首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Conflicting reports have appeared concerning the effect of [Mg2+] on muscle activity. Several groups have found that increasing [Mg2+] produces a right-ward shift of the pCa-tension curve, while others have found no effect of [Mg2+] on myofibrillar ATPase activity. The present study is a careful evaluation of the effect of [Mg2+] on myofibrillar ATPase, skinned fiber tension development, TnCDANZ (troponin C (TnC)-labeled with 5-dimethylaminonaphthalene-1-sulfonyl aziridine) fluorescence, and simultaneous TnCDANZ fluorescence and tension development in the same fiber. A small effect of [Mg2+] on both ATPase and tension development was found with an apparent association constant of about 2 X 10(2) M-1. The Ca2+ dependence of TnCDANZ fluorescence was similarly effected by [Mg2+], either alone or when incorporated into TnC-depleted skinned fibers (K'Mg approximately equal to 2-3 X 10(2) M-1), suggesting that the effect of [Mg2+] on activity is due to an effect of [Mg2+] on Ca2+ binding to the Ca2+-specific sites of TnC. It is not yet clear whether this effect of [Mg2+] is through direct competition at the binding sites or through indirect effects. In either case, the calculated effect of physiological [Mg2+] is so small that the regulatory sites of TnC can still be considered "Ca2+-specific." In addition, a slightly greater effect of [Mg2+] on tension development (K'Mg = 4.62 X 10(2) M-1) was observed only for very low levels of [Mg2+], which might suggest an additional effect of Mg2+ on tension development which is saturated by millimolar Mg2+.  相似文献   

2.
Binding of Ca2+ to the troponin C (TnC) subunit of troponin is necessary for tension development in skeletal and cardiac muscles. Tension was measured in skinned fibers from rabbit skeletal muscle at various [Ca2+] before and after partial substitution of skeletal TnC with cardiac TnC. Following substitution, the tension-pCa relationship was altered in a manner consistent with the differences in the number of low-affinity Ca2+-binding sites on the two types of TnC and their affinities for Ca2+. The alterations in the tension-pCa relationship were for the most part reversed by reextraction of cardiac TnC and readdition of skeletal TnC into the fiber segments. These findings indicate that the type of TnC present plays an important role in determining the Ca2+ dependence of tension development in striated muscle.  相似文献   

3.
In order to obtain information with regard to behavior of the Ca2+ receptor, troponin C (TnC), in intact myofilament lattice of cardiac muscle, we investigated Ca2+-binding properties of canine ventricular muscle fibers skinned with Triton X-100. Analysis of equilibrium Ca2+-binding data of the skinned fibers in ATP-free solutions suggested that there were two distinct classes of binding sites which were saturated over the physiological range of negative logarithm of free calcium concentration (pCa): class I (KCa = 7.4 X 10(7) M-1, KMg = 0.9 X 10(3) M-1) and class II (KCa = 1.2 X 10(6) M-1, KMg = 1.1 X 10(2) M-1). The class I and II were considered equivalent, respectively, to the Ca2+-Mg2+ and Ca2+-specific sites of TnC. The assignments were supported by TnC content of the skinned fibers determined by electrophoresis and 45Ca autoradiograph of electroblotted fiber proteins. Dissociation of rigor complexes by ATP caused a downward shift of the binding curve between pCa 7 and 5, an effect which could be largely accounted for by lowering of KCa of the class II sites. When Ca2+ binding and isometric force were measured simultaneously, it was found that the threshold pCa for activation corresponds to the range of pCa where class II sites started to bind Ca2+ significantly. We concluded that the low affinity site of cardiac TnC plays a key role in Ca2+ regulation of contraction under physiological conditions, just as it does in the regulation of actomyosin ATPase. Study of kinetics of 45Ca washout from skinned fibers and myofibrils revealed that cardiac TnC in myofibrils contains Ca2+-binding sites whose off-rate constant for Ca2+ is significantly lower than the Ca2+ off-rate constant hitherto documented for the divalent ion-binding sites of either cardiac/slow muscle TnC or fast skeletal TnC.  相似文献   

