首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugarcane-pressmud, a by-product of cane-sugar manufacture, was used as a substrate for production of citric acid by Aspergillus niger CFTRI 30, in a solid-state fermentation system. Of the 170 g of sugar supplied, 131 g were consumed, with a 79% yield of citric acid over 120 h. Potassium ferrocyanide improved the conversion to about 88% and lowered the fermentation time by 24 h. Enrichment with sugar and NH4NO3 was essential to improve productivity. About 174 g citric acid/kg dry sugarcane-pressmud were produced after 120 h in ferrocyanid-treated medium which initially contained 12.5% (w/w) effective sugar and 0.1% (w/w) NH4NO3. About 3% (w/w) of the original sugar present in the sugarcane-pressmud was non-utilizable. This is the first report on the potential of sugarcane-pressmud for citric acid production.V.S. Shankaranand and B.K. Lonsane are with the Fermentation Technology and Bioengineering Discipline, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

2.
Aims: To evaluate the potential of apple pomace (AP) supplemented with rice husk for hyper citric acid production through solid‐state fermentation by Aspergillus niger NRRL‐567. Optimization of two key parameters, such as moisture content and inducer (ethanol and methanol) concentration was carried out by response surface methodology. Methods and Results: In this study, the effect of two crucial process parameters for solid‐state citric acid fermentation by A. niger using AP waste supplemented with rice husk were thoroughly investigated in Erlenmeyer flasks through response surface methodology. Moisture and methanol had significant positive effect on citric acid production by A. niger grown on AP (P < 0·05). Higher values of citric acid on AP by A. niger (342·41 g kg?1 and 248·42 g kg?1 dry substrate) were obtained with 75% (v/w) moisture along with two inducers [3% (v/w) methanol and 3% (v/w) ethanol] with fermentation efficiency of 93·90% and 66·42%, respectively depending upon the total carbon utilized after 144 h of incubation period. With the same optimized parameters, conventional tray fermentation was conducted. The citric acid concentration of 187·96 g kg?1 dry substrate with 3% (v/w) ethanol and 303·34 g kg?1 dry substrate with 3% (v/w) methanol were achieved representing fermentation efficiency of 50·80% and 82·89% in tray fermentation depending upon carbon utilization after 120 h of incubation period. Conclusions: Apple pomace proved to be the promising substrate for the hyper production of citric acid through solid‐state tray fermentation, which is an economical technique and does not require any sophisticated instrumentation. Significance and Impact of the Study: The study established that the utilization of agro‐industrial wastes have positive repercussions on the economy and will help to meet the increasing demands of citric acid and moreover will help to alleviate the environmental problems resulting from the disposal of agro‐industrial wastes.  相似文献   

3.
Certain cost-effective carbohydrate sources in crude as well as after purification were utilized as the sole sources of carbon for gluconic acid production using Aspergillus niger ORS-4.410 under submerged fermentation. Crude grape must (GM) and banana-must (BM) resulted into significant levels of gluconic acid production i.e. 62.6 and 54.6 g/l, respectively. The purification of grape and banana-must led to a 20–21% increase in gluconic acid yield. Molasses as such did not favour gluconate production (12.0 g/l) but a significant increase in production (60.3 g/l) was observed following hexacyanoferrate (HCF) treatment of the molasses. Rectified grape must (RGM) appeared to be best suitable substrate which after 144 h resulted in 73.2 g of gluconic acid/l with 80.6% yield followed by the yield obtained from the rectified banana must (RBM) (72.4%) and treated cane molasses (TM) (61.3%). Abundant growth of mould A. niger ORS-4.410 was observed with crude grape (0.131 g/l/h) and banana must (0.132 g/l/h).  相似文献   

