首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of the experimental researches conducted it has been shown that administration of some normal animal marine phospholipids (PL) including in their structure omega-3 polyunsaturated fatty acids (PUFA) provides for quantitative changes of individual PL, fatty acids (FA) content and quantity in general and individual PL of liver, heart, brain and gonads microsomes. While estimating general microsomal PL fraction FA content under the action of PL omega-3 PUFA FA concentration change, unsaturation index (omega 6/omega 3) and relation of arachidonic acid to docosahexenic (AA/DHA) decrease have been identified. The decrease of AA/DHA relationship occurs due to AA and DHA quantitative changes. In the case of AA increase in some tissues there is observed the decrease of docosapentaenic acid and increase of DHA and eucosapentaenic (EPA) acidds. As a result of studying FA content in the individual PL composition it has been identified that certain PL classes characteristic for some tissues respond by changes of some certain FA. The relationship omega 6/omega 3 has been shown as decreasing in phosphatidilcholine (PC) all tissues microsomes (liver, gonads, heart, brain), in phosphatidilethanolamine (PEA) of liver and cardiac microsomes, in phosphatidilserine (PS) this relationship relationship decreases in the liver, brain and heart, for phosphatidilinositole (PI) the changes take place in liver, gonads, brain. Simultaneously, the decrease of AA/DHA relationship in the individual PL decrease of AA and increase of EPA and DHA depend on the tested tissues. The marine phospholipids might be supposed to render their effect on AA metabolism resulting in AA/DHA relationship in PEA and PS relationship displays itself as specific and depends on the tissues functions. The preference of PEA and PS use by certain tissues microsomes could be explained by their membrane protective capability.  相似文献   

2.
We investigated essential fatty acids (EFA) and long-chain polyunsaturated fatty acids (LCP) in maternal and fetal brain as a function of EFA/LCP availability to the feto-maternal unit in mice. Diets varying in parent EFA, arachidonic acid (AA), and docosahexaenoic acid (DHA) were administered from day 3 prior to conception till day 15 of pregnancy. We concentrated on DHA, AA, Mead acid, and EFA-index [(omega-3+omega-6)/(omega-7+omega-9)] in maternal erythrocytes, maternal brain, and fetal brain. It was found that erythrocyte EFA/LCP sensitively reflects declining EFA/LCP status in pregnancy, although this decline was not apparent in maternal brain. Differences in erythrocyte EFA/LCP coincided with larger differences in fetal brain EFA/LCP as compared to EFA/LCP in maternal brain. Both maternal and fetal brains were affected by short-term EFA/LCP intake, but the developing fetal brain proved most sensitive. The inverse relationship between fetal brain AA and DHA suggests the need of a maternal dietary DHA/AA balance, at least in mice.  相似文献   

3.
Severe endothelial abnormalities are a prominent feature in sepsis with cytokines such as tumor necrosis factor (TNF)alpha being implicated in the pathogenesis. As mimic to inflammation, human umbilical vascular endothelial cells (HUVEC) were incubated with TNFalpha for 22 h, in the absence or presence of the omega-6 fatty acid (FA), arachidonic acid (AA), or the alternative omega-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). TNFalpha caused marked alterations in the PUFA profile and long chain PUFA content of total phospholipids (PL) decreased. In contrast, there was a compensatory increase in mead acid [MA, 20:3(omega-9)], the hallmark acid of the essential fatty acid deficiency (EFAD) syndrome. Corresponding changes were noted in phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol, but not in the sphingomyelin fraction. Supplementation with AA, EPA, or DHA markedly increased the respective FA contents in the PL pools, suppressed the increase in MA, and resulted in a shift either toward further predominance of omega-6 or predominance of omega-3 FA. We conclude that short-term TNFalpha incubation of HUVEC causes an EFAD state hitherto only described for long-term malnutrition, and that endothelial cells are susceptible to differential influence by omega-3 versus omega-6 FA supplementation under these conditions.  相似文献   