4.
Ca2+ binding to skeletal muscle troponin C in skeletal or cardiac myofibrils was measured by the centrifugation method using 45Ca. The specific Ca2+ binding to troponin C was obtained by subtracting the amount of Ca2+ bound to the CDTA-treated myofibrils (troponin C-depleted myofibrils) from that to the myofibrils reconstituted with troponin C. Results of Ca2+ binding measurement at various Ca2+ concentrations showed that skeletal troponin C had two classes of binding sites with different affinity for Ca2+. The Ca2+ binding of low-affinity sites in cardiac myofibrils was about eight times lower than that in skeletal myofibrils, while the high-affinity sites of troponin C in skeletal or cardiac myofibrils showed almost the same affinity for Ca2+. The Ca2+ sensitivity of the ATPase activity of skeletal troponin C-reconstituted cardiac myofibrils was also about eight times lower than that of skeletal myofibrils reconstituted with troponin C. These findings indicated that the difference in the sensitivity to Ca2+ of the ATPase activity between skeletal and cardiac CDTA-treated myofibrils reconstituted with skeletal troponin C was mostly due to the change in the affinity for Ca2+ of the low-affinity sites on the troponin C molecule.  相似文献   

5.
The control of myocardial contraction with skeletal fast muscle troponin C   总被引:8,自引:0,他引:8  
The present study describes experiments on the myocardial trabeculae from the right ventricle of Syrian hamsters whose troponin C (TnC) moiety was exchanged with heterologous TnC from fast skeletal muscle of the rabbit. These experiments were designed to help define the role of the various classes of Ca2+-binding sites on TnC in setting the characteristic sensitivities for activations of cardiac and skeletal muscles. Thin trabeculae were skinned and about 75% of their troponin C extracted by chemical treatment. Tension development on activations by Ca2+ and Sr2+ was found to be nearly fully blocked in such TnC extracted preparations. Troponin C contents and the ability to develop tension on activations by Ca2+ and Sr2+ was permanently restored after incubation with 2-6 mg/ml purified TnC from either rabbit fast-twitch skeletal muscle (STnC) or the heart (CTnC, cardiac troponin C). The native (skinned) cardiac muscle is characteristically about 5 times more sensitive to activation by Sr2+ than fast muscle, but the STnC-loaded trabeculae gave response like fast muscle. Attempts were also made to exchange the TnC in psoas (fast-twitch muscle) fibers, but unlike cardiac muscle tension response of the maximally extracted psoas fibers could be restored only with homologous STnC. CTnC was effective in partially extracted fibers, even though the uptake of CTnC was complete in the maximally extracted fibers. The results in this study establish that troponin C subunit is the key in setting the characteristic sensitivity for tension control in the myocardium above that in the skeletal muscle. Since a major difference between skeletal and cardiac TnCs is that one of the trigger sites (site I, residues 28-40 from the N terminus) is modified in CTnC and has reduced affinity for Ca2+ binding, the possibility is raised that this site has a modulatory effect on activation in different tissues and limits the effectiveness of CTnC in skeletal fibers.  相似文献   

6.
The rate constant of tension redevelopment (ktr; 1986. Proc. Natl. Acad. Sci. USA. 83:3542-3546) was determined at various levels of thin filament activation in skinned single fibers from mammalian fast twitch muscles. Activation was altered by (a) varying the concentration of free Ca2+ in the activating solution, or (b) extracting various amounts of troponin C (TnC) from whole troponin complexes while keeping the concentration of Ca2+ constant. TnC was extracted by bathing the fiber in a solution containing 5 mM EDTA, 10 mM HEPES, and 0.5 mM trifluoperazine dihydrochloride. Partial extraction of TnC resulted in a decrease in the Ca2+ sensitivity of isometric tension, presumably due to disruption of near-neighbor molecular cooperativity between functional groups (i.e., seven actin monomers plus associated troponin and tropomyosin) within the thin filament. Altering the level of thin filament activation by partial extraction of TnC while keeping Ca2+ concentration constant tested whether the Ca2+ sensitivity of ktr results from a direct effect of Ca2+ on cross-bridge state transitions or, alternatively, an indirect effect of Ca2+ on these transitions due to varying extents of thin filament activation. Results showed that the ktr-pCa relation was unaffected by partial extraction of TnC, while steady-state isometric tension exhibited the expected reduction in Ca2+ sensitivity. This finding provides evidence for a direct effect of Ca2+ on an apparent rate constant that limits the formation of force-bearing cross-bridge states in muscle fibers. Further, the kinetics of this transition are unaffected by disruption of near-neighbor thin filament cooperativity subsequent to extraction of TnC. Finally, the results support the idea that the steepness of the steady-state isometric tension-calcium relationship is at least in part due to mechanisms involving molecular cooperativity among thin filament regulatory proteins.  相似文献   