4.
A laboratory-scale study was conducted to evaluate the feasibility of using palm oil mill effluent (POME) as a major substrate and other nutrients for maximum production of citric acid using the potential fungal strain Aspergillus niger (A103). Statistical optimization of medium composition (substrate–POME, co-substrates–wheat flour and glucose, and nitrogen source–ammonium nitrate) and fermentation time was carried out by central composite design (CCD) to develop a polynomial regression model through the effects of linear, quadratic, and interaction of the factors. The statistical analysis of the results showed that, in the range studied, ammonium nitrate had no significant effect whereas substrate, co-substrates and fermentation time had significant effects on citric acid production. The optimized medium containing 2% (w/w) of substrate concentration (POME), 4% (w/w) of wheat flour concentration, 4% (w/w) of glucose concentration, 0% (w/v) of ammonium nitrate and 5 days fermentation time gave the maximum predicted citric acid of 5.37 g/l which was found to be 1.5 g/l in the experimental run. The determination of coefficient (R 2) from the analysis observed was 0.964, indicating a satisfactory adjustment of the model with the response. The analysis showed that the major substrate POME (P < 0.05), glucose (P < 0.01), nutrient (P < 0.05), and fermentation time (P < 0.01) was more significant for citric acid production. The bioconversion of POME for citric acid production using optimal conditions showed the higher removal of chemical oxygen demand (82%) with the production of citric acid (5.2 g/l) on the final day of fermentation process (7 days). The pH and biosolids accumulation were observed during the bioconversion process.  相似文献   

5.
Aspergillus foetidus ACM 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4g of citric acid per 100g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30°C, an unadjusted initial pH of 3.4, a particle size of 2mm and 5ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.  相似文献   

6.
A two-stage fed-batch process was designed to enhance erythritol productivity by the mutant strain of Candida magnoliae. The first stage (or growth stage) was performed in the fed-batch mode where the growth medium was fed when the pH of the culture broth dropped below 4.5. The second stage (or production stage) was started with addition of glucose powder into the culture broth when the cell mass reached about 75 g dry cell weight l−1. When the initial glucose concentration was adjusted to 400 g l−1 in the production stage, 2.8 g l−1 h−1 of overall erythritol productivity and 41% of erythritol conversion yield were achieved, which represented a fivefold increase in erythritol productivity compared with the simple batch fermentation process. A high glucose concentration in the production phase resulted in formation of organic acids including citrate and butyrate. An increase in dissolved oxygen level caused formation of gluconic acid instead of citric acid. Journal of Industrial Microbiology & Biotechnology (2000) 25, 100–103. Received 25 February 2000/ Accepted in revised form 08 June 2000  相似文献   

7.
Solid state fermentation was carried out to compare efficiency of acid, alkaline and urea pretreatment of sugarcane bagasse for production of citric acid using Aspergillus niger ATCC 9142. Plackett-Burman statistical design was used to evaluate significance of variables. Pretreatment of bagasse by urea was known as the most influential treatment to increase citric acid production (137.6g/kg of dry sugarcane bagasse and citric acid yield of 96% based on sugar consumed). Finally, up scaling was achieved to a 20L solid state fermentor in which humidity was constant in gas phase and urea-treated sugarcane bagasse. The produced acid concentration and yield in fermentor was 82.38g/kg of dry substrate and 26.45g/kgday, respectively.  相似文献   

8.
The quantitative effects of pH, temperature, time of fermentation, sugar concentration, nitrogen concentration and potassium ferrocyanide on citric acid production were investigated using a statistical experimental design. It was found that palmyra jaggery (sugar syrup from the palmyra palm) is a suitable substrate for increasing the yield of citric acid using Aspergillus niger MTCC 281 by submerged fermentation. Regression equations were used to model the fermentation in order to determine optimum fermentation conditions. Higher yields were obtained after optimizing media components and conditions of fermentation. Maximum citric acid production was obtained at pH 5.35, 29.76 °C, 5.7 days of fermentation with 221.66 g of substrate/l, 0.479 g of ammonium nitrate/l and 2.33 g of potassium ferrocyanide/l.  相似文献   

9.
Propionic acid production from glucose was studied using Propionibacterium freudenreichii shermanii. Conditions were optimized for high yields of propionic acid and total organic acids by sequential optimization of parameters like pH, inoculum age, inoculum volume and substrate concentration. Near-theoretical yield (0.54?±?0.023?g/g) was achieved for propionic acid with fermentation of 1% glucose using 20% (v/v) of 48?hr old P. shermanii at 30°C, pH maintained at 5.5. Total organic acid yield under these conditions was 0.74?±?0.06?g/g. The study resulted in achieving 98% and 95% theoretical yields of propionic acid and total organic acids, respectively. Under optimized conditions, along with organic acids, P. shermanii also produced vitamin B12 and trehalose intracellularly, showing its potential to be used as a cell factory.  相似文献   

