage disequilibrium was as important as inbreeding in reducing genetic variation. Genetic drift variance was much smaller in the larger population.  相似文献   

9.
Extensive genetic progress has been achieved in dairy cattle populations on many traits of economic importance because of efficient breeding programmes. Success of these programmes has relied on progeny testing of the best young males to accurately assess their genetic merit and hence their potential for breeding. Over the last few years, the integration of dense genomic information into statistical tools used to make selection decisions, commonly referred to as genomic selection, has enabled gains in predicting accuracy of breeding values for young animals without own performance. The possibility to select animals at an early stage allows defining new breeding strategies aimed at boosting genetic progress while reducing costs. The first objective of this article was to review methods used to model and optimize breeding schemes integrating genomic selection and to discuss their relative advantages and limitations. The second objective was to summarize the main results and perspectives on the use of genomic selection in practical breeding schemes, on the basis of the example of dairy cattle populations. Two main designs of breeding programmes integrating genomic selection were studied in dairy cattle. Genomic selection can be used either for pre-selecting males to be progeny tested or for selecting males to be used as active sires in the population. The first option produces moderate genetic gains without changing the structure of breeding programmes. The second option leads to large genetic gains, up to double those of conventional schemes because of a major reduction in the mean generation interval, but it requires greater changes in breeding programme structure. The literature suggests that genomic selection becomes more attractive when it is coupled with embryo transfer technologies to further increase selection intensity on the dam-to-sire pathway. The use of genomic information also offers new opportunities to improve preservation of genetic variation. However, recent simulation studies have shown that putting constraints on genomic inbreeding rates for defining optimal contributions of breeding animals could significantly reduce achievable genetic gain. Finally, the article summarizes the potential of genomic selection to include new traits in the breeding goal to meet societal demands regarding animal health and environmental efficiency in animal production.  相似文献   

10.
An iterative selection strategy, based on estimated breeding values (EBV) and average relationship among selected individuals, is proposed to optimise the balance between genetic response and inbreeding. Stochastic simulation was used to compare rates of inbreeding and genetic gain with those of other strategies. For a range of heritabilities, population sizes and mating ratios, the iterative strategy, denoted ADJEBV, outperforms other strategies, giving the greatest genetic gain at a given rate of inbreeding and the least breeding at a given genetic gain. Where selection is currently by truncation on the EBV, with a restriction on the number of full-sibs selected, it should be possible to maintain similar levels of genetic gain and inbreeding with a reduction in population size of 10–30%, by changing to the iterative strategy. If performance is measured by the reduction in cumulative inbreeding without losing more than a given amount of genetic gain relative to results obtained under truncation selection on the EBV, then with the EBV based on a family index, the performance of ADJEBV is greater at low heritability, and is generally greater than where EBV are based on individual records. When comparisons of genetic response and inbreeding are made for alternative breeding scheme designs, schemes which give higher genetic gain within acceptable inbreeding levels would usually be favoured. If comparisons are made on this basis, then the selection method used should be ADJEBV, which maximises the genetic gain for a given level of inbreeding. The results indicated that all selection strategies used to reduce inbreeding had very small effects on the variance of gain, and so differences in this respect are unlikely to affect choices among selection strategies. Selection criteria are recommended based on maximising a selection objective which specifies the desired balance between genetic gain and inbreeding.  相似文献   

11.
The effect of non-random mating on genetic response was compared for populations with discrete generations. Mating followed a selection step where the average coancestry of selected animals was constrained, while genetic response was maximised. Minimum coancestry (MC), Minimum coancestry with a maximum of one offspring per mating pair (MC1) and Minimum variance of the relationships of offspring (MVRO) mating schemes resulted in a delay in inbreeding of about two generations compared with Random, Random factorial and Compensatory mating. In these breeding schemes where selection constrains the rate of inbreeding, ΔF, the improved family structure due to non-random mating increased genetic response. For schemes with ΔF constrained to 1.0% and 100 selection candidates, genetic response was 22% higher for the MC1 and MVRO schemes compared with Random mating schemes. For schemes with a less stringent constraint on ΔF or more selection candidates, the superiority of the MC1 and MVRO schemes was smaller (5–6%). In general, MC1 seemed to be the preferred mating method, since it almost always yielded the highest genetic response. MC1 mainly achieved these high genetic responses by avoiding extreme relationships among the offspring, i.e. fullsib offspring are avoided, and by making the contributions of ancestors to offspring more equal by mating least related animals.  相似文献   