7.
Linear dichroism of 5' tetramethyl-rhodamine (5'ATR) was measured to monitor the effect of sarcomere length (SL) on troponin C (TnC) structure during Ca2+ activation in single glycerinated rabbit psoas fibers and skinned right ventricular trabeculae from rats. Endogenous TnC was extracted, and the preparations were reconstituted with TnC fluorescently labeled with 5'ATR. In skinned psoas fibers reconstituted with sTnC labeled at Cys 98 with 5'ATR, dichroism was maximal during relaxation (pCa 9.2) and was minimal at pCa 4.0. In skinned cardiac trabeculae reconstituted with a mono-cysteine mutant cTnC (cTnC(C84)), dichroism of the 5'ATR probe attached to Cys 84 increased during Ca2+ activation of force. Force and dichroism-[Ca2+] relations were fit with the Hill equation to determine the pCa50 and slope (n). Increasing SL increased the Ca2+ sensitivity of force in both skinned psoas fibers and trabeculae. However, in skinned psoas fibers, neither SL changes or force inhibition had an effect on the Ca2+ sensitivity of dichroism. In contrast, increasing SL increased the Ca2+ sensitivity of both force and dichroism in skinned trabeculae. Furthermore, inhibition of force caused decreased Ca2+ sensitivity of dichroism, decreased dichroism at saturating [Ca2+], and loss of the influence of SL in cardiac muscle. The data indicate that in skeletal fibers SL-dependent shifts in the Ca2+ sensitivity of force are not caused by corresponding changes in Ca2+ binding to TnC and that strong cross-bridge binding has little effect on TnC structure at any SL or level of activation. On the other hand, in cardiac muscle, both force and activation-dependent changes in cTnC structure were influenced by SL. Additionally, the effect of SL on cardiac muscle activation was itself dependent on active, cycling cross-bridges.  相似文献   

8.
To investigate the role of the Ca2(+)-specific (I and II) sites of fast skeletal muscle troponin C (TnC) in the regulation of contraction, we have produced two TnC mutants which have lost the ability to bind Ca2+ at either site I (VG1) or at site II (VG2). Both mutants were able to partially restore force to TnC-depleted skinned muscle fibers (approximately 25% for VG1 and approximately 50% for VG2). In contrast, bovine cardiac TnC (BCTnC), which like VG1 binds Ca2+ only at site II, could fully reactivate the contraction of TnC-depleted fibers. Higher concentrations of both mutants were required to restore force to the TnC-depleted fibers than with wild type TnC (WTnC) or BCTnC. VG1 and VG2 substituted fibers could not bind additional WTnC, indicating that all of the TnC-binding sites were saturated with the mutant TnC's. The Ca2+ concentration required for force activation was much higher for VG1 and VG2 substituted fibers than for WTnC or BCTnC substituted fibers. Also, the steepness of force activation was much less in VG1 and VG2 versus WTnC and BCTnC substituted fibers. These results suggest cooperative interactions between sites I and II in WTnC. In contrast, BCTnC has essentially the same apparent Ca2+ affinity and steepness of force activation as does WTnC. Thus, cardiac TnC must have structural differences from WTnC which compensate for the lack of site I, while in WTnC, both Ca2(+)-specific sites are probably crucial for full functional activity.  相似文献   