10.
The cell growth and docosahexaenoic acid (DHA) synthesis of Schizochytrium sp. are closely related to the culture pH. A two-phase pH control strategy based on nitrogen consumption was developed in which pH 7.0 was used for biomass accumulation and pH 5.0 for DHA synthesis. Using this strategy, the cell dry weight and DHA content reached 98.07 and 25.85 g/L, respectively. Furthermore, ammonia and citric acid were used as pH regulators. Application of citric acid further resulted in 7.88 and 4.87% improvements of total lipids and the ratio of DHA to total fatty acids, respectively. Ammonia, as a suitable nitrogen source, promoted non-lipid biomass accumulation. Using this method, a maximum DHA yield of 32.75 g/L was obtained with non-lipid biomass (58.01 g/L) and the ratio of DHA to total fatty acids (52.36%). This study provides an easy strategy for large-scale industrial production of DHA via high-cell-density fermentation of Schizochytrium sp.  相似文献   

11.
Citric acid production by solid state fermentation using sugarcane bagasse   总被引:2,自引:0,他引:2  
A solid state fermentation (SSF) method was used to produce citric acid by Aspergillus niger DS 1 using sugarcane bagasse as a carrier and sucrose or molasses based medium as a moistening agent. Initially bagasse and wheat bran were compared as carrier. Bagasse was the most suitable carrier, as it did not show agglomeration after moistening with medium, resulting in better heat and mass transfer during fermentation and higher product yield. Different parameters such as moisture content, particle size, sugar level and methanol concentration of the medium were optimised and 75% moisture level, 31.8 g sugar/100 g dry solid, 4% (v/w) methanol and particles of the size between 1.2 and 1.6 mm were found to be optimal. Sucrose and clarified and non-clarified molasses medium were also tested as moistening agents for SSF and under optimised conditions, 20.2, 19.8 and 17.9 g citric acid /100 g of dry solid with yield of 69.6, 64.5 and 62.4% (based on sugar consumed) was obtained in sucrose, clarified and non-clarified molasses medium respectively, after 9 days of fermentation.  相似文献   

12.
Aspergillus niger CFTRI 30 produced 1.3 g citric acid/10 g dry coffee husk in 72 h solid-state fermentation when the substrate was moistened with 0.075 M NaOH solution. Production was increased by 17% by adding a mixture of iron, copper and zinc to the medium but enrichment of the moist solid medium with (NH4)2SO4, sucrose or any of four enzymes did not improve production. The production of about 1.5 g citric acid/10 g dry coffee husk at a conversion of 82% (based on sugar consumed) under standardized conditions demonstrates the commercial potential of using the husk in this way.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India;  相似文献   

13.
Yarrowia lipolytica is able to secrete large amounts of citric acid (CA), which is greatly affected by the dissolved oxygen concentration (DOC) in the fermentation medium. In this study, oleic acid was selected as oxygen‐vector to improve DOC during CA fermentation. When 2% (v/v) of oleic acid was added to the culture broth, higher DOC (>42.1%) was determined throughout the CA synthesis phase. The yield of CA reached a maximum of 32.1 g/L (25.4% higher than the control) and the biomass was 8.8 g/L. The substrate uptake rate, products formation rate and key enzyme activities were also determined, and the results indicated that CA synthesis was strengthened with oleic acid addition. Furthermore, it was detected that oleic acid could be assimilated by the cells, which means that oleic acid could be served both as oxygen‐vector and co‐substrate for CA synthesis by Y. lipolytica. In a bioreactor with working volume of 3 L, the highest concentration of CA reached to 36. 4 g/L in the presence of 2% (v/v) oleic acid after 192 h of fermentation. These results confirmed that oleic acid could be applied in the large‐scale production of CA by Y. lipolytica.  相似文献   