12.
J Wang  W G Hill 《Genetics》1999,153(3):1475-1489
Transition matrices for selfing and full-sib mating were derived to investigate the effect of selection against deleterious mutations on the process of inbreeding at a linked neutral locus. Selection was allowed to act within lines only (selection type I) or equally within and between lines (type II). For selfing lines under selection type I, inbreeding is always retarded, the retardation being determined by the recombination fraction between the neutral and selected loci and the inbreeding depression from the selected locus, irrespective of the selection coefficient (s) and dominance coefficient (h) of the mutant allele. For selfing under selection type II or full-sib mating under both selection types, inbreeding is delayed by weak selection (small s and sh), due to the associative overdominance created at the neutral locus, and accelerated by strong selection, due to the elevated differential contributions between alternative alleles at the neutral locus within individuals and between lines (for selection type II). For multiple fitness loci under selection, stochastic simulations were run for populations with selfing, full-sib mating, and random mating, using empirical estimates of mutation parameters and inbreeding load in Drosophila. The simulations results are in general compatible with empirical observations.  相似文献   

13.
In modern dairy cattle breeding, genomic breeding programs have the potential to increase efficiency and genetic gain. At the same time, the requirements and the availability of genotypes and phenotypes present a challenge. The set-up of a large enough reference population for genomic prediction is problematic for numerically small breeds but also for hard to measure traits. The first part of this study is a review of the current literature on strategies to overcome the lack of reference data. One solution is the use of combined reference populations from different breeds, different countries, or different research populations. Results reveal that the level of relationship between the merged populations is the most important factor. Compiling closely related populations facilitates the accurate estimation of marker effects and thus results in high accuracies of genomic prediction. Consequently, mixed reference populations of the same breed, but from different countries are more promising than combining different breeds, especially if those are more distantly related. The use of female reference information has the potential to enlarge the reference population size. Including females is advisable for small populations and difficult traits, and maybe combined with genotyping females and imputing those that are un-genotyped.The efficient use of imputation for un-genotyped individuals requires a set of genotyped related animals and well-considered selection strategies which animals to choose for genotyping and phenotyping. Small populations have to find ways to derive additional advantages from the cost-intensive establishment of genomic breeding schemes. Possible solutions may be the use of genomic information for inbreeding control, parentage verification, within-herd selection, adjusted mating plans or conservation strategies.The second part of the paper deals with the issue of high-quality phenotypes against the background of new, difficult and hard to measure traits. The use of contracted herds for phenotyping is recommended, as additional traits, when compared to standard traits used in dairy cattle breeding can be measured at set moments in time. This can be undertaken even for the recording of health traits, thus resulting in complete contemporary groups for health traits. Future traits to be recorded and used in genomic breeding programs, at least partly will be traits for which traditional selection based on widespread phenotyping is not possible. Enabling phenotyping of sufficient numbers to enable genomic selection will rely on cooperation between scientists from different disciplines and may require multidisciplinary approaches.  相似文献   

14.
We performed computer simulations to evaluate the effectiveness of circular mating as a genetic management option for captive populations. As a benchmark, we used the method proposed by Fernández and Caballero according to which parental contributions are set to produce minimum coancestry among the offspring and matings are performed so as to minimize mean pairwise coancestry (referred to as the Gc/mc method). In contrast to other methods, fitness does not vary with population size in the case of circular mating, and can be higher than under random mating. Whether circular mating is an effective method in conserving captive populations depends on the trade-off between different considerations. On the one hand, circular mating shows the highest allelic diversity and the lowest mean pairwise coancestry for all population sizes. It also shows a relatively higher efficiency of purging deleterious alleles. More importantly, circular mating can significantly increase the success probability of populations released to the wild relative to the Gc/mc method. On the other hand, circular mating has the drawback of showing high inbreeding rates and low fitness in early generations, which can result to an increase in the extinction probability of the captive populations. However, this increase is slight unless population size and litter size are both very low. Overall, if the slight increase in extinction probability can be tolerated then circular mating fulfils the primary goals of a captive breeding program, i.e., it maintains high levels of genetic diversity and increases the success probability of reintroduced populations.  相似文献   

15.
For populations undergoing mass selection, previous studies have shown that the rate of inbreeding is directly related to the mean and variance of long-term contributions from ancestors to descendants, and thus prediction of the rate of inbreeding can be achieved via the prediction of long-term contributions. In this paper, it is shown that the same relationship between the rate of inbreeding and long-term contributions is found when selection is based on an index of individual and sib records (index selection) and where sib records may be influenced by a common environment. In these situations, rates of inbreeding may be considerably higher than under mass selection. An expression for the rate of inbreeding is derived for populations undergoing index selection based on variances of (one-generation) family size and incorporating the concept of long-term selective advantage. When the mating structure is hierarchical, and when half-sib records are included in the index, the correlation between parental breeding values and the index values of their offspring is higher for male parents than female parents. This introduces an important asymmetry between the contributions of male and female ancestors to the evolution of inbreeding which is not present when selection is based on individual and/or full-sib records alone. The prediction equation for index selection accounts for this asymmetry. The prediction is compared to rates of inbreeding calculated from simulation. The prediction is good when family size is small relative to the number selected. The reasons for overprediction in other situations are discussed.  相似文献   