9.
Inhibition of muscle force development by acidic pH is a well known phenomenon, yet the exact mechanism by which a decrease in pH inhibits the Ca2+-activated force in striated myofilaments remains poorly understood. Whether or not the deactivation by acidic pH involves direct competition between Ca2+ and protons for regulatory binding sites on fast skeletal troponin C (TnC) or whether other proteins in thin filament regulation are important remains unclear. We measured the effects of acidic pH on Ca2+-dependent fluorescent changes in TnC labeled with the probe danzylaziridine (Danz), which reports Ca2+ binding to the regulatory (Ca2+-specific) sites. Measurements were also made with TnCDanz complexed with the inhibitory Tn unit, TnI, and in the whole Tn complex. Our results show that a drop in pH from 7.0 to 6.5 is associated with a 1.6-fold increase in the midpoint for the relation between free Ca2+ and Ca2+ binding to the regulatory sites on TnCDanz. However, when TnCDanz was present in its complex with either TnI alone or with TnI-TnT, the increase in midpoint free Ca2+ was increased by 3.5-fold. We tested whether this potentiation in the effect of acidic pH on Ca2+ binding to TnC is due to a pH-induced alteration in the binding of TnI to TnC. A decrease in pH from 7.0 to 6.5 was associated with a halving of the affinity of TnI for TnC. We also probed the effect of acidic pH on TnI. This was done (i) by measuring the intrinsic fluorescence of tryptophan residues in TnI alone and (ii) by measuring fluorescence of TnI (in the Tn complex) labeled at Cys-133 with 5-iodoacetamidofluorescein. A drop in pH from 7.0 to 6.5 was associated with a 15% decrease in intrinsic fluorescence and with a 30% decrease in the fluorescence of the 5-iodoacetamidofluorescein probe. We conclude, therefore, that while protons and Ca2+ may directly affect Ca2+ binding to regulatory sites on fast skeletal TnC, the effect of acidic pH on TnC Ca2+ binding is amplified in the TnI-TnC and Tn complexes by a pH-related effect on the affinity of TnI for TnC.  相似文献   

10.
Intrinsic troponin C (TnC) was extracted from small bundles of rabbit psoas fibers and replaced with TnC labeled with dansylaziridine (5-dimethylaminonaphthalene-1-sulfonyl). The flourescence of incorporated dansylaziridine-labeled TnC was enhanced by the binding of Ca2+ to the Ca2+-specific (regulatory) sites of TnC and was measured simultaneously with force (Zot, H.G., Güth, K., and Potter, J.D. (1986) J. Biol. Chem. 261, 15883-15890). Various myosin cross-bridge states also altered the fluorescence of dansylaziridine-labeled TnC in the filament, with cycling cross-bridges having a greater effect than rigor cross-bridges; and in both cases, there was an additional effect of Ca2+. The paired fluorescence and tension data were used to calculate the apparent Ca2+ affinity of the regulatory sites in the thin filament and were shown to increase at least 10-fold during muscle activation presumably due to the interaction of cycling cross-bridges with the thin filament. The cross-bridge state responsible for this enhanced Ca2+ affinity was shown to be the myosin-ADP state present only when cross-bridges are cycling. The steepness of the pCa force curves (where pCa represents the -log of the free Ca2+ concentration) obtained in the presence of ATP at short and long sarcomere lengths was the same, suggesting that cooperative interactions between adjacent troponin-tropomyosin units may spread along much of the actin filament when cross-bridges are attached to it. In contrast to the cycling cross-bridges, rigor bridges only increased the Ca2+ affinity of the regulatory sites 2-fold. Taken together, the results presented here indicate a strong coupling between the Ca2+ regulatory sites and cross-bridge interactions with the thin filament.  相似文献   

11.
The regulatory complex of vertebrate skeletal muscle integrates information about cross-bridge binding, divalent cations and other intracellular ionic conditions to control activation of muscle contraction. Relatively little is known about the role of the troponin C (TnC) C-domain in the absence of Ca2+. Here, we use a standardized condition for measuring isometric tension in rabbit psoas skinned fibers to track TnC attachment and detachment in the absence of Ca2+ under different conditions of ionic strength, pH and MgATP. In the presence of MgATP and Mg2+, TnC detaches more readily and has a 1.5- to 2-fold lower affinity for the intact thin filament at pH 8 and 250 mM K+ than at pH 6 or in 30 mM K+; changes in affinity are fully reversible. The response to ionic strength is lost when Mg2+ and MgATP are absent, whereas the response to pH persists, suggesting that weaker electrostatic TnC-TnI-TnT interactions can be overridden by strongly bound cross-bridges. In solution, titration of a fluorescent C-domain mutant (F154W TnC) with Mg2+ reveals no significant changes in Mg2+ affinity with pH or ionic strength, suggesting that these parameters influence TnC binding by acting directly on electrostatic forces between TnC and TnI rather than by changing Mg2+ binding to C-domain sites III and IV.  相似文献   