14.
The genetically modified yeast strain Yarrowia lipolytica H222‐S4(p67ICL1)T5 is able to utilize sucrose as a carbon source and to produce citric and isocitric acids in a more advantageous ratio as compared to its wild‐type equivalent. In this study, the effect of pH of the fermentation broth (pH 6.0 and 7.0) and proteose‐peptone addition on citric acid production by the recombinant yeast strain were investigated. It was found that the highest citric acid production occurred at pH 7.0 without any addition of proteose‐peptone. Furthermore, two process strategies (fed‐batch and repeated fed‐batch) were tested for their applicability for use in citric acid production from sucrose by Y. lipolytica. Repeated fed‐batch cultivation was found to be the most effective process strategy: in 3 days of cycle duration, approximately 80 g/L citric acid was produced, the yield was at least 0.57 g/g and the productivity was as much as 1.1 g/Lh. The selectivity of the bioprocess for citric acid was always higher than 90% from the very beginning of the fermentation due to the genetic modification, reaching values of up to 96.4% after 5 days of cycle duration.  相似文献   

15.
Spore suspensions of Aspergillus niger GCB 75, which produced 31.1 g/l citric acid from 15% sugars in molasses, were subjected to u.v.-induced mutagenesis. Among three variants, GCM 45 was found to be the best citric acid producer and was further improved by chemical mutagenesis using NTG. Out of 3 deoxy-D-glucose-resistant variants, GCM 7 was selected as the best mutant which produced 86.1 ± 1.5 g/l citric acid after 168 h of fermentation of potassium ferricyanide + H2SO4-pretreated black strap molasses (containing 150 g sugars/l) in Vogel's medium. On the basis of comparison of kinetic parameters, namely the volumetric substrate uptake rate (Q s), and specific substrate uptake rate (q s), the volumetric productivity, theoretical yield and specific product formation rate, it was observed that the mutants were faster growing organisms and had the ability to overproduce citric acid.  相似文献   

16.
The batch production of gluconic acid in the presence of glucose, sucrose and molasses was investigated using free mycelia of Aspergillus foetidus NRRL 337 in shake flasks. Eight growth parameters were chosen as independent variables. The temperature, pH, substrate type and initial concentrations, inoculum percentage and shake rate directly affected the specific microorganism growth and gluconic acid production rates. The optimum temperature and initial pH values were found to be 33°C and five to six, respectively. The maximum specific growth and gluconic acid production rates were established as 57 g/dm3 of glucose, 75 g/dm3 of sucrose and 150 g/dm3 of molasses. The optimum values of the shake rate, inoculum percentage and initial ammonium nitrate concentration were determined as 100 1/min, 0.5% and 1.5 g/dm3, respectively. The maximum gluconic acid concentrations corresponding to these initial substrate concentrations were observed to be 8.3 g/dm3, 17.4 g/dm3 37.0 g/dm3, respectively. The optimum specific microbial growth and gluconic acid production rates were found as 0.0145 1/h and 0.0375 g/g × h, respectively, for the fermentation conditions of SGo = 57 g/dm3, T = 28°C, initial pH = 6.5, N = 84 1/min, A = 0.5 g/dm3 and I = 0.5%.  相似文献   

17.
AIMS: Analysis of regulators for modulated gluconic acid production under surface fermentation (SF) condition using grape must as the cheap carbohydrate source, by mutant Aspergillus niger ORS-4.410. Replacement of conventional fermentation condition by solid-state surface fermentation (SSF) for semi-continuous production of gluconic acid by pseudo-immobilization of A. niger ORS-4.410. METHODS AND RESULTS: Grape must after rectification was utilized for gluconic acid production in batch fermentation in SF and SSF processes using mutant strain of A. niger ORS-4.410. Use of rectified grape must led to the improved levels of gluconic acid production (80-85 g l(-1)) in the fermentation medium containing 0.075% (NH4)2HPO4; 0.1% KH2PO4 and 0.015% MgSO4.7H2O at an initial pH 6.6 (+/-0.1) under surface fermentation. Gluconic acid production was modulated by incorporating the 2% soybean oil, 2% starch and 1% H2O2 in fermentation medium at continuously high aeration rate (2.0 l min(-1)). Interestingly, 95.8% yield of gluconic acid was obtained when A. niger ORS-4.410 was pseudo-immobilized on cellulose fibres (bagasse) under SSF. Four consecutive fermentation cycles were achieved with a conversion rate of 0.752-0.804 g g(-1) of substrate into gluconic acid under SSF. CONCLUSIONS: Use of additives modulated the gluconic acid production under SF condition. Semi-continuous production of gluconic acid was achieved with pseudo-immobilized mycelia of A. niger ORS-4.410 having a promising yield (95.8%) under SSF condition. SIGNIFICANCE AND IMPACT OF THE STUDY: The bioconversion of grape must into modulated gluconic acid production under SSF conditions can further be employed in fermentation industries by replacing the conventional carbohydrate sources and expensive, energy consuming fermentation processes.  相似文献   