4.
The tissue concentrations of the endocannabinoids, 2-arachidonoylglycerol (2-AG) and N-arachidonoyl-ethanolamine (anandamide), are altered in the adipose tissue of mice fed a high fat diet. We have investigated here the effect on endocannabinoid levels of incubation of mouse 3T3-F442A adipocytes with several free polyunstaurated fatty acids (PUFAs), including linolenic acid (LA), alpha-linolenic acid (ALA), arachidonic acid (AA) and docosahexaenoic acid (DHA), as well as oleic acid (OA) and palmitic acid (PA). By using mass spectrometric methods, we quantified the levels of endocannabinoids, of two anandamide congeners, N-palmitoyl-ethanolamine (PEA) and N-oleoyl-ethanolamine (OEA), and of fatty acids esterified in triacylglycerols or phospholipids, which act as 2-AG and/or N-acyl-ethanolamine precursors. Incubation with AA strongly elevated 2-AG levels and the amounts of AA esterified in triacylglycerols and on glycerol carbon atom 2 (sn-2), but not 1 (sn-1), in phospholipids. Incubation with DHA decreased 2-AG and anandamide levels and the amounts of AA esterified on both the sn-2 and sn-1 position of phospholipids, but not on triacylglycerols. PEA levels augmented following incubation of adipocytes with OA and PA, with no corresponding changes in phospholipids and triacylglycerols. We suggest that dietary PUFAs might modulate the levels of adipocyte phospholipids that act as endocannabinoid precursors.  相似文献   

5.
The objective of this study was to investigate any association between infants' early development and PUFA concentrations in early breast milk and infants' plasma phospholipids at 44 weeks gestational age. Fifty-one premature infants were included. The quality of general movement was assessed at 3 months, and motor, mental and behavioral development at 3, 6, 10 and 18 months corrected age using Bayley's Scales of Infant Development (BSID-II). Linoleic acid, the major n-6/n-3 FA ratios, Mead acid and the EFA deficiency index in early breast milk were negatively associated with development up to 18 months of age. DHA and AA, respectively, in infants' plasma phospholipids was positively, but the AA/DHA ratio negatively, associated with development from 6 to 18 months of age. Our data suggest that the commonly found high n-6 concentration in breast milk is associated with less favorable motor, mental and behavioral development up to 18 months of age.  相似文献   

6.
Omega-3 (omega-3) is an essential fatty acid (EFA) found in large amounts in fish oil. It contains eicosapentaenoic acid and docosahexaenoic acid (DHA). DHA is one of the building structures of membrane phospholipids of brain and necessary for continuity of neuronal functions. Evidences support the hypothesis that schizophrenia may be the result of increased reactive oxygen species mediated neuronal injury. Recent reports also suggest the protective effect of omega-3 EFA against neuropsychiatric disorders including schizophrenia. This study proposed to assess the changes in antioxidant enzyme and oxidant parameters in the corpus striatum (CS) of rats fed with omega-3 EFA diet (0.4g/kg/day) for 30 days. Eight control rats and nine rats fed with omega-3 were decapitated under ether anesthesia, and CS was removed immediately. Thiobarbituric acid-reactive substances (TBARS) and nitric oxide (NO) levels as well as total superoxide dismutase (t-SOD) and xanthine oxidase (XO) enzyme activities in the CS were measured. Rats treated with omega-3 EFA had significantly lower values of TBARS (P<0.001), NO (P<0.002) and XO (P<0.005) whereas higher values of t-SOD enzyme activity (P<0.002) than the control rats. These results indicate that omega-3 EFA rich fish oil diet reduces some oxidant parameters in CS. This may be revealed by means of reduced CS TBARS levels as an end product of lipid peroxidation of membranes in treated rats. Additionally, reduced XO activity and NO levels may support this notion. On the other hand, although the mechanism is not clear, omega-3 EFA may indirectly enhance the activity of antioxidant enzyme t-SOD. Taken together, this preliminary animal study provides strong support for a therapeutic effect of omega-3 EFA supplemented to classical neuroleptic regimen in the treatment of schizophrenic symptoms and tardive dyskinesia.  相似文献   

7.
The phospholipid composition of the cardiac muscle was studied in mammals. The quantitative ratio of three forms--acyl, alkyl and alkenyl (plasmalogenic)--was determined in phospholipids of the heart: phosphatidylethanolamine and phosphatidylcholine. The total quantity of alkoxylipids (plasmalogens and alkyl esters) in various animals amounts to 23-42% of total phospholipids.  相似文献   