12.
Ca2+ binding to troponin C (TnC), a subunit of the thin filament regulatory strand, activates vertebrate skeletal muscle contraction. Tension, however, increases with Ca2+ too abruptly to be the result of binding to sites on individual TnCs. Because extraction of one TnC on average per regulatory strand dramatically reduces the slope of the tension/Ca2+ relationship, we proposed that all 26 troponin-tropomyosin complexes of the regulatory strand form a co-operative system. This study of permeabilized (chemically skinned) rabbit psoas fibers analyzes the extraction time-course, the distribution of extraction sites on regulatory strands and the effects of extraction on the co-operativity of the tension/Ca2+ relationship. Two components of TnC are resolved in the time-course of extraction: a "rapidly extracting" component that can be selectively removed without affecting tension or co-operativity, and a "slow extracting" component whose loss reduces tension and co-operativity. Extraction of [14C]TnC shows that the slowly extracting component is lost randomly, so that, after removal of 5% of the TnC, most extracted strands have lost one TnC. Extraction interrupts the transmission of co-operativity by dividing the regulatory strand into smaller, independent co-operative systems; it reduces tension by preventing Ca2+ activation of TnC-depleted regulatory units. Co-operativity of the tension/Ca2+ relationship is modeled with the concerted-transition formalism for intact systems of 26 regulatory units, and for the smaller systems in extracted fibers.  相似文献   

13.
Troponin C (TnC) was extracted from skinned skeletal muscle fibers by a method similar to that used previously on myofibrils (Zot, H.G., and Potter, J.D. (1982) J. Biol. Chem. 257, 7678-7683) and replaced with either skeletal (fast-twitch) or cardiac TnC. The relationship between isometric tension and Sr2+ concentration remained essentially the same before removal and after replacement with skeletal or cardiac TnC. Therefore, the origin of the TnC made no difference in the Sr2+ activation properties of the skinned fiber. In contrast, the activation of skinned cardiac fibers is approximately an order of magnitude more sensitive to Sr2+ than skinned skeletal fibers. These results show that the affinity of cardiac TnC for Sr2+ is altered when substituted into skinned skeletal muscle fibers through protein-protein interactions.  相似文献   

14.
Fast skeletal and cardiac troponin C (TnC) contain two high affinity Ca2+/Mg2+ binding sites within the C-terminal domain that are thought to be important for association of TnC with the troponin complex of the thin filament. To test directly the function of these high affinity sites in cardiac TnC they were systematically altered by mutagenesis to generate proteins with a single inactive site III or IV (CBM-III and CBM-IV, respectively), or with both sites III and IV inactive (CBM-III-IV). Equilibrium dialysis indicated that the mutated sites did not bind Ca2+ at pCa 4. Both CBM-III and CBM-IV were similar to the wild type protein in their ability to regulate Ca(2+)-dependent contraction in slow skeletal muscle fibers, and Ca(2+)-dependent ATPase activity in fast skeletal and cardiac muscle myofibrils. The mutant CBM-III-IV is capable of regulating contraction in permeabilized slow muscle fibers but only if the fibers are maintained in a contraction solution containing a high concentration of the mutant protein. CBM-III-IV also regulates myofibril ATPase activity in fast skeletal and cardiac myofibrils but only at concentrations 10-100-fold greater than the normal protein. The pCa50 and Hill coefficient values for Ca(2+)-dependent activation of fast skeletal muscle myofibril ATPase activity by the normal protein and all three mutants are essentially the same. Competition between active and inactive forms of cardiac and slow TnC in a functional assay demonstrates that mutation of both sites III and IV greatly reduces the affinity of cardiac and slow TnC for its functionally relevant binding site in the myofibrils. The data indicate that although neither high affinity site is absolutely essential for regulation of muscle contraction in vitro, at least one active C-terminal site is required for tight association of cardiac troponin C with myofibrils. This requirement can be satisfied by either site III or IV.  相似文献   