18.
Statistical experimental designs were applied for the optimization of medium constituents for citric acid production by Yarrowia lipolytica NCIM 3589 in solid state fermentation (SSF) using pineapple waste as the sole substrate. Using Plackett-Burman design, yeast extract, moisture content of the substrate, KH(2)PO(4) and Na(2)HPO(4) were identified as significant variables which highly influenced citric acid production and these variables were subsequently optimized using a central composite design (CCD). The optimum conditions were found to be yeast extract 0.34 (%w/w), moisture content of the substrate 70.71 (%), KH(2)PO(4) 0.64 (%w/w) and Na(2)HPO(4) 0.69 (%w/w). Citric acid production at these optimum conditions was 202.35 g/kg ds (g citric acid produced/kg of dried pineapple waste as substrate).  相似文献   

19.
Among the organic acids produced industrially, citric acid is the most important in quantitative terms. Solid‐state fermentation (SSF) has been an alternative method for citric acid production using agro‐industrial residues such as cassava bagasse (CB). The use of CB as a substrate can avoid environmental problems caused by its disposal into the environment. This study was developed to verify the influence of the treated bagasse amount, and consequently, the influence of the gelatinization degree of CB starch on citric acid production by SSF in Erlenmeyer flasks, horizontal drums, and trays. The best results were obtained in a horizontal drum bioreactor using 100 % of treated CB. However, trays showed advantages and good perspectives for large‐scale citric acid production due to economic reasons such as energy costs. A kinetic study was also carried out in order to compare citric acid production in glass columns (laboratory scale) and horizontal drum bioreactors (semi‐pilot scale). This study was accomplished in order to follow the influence of aeration on citric acid accumulation. In addition, the production of CO2 was evaluated as an indirect method of biomass estimation. Citric acid production was higher in glass columns (309.70 g/kg of dry CB) than in HD bioreactors (268.94 g/kg of dry CB). Finally, it was possible to show that citric acid production was favored by a limited biomass production, which occurred with low aeration rates. Biomass production is related to CO2 production and as a result, a respirometry analysis could be used for biomass estimation.  相似文献   

20.
In the present report, crude glycerol, waste discharged from bio‐diesel production, was used as carbon substrate for three natural Yarrowia lipolytica strains (LFMB 19, LFMB 20 and ACA‐YC 5033) during growth in nitrogen‐limited submerged shake‐flask experiments. In media with initial glycerol concentration of 30 g/L, all strains presented satisfactory microbial growth and complete glycerol uptake. Although culture conditions favored the secretion of citric acid (and potentially the accumulation of storage lipid), for the strains LFMB 19 and LFMB 20, polyol mannitol was the principal metabolic product synthesized (maximum quantity 6.0 g/L, yield 0.20–0.26 g per g of glycerol consumed). The above strains produced small quantities of lipids and citric acid. In contrast, Y. lipolytica ACA‐YC 5033 produced simultaneously higher quantities of lipid and citric acid and was further grown on crude glycerol in nitrogen‐limited experiments, with constant nitrogen and increasing glycerol concentrations (70–120 g/L). Citric acid and lipid concentrations increased with increment of glycerol; maximum total citric acid 50.1 g/L was produced (yield 0.44 g per g of glycerol) while simultaneously 2.0 g/L of fat were accumulated inside the cells (0.31 g of lipid per g of dry weight). Cellular lipids were mainly composed of neutral fraction, the concentration of which substantially increased with time. Moreover, in any case, the phospholipid fraction was more unsaturated compared with total and neutral lipids, while at the early growth step, microbial lipid was more rich in saturated fatty acids (e.g. C16:0 and C18:0) compared with the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号