8.
In the second part of this study, emphasis is placed on nutritional intakes (fatty acids and micronutrients) and fatty acid intake and metabolism in the blood, respectively, according to a combined 24 h recall and standardized food frequency questionnaire analyses of keloid prone patients (n=10), compared with normal black South Africans (n=80), and total phospholipid blood (plasma and red blood cell ) analyses of keloid patients (n=20), compared with normal individuals (n=20). Lipid extraction and fractionation by standard procedures, total phospholipid (TPL) separation with thin layer chromatography, and fatty acid methyl ester analyses with gas liquid chromatography techniques were used. Since nutrition may play a role in several disease disorders, the purpose of this study was to confirm or refute a role for essential fatty acids (EFAs) in the hypothesis of keloid formations stated in part 1 of this study. (1)According to the Canadian recommendation (1991), we observed that in keloid patients linoleic acid (LA) and arachidonic acid (AA) dietary intakes, as EFAs of the omega-6-series, are higher than the recommended 7-11 g/d. However, the a-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) dietary intakes, as EFAs of the omega-3 series, are lower than the recommendation of 1.1-1.5 g/d. This was also the case in the control group, where a higher dietary intake of the omega-6 fatty acids and a slightly lower dietary intake of the omega-3 fatty acids occurred. Thus, we confirm a high dietary intake of LA (as a product of organ meats, diary products and many vegetable oils) and AA (as a product of meats and egg yolks), as well as lower dietary intakes of ALA (as a product of grains, green leafy vegetables, soy oil, rapeseed oil and linseed), and EPA and DHA (as products of marine oils). Lower micronutrient intakes than the recommended dietary allowances were observed in the keloid group that may influence EFA metabolism and/or collagen synthesis. Of cardinal importance may be the lower intake of calcium in the keloid patients that may contribute to abnormal cell signal transduction in fibroblasts and consequent collagen overproduction, and the lower copper intake that may influence the immune system, or perhaps even the high magnesium intake that stimulates metabolic activity. Micronutrient deficiencies also occurred in the diets of the normal black South Africans that served as a control group. In the case of plasma TPLs, deficiency of the omega-3 EFA series (ALA, EPA and DHA) occurred, and this is in accordance with the apparent lower omega-3 EFA intake in the diets of these patients. In the case of the red blood cell TPLs, as a true and reliable source of dietary fatty acid intake and metabolism, sufficient EFAs of the omega-6 series (LA and AA) and the omega-3 series (ALA, EPA and DHA) occurred. For this study group a relative deficiency of nutritional omega-3 EFA intake apparently did occur, but was probably compensated for by blood fatty acid metabolism.  相似文献   

9.
Medical students (MS) tested during the first year of medical school showed both greater stress on the Brief Symptom Inventory and lower plasma proportions of total esterified arachidonic acid (AA, C20:4n-6), and its omega-6 fatty acid (FA) precursor, linoleic acid (C18:2n-6) than control laboratory workers. This association suggests that omega-6 FA metabolism may be affected during stress. Low AA values might result from depletion of plasma stores for immunoregulatory prostenoids formation or from modification of metabolic pathways by cortisol or other cytokine compounds implicated in stress. Values for other major FA and the omega-3 neuronal metabolic substrate, docosahexaenoic acid (DHA, C22:6n-3) were similar between students and controls. The clear preservation of the omega-3 FA pathway suggests their programmed availability for neuronal function during stress. Since plasma FA proportions may affect immune cell membrane function(s), we suggest that altered values of plasma FAs may be an important component of the physiological effects of psychological stress.  相似文献   