15.
Microcalorimetic titrations were carried out to measure the thermodynamic functions of bullfrog skeletal muscle troponin C (TnC) in the interaction with Ca2+ and Mg2+, at 25 degrees C and at pH 7.0. Enthalpy titration curves with Ca2+ were composed of three stages both in the presence and in the absence of Mg2+. The first (0-2 mol Ca2+/mol TnC) and the third (greater than 3 mol Ca2+/mol TnC) stages were exothermic and the second stage (2-3 mol Ca2+/mol TnC) was endothermic. Mg2+ affected the first stage to decrease the amount of heat produced but not the second and third stages. The enthalpy titration with Mg2+, in the absence of Ca2+, was slightly exothermic initially and then became endothermic beyond 2-3 mol Mg2+/mol TnC. Absorption of heat was observed throughout the additions of Mg2+ in the presence of 1 mM Ca2+. The results indicate that bullfrog TnC has two high-affinity Ca2+-Mg2+ sites, two low-affinity Ca2(+)-specific sites, and two or around two Mg2(+)-specific sites. Based on the enthalpy and entropy changes, the Ca2+ binding reactions of TnC were classified into three types, indicating thermodynamic variety in the binding sites of the molecule.  相似文献   

16.
The activation of contraction in vertebrate skeletal muscle involves the binding of Ca2+ to low-affinity binding sites on the troponin C (TnC) subunit of the regulatory protein troponin. The present study is an investigation of possible cooperative interactions between adjacent functional groups, composed of seven actin monomers, one tropomyosin, and one troponin, along the same thin filament. Single skinned fibers were obtained from rabbit psoas muscles and were then placed in an experimental chamber containing relaxing solution maintained at 15 degrees C. Isometric tension was measured in solutions containing maximally and submaximally activating levels of free Ca2+ (a) in control fiber segments, (b) in the same segments after partial extraction of TnC, and finally (c) after recombination of TnC into the segments. The extraction was done at 11-13 degrees C in 20 mM Tris, 5 mM EDTA, pH 7.85 or 8.3, a procedure derived from that of Cox et al. (1981. Biochem. J. 195:205). Extraction of TnC was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the control and experimental samples. Partial extraction of TnC resulted in reductions in tension during maximal Ca activation and in a shift of the relative tension-pCa (i.e., -log[Ca2+]) relationship to lower pCa's. The readdition of TnC to the extracted fiber segments resulted in a recovery of tension to near-control levels and in the return of the tension-pCa relation to its original position. On the basis of these findings, we conclude that the sensitivity to Ca2+ of a functional group within the thin filament may vary depending upon the state of activation of immediately adjacent groups.  相似文献   

17.
In maximally activated skinned fibers, the rate of tension redevelopment (ktr) following a rapid release and restretch is determined by the maximal rate of cross-bridge cycling. During submaximal Ca2+ activations, however, ktr regulation varies with thin filament dynamics. Thus, decreasing the rate of Ca2+ dissociation from TnC produces a higher ktr value at a given tension level (P), especially in the [Ca2+] range that yields less than 50% of maximal tension (Po). In this study, native rabbit TnC was replaced with chicken recombinant TnC, either wild-type (rTnC) or mutant (NHdel), with decreased Ca2+ affinity and an increased Ca2+ dissociation rate (koff). Despite marked differences in Ca2+ sensitivity (>0.5 DeltapCa50), fibers reconstituted with either of the recombinant proteins exhibited similar ktr versus tension profiles, with ktr low (1-2 s-1) and constant up to approximately 50% Po, then rising sharply to a maximum (16 +/- 0.8 s-1) in fully activated fibers. This behavior is predicted by a four-state model based on coupling between cross-bridge cycling and thin filament regulation, where Ca2+ directly affects only individual thin filament regulatory units. These data and model simulations confirm that the range of ktr values obtained with varying Ca2+ can be regulated by a rate-limiting thin filament process.  相似文献   