16.
Prediction of rates of inbreeding in selected populations   总被引:2,自引:0,他引:2  
A method is presented for the prediction of rate of inbreeding for populations with discrete generations. The matrix of Wright's numerator relationships is partitioned into 'contribution' matrices which describe the contribution of the Mendelian sampling of genes of ancestors in a given generation to the relationship between individuals in later generations. These contributions stabilize with time and the value to which they stabilize is shown to be related to the asymptotic rate of inbreeding and therefore also the effective population size, Ne approximately 2N/(mu 2r + sigma 2r), where N is the number of individuals per generation and mu r and sigma 2r are the mean and variance of long-term relationships or long-term contributions. These stabilized values are then predicted using a recursive equation via the concept of selective advantage for populations with hierarchical mating structures undergoing mass selection. Account is taken of the change in genetic parameters as a consequence of selection and also the increasing 'competitiveness' of contemporaries as selection proceeds. Examples are given and predicted rates of inbreeding are compared to those calculated in simulations. For populations of 20 males and 20, 40, 100 or 200 females the rate of inbreeding was found to increase by as much as 75% over the rate of inbreeding in an unselected population depending on mating ratio, selection intensity and heritability of the selected trait. The prediction presented here estimated the rate of inbreeding usually within 5% of that calculated from simulation.  相似文献   

17.
Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.  相似文献   

18.
Within breeds and other captive populations, the risk of high inbreeding rates and loss of diversity can be high within (small) herds or subpopulations. When exchange of animals between different subpopulations is organised according to a rotational mating scheme, inbreeding rates can be restricted. Two such schemes, a breeding circle and a maximum avoidance of inbreeding scheme, are compared. In a breeding circle, flocks are organised in a circle where each flock serves as a donor flock for another flock, and the same donor-recipient combination is used in each breeding season. In the maximum inbreeding avoidance scheme, donor-recipient combinations change each year so that the use of the same combination is postponed as long as possible. Data from the Kempisch Heideschaap were used with computer simulations to determine the long-term effects of different breeding schemes. Without exchanging rams between flocks, high inbreeding rates (>1.5% per year) occurred. Both rotational mating schemes reduced inbreeding rates to on average 0.16% per year and variation across flocks in inbreeding rates, caused by differences in flock size, almost disappeared. Inbreeding rates with maximum inbreeding avoidance were more variable than with a breeding circle. Moreover, a breeding circle is easier to implement and operate. Breeding circles are thus efficient and flexible and can also be efficient for other captive populations, such as zoo populations of endangered wild species.  相似文献   

19.
We reasoned that mating animals by minimising the covariance between ancestral contributions (MCAC mating) will generate less inbreeding and at least as much genetic gain as minimum-coancestry mating in breeding schemes where the animals are truncation-selected. We tested this hypothesis by stochastic simulation and compared the mating criteria in hierarchical and factorial breeding schemes, where the animals were selected based on breeding values predicted by animal-model BLUP. Random mating was included as a reference-mating criterion. We found that MCAC mating generated 4% to 8% less inbreeding than minimum-coancestry mating in the hierarchical and factorial breeding schemes without any loss in genetic gain. Moreover, it generated upto 28% less inbreeding and about 3% more genetic gain than random mating. The benefits of MCAC mating over minimum-coancestry mating are worthwhile because they can be achieved without extra costs or practical constraints. MCAC mating merely uses pedigree information to pair the animals more appropriately and is clearly a worthy alternative to minimum-coancestry mating and probably any other mating criterion. We believe, therefore, that MCAC mating should be used in breeding schemes where pedigree information is available.  相似文献   

20.
We used the housefly (Musca domestica L.) as an experimental model to compare two strategies for the captive breeding of an endangered species: a strategy to minimize inbreeding and balance founder contributions (termed “MAI” for “maximum avoidance of inbreeding”) versus a scheme to select against less fit individuals (disregarding relatedness). By balancing the initial founder contributions, the MAI protocol was analogous to methods for minimizing kinship. In both breeding strategies, the population growth rate was limited to a maximum increase of 50% per generation. Five replicate populations, each starting with five male–female pairs, were subjected to five generations of captive breeding. Six generations of simulated “release into the wild” allowed ad lib breeding with less restrictive population growth potential, in either a benign or stressful environment (i.e., constant or variable temperature). Population size, fecundity, and fertility were assayed throughout the experiment, with juvenile‐to‐adult survival assayed in the second phase of the project. Allozyme assays determined the resultant inbreeding coefficients from the captive breeding schemes. The MAI breeding scheme resulted in significantly lower inbreeding coefficients and higher fitness, with qualitatively reduced extinction potential, most notable in the stressful environment. Spontaneous fitness rebounds suggested that the MAI strategy facilitated some form of purging of inbreeding depression effects. Importantly, the advantages of the MAI strategy were difficult to detect during the captive breeding phase, suggesting that the long‐term advantages of the MAI approach could be underestimated in actual breeding programs. We concur with the common recommendation of maximum avoidance of inbreeding at least for systems with low reproductive potential. Zoo Biol 0:1–18, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号