18.
The role of the inhibitory region of troponin (Tn) I in the regulation of skeletal muscle contraction was studied with three deletion mutants of its inhibitory region: 1) complete (TnI-(Delta96-116)), 2) the COOH-terminal domain (TnI-(Delta105-115)), and 3) the NH(2)-terminal domain (TnI-(Delta95-106)). Measurements of Ca(2+)-regulated force and relaxation were performed in skinned skeletal muscle fibers whose endogenous TnI (along with TnT and TnC) was displaced with high concentrations of added troponin T. Reconstitution of the Tn-displaced fibers with a TnI.TnC complex restored the Ca(2+) sensitivity of force; however, the levels of relaxation and force development varied. Relaxation of the fibers (pCa 8) was drastically impaired with two of the inhibitory region deletion mutants, TnI-(Delta96-116).TnC and TnI-(Delta105-115).TnC. The TnI-(Delta95-106).TnC mutant retained approximately 55% relaxation when reconstituted in the Tn-displaced fibers. Activation in skinned skeletal muscle fibers was enhanced with all TnI mutants compared with wild-type TnI. Interestingly, all three mutants of TnI increased the Ca(2+) sensitivity of contraction. None of the TnI deletion mutants, when reconstituted into Tn, could inhibit actin-tropomyosin-activated myosin ATPase in the absence of Ca(2+), and two of them (TnI-(Delta96-116) and TnI-(Delta105-115)) gave significant activation in the absence of Ca(2+). These results suggest that the COOH terminus of the inhibitory region of TnI (residues 105-115) is much more critical for the biological activity of TnI than the NH(2)-terminal region, consisting of residues 95-106. Presumably, the COOH-terminal domain of the inhibitory region of TnI is a part of the Ca(2+)-sensitive molecular switch during muscle contraction.  相似文献   

19.
Fast skeletal troponin C (sTnC) has two low affinity Ca(2+)-binding sites (sites I and II), whereas in cardiac troponin C (cTnC) site I is inactive. By modifying the Ca2+ binding properties of sites I and II in cTnC it was demonstrated that binding of Ca2+ to an activated site I alone is not sufficient for triggering contraction in slow skeletal muscle fibers (Sweeney, H.L., Brito, R. M.M., Rosevear, P.R., and Putkey, J.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 9538-9542). However, a similar study using sTnC showed that Ca2+ binding to site I alone could partially activate force production in fast skeletal muscle fibers (Sheng, Z., Strauss, W.L., Francois, J.M., and Potter, J.D. (1990) J. Biol. Chem. 265, 21554-21560). The purpose of the current study was to examine the functional characteristics of modified cTnC derivatives in fast skeletal muscle fibers to assess whether or not either low affinity site can mediate force production when coupled to fast skeletal isoforms of troponin (Tn) I and TnT. Normal cTnC and sTnC were compared with engineered derivatives of cTnC having either both sites I and II active, or only site I active. In contrast to what is seen in slow muscle, binding of Ca2+ to site I alone recovered about 15-20% of the normal calcium-activated force and ATPase activity in skinned fast skeletal muscle fibers and myofibrils, respectively. This is most likely due to structural differences between TnI and/or TnT isoforms that allow for partial recognition and translation of the signal represented by binding Ca2+ to site I of TnC when associated with fast skeletal but not slow skeletal muscle.  相似文献   

20.
The muscle thin filament protein troponin (Tn) regulates contraction of vertebrate striated muscle by conferring Ca2+ sensitivity to the interaction of actin and myosin. Troponin C (TnC), the Ca2+ binding subunit of Tn contains two homologous domains and four divalent cation binding sites. Two structural sites in the C-terminal domain of TnC bind either Ca2+ or Mg2+, and two regulatory sites in the N-terminal domain are specific for Ca2+. Interactions between TnC and the inhibitory Tn subunit troponin I (TnI) are of central importance to the Ca2+ regulation of muscle contraction and have been intensively studied. Much remains to be learned, however, due mainly to the lack of a three-dimensional structure for TnI. In particular, the role of amino acid residues near the C-terminus of TnI is not well understood. In this report, we prepared a mutant TnC which contains a single Trp-26 residue in the N-terminal, regulatory domain. We used fluorescence lifetime and quenching measurements to monitor Ca2+- and Mg2+-dependent changes in the environment of Trp-26 in isolated TnC, as well as in binary complexes of TnC with a Trp-free mutant of TnI or a truncated form of this mutant, TnI(1-159), which lacked the C-terminal 22 amino acid residues of TnI. We found that full-length TnI and TnI(1-159) affected Trp-26 similarly when all four binding sites of TnC were occupied by Ca2+. When the regulatory Ca2+-binding sites in the N-terminal domain of TnC were vacant and the structural sites in the C-terminal domain of were occupied by Mg2+, we found significant differences between full-length TnI and TnI(1-159) in their effect on Trp-26. Our results provide the first indica- tion that the C-terminus of TnI may play an important role in the regulation of vertebrate striated muscle through Ca2+-dependent interactions with the regula- tory domain of TnC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号