10.
Using an in vivo fatty acid model and operational equations, we reported that esterified and unesterified concentrations of docosahexaenoic acid (DHA, 22 : 6 n-3) were markedly reduced in brains of third-generation (F3) rats nutritionally deprived of alpha-linolenic acid (18 : 3 n-3), and that DHA turnover within phospholipids was reduced as well. The concentration of docosapentaenoic acid (DPA, 22 : 5 n-6), an arachidonic acid (AA, 20 : 4 n-6) elongation/desaturation product, was barely detectable in control rats but was elevated in the deprived rats. In the present study, we used the same in vivo model, involving the intravenous infusion of radiolabeled AA to demonstrate that concentrations of unesterified and esterified AA, and turnover of AA within phospholipids, were not altered in brains of awake F3-generation n-3-deficient rats, compared with control concentrations. Brain DPA-CoA could be measured in the deprived but not control rats, and AA-CoA was elevated in the deprived animals. These results indicated that AA and DHA are recycled within brain phospholipids independently of each other, suggesting that recycling is regulated independently by AA- and DHA-selective enzymes, respectively. Competition among n-3 and n-6 fatty acids within brain probably does not occur at the level of recycling, but at levels of elongation and desaturation (hence greater production of DPA during n-3 deprivation), or conversion to bioactive eicosanoids and other metabolites.  相似文献   

11.
Animal and humans studies have shown that supplementation with triacylglycerides containing omega3 fatty acids, mainly docosahexaenoic acid (DHA) and eicosapentaenoic acid, can induce a decrease in arachidonic acid (AA) in blood lipids. Interestingly, we observed in a previous work that a supplementation with DHA enriched eggs in a healthy elderly population induced an accretion of AA in their blood lipids. The present study investigates whether purified DHA enriched egg phospholipids could be responsible for this effect. Four groups of rats were supplemented daily, for eight weeks, with DHA phospholipids (10, 30 or 60 mg/kg) or with soybean phospholipids. Red blood cell membranes and plasma fatty acid levels were compared with that of rats without supplementation. Soybean phospholipids supplementation increased the level of AA in blood lipids but decreased that of DHA. The doses of DHA phospholipids, 30 and 60 mg/kg, induced greater amounts of AA without affecting significantly DHA levels. In contrast, DHA phospholipids supplementation, 10 mg/kg, in which there was the greatest amount of AA, induced only a slight increase in AA levels. Moreover, DHA levels were decreased by this supplementation. These results demonstrate that specific increases in AA levels are preferentially associated with DHA phospholipids levels in supplementation.  相似文献   

12.
Previously, this laboratory reported the isolation of variants, RAW. 12 and RAW.108, from the macrophage-like cell line RAW 264.7 that are defective in plasmalogen biosynthesis [Zoeller, R.A. et al. 1992. J. Biol. Chem. 267: 8299-8306]. Fatty acid analysis showed significant changes in the mutants in the ethanolamine phospholipids (PE), the only phospholipid class in which the plasmalogen species, plasmenylethanolamine, contributes significantly. Within the PE fraction, docosapentaenoic (DPA; 22:5n-3) and docosahexaenoic (DHA; 22:6n-3) acids were reduced by approximately 50% in the variants while the levels of arachidonic acid (AA; 20:4n-6) remained unaffected. The decrease in DHA was accompanied by a 50% decrease in labeling PE with [3H]DHA over a 90-min period. Restoration of plasmenylethanolamine by supplementing the growth medium with sn -1-hexadecylglycerol (HG) completely reversed these changes in RAW. 108. Pre-existing pools of plasmenylethanolamine were not required for restoration of normal [3H]DHA labeling; addition of HG only during the labeling period was sufficient. Due to the loss of Delta1'-desaturase in RAW.12, HG supplementation resulted in the accumulation of plasmenylethanolamine's immediate biosynthetic precursor, plasmanylethanolamine. Even though this latter phospholipid contained only the ether functionality (lacking the vinyl ether double bond) it was sufficient to restore wild type-like fatty acid composition and DHA labeling of the ethanolamine phospholipids, identifying the ether bond as a structural determinant for this specificity.In summary, we have used these mutants to establish that the plasmalogen status of a cell can influence the levels of certain polyunsaturated fatty acids. These results support the notion that certain polyunsaturated fatty acids, such as DHA, can be selectively targeted to plasmalogens and that this targeting occurs during de novo biosynthesis, or shortly thereafter, through modification of nascent plasmalogen pools.  相似文献   

13.
The role of Ca2+-independent phospholipase A2 (iPLA2) in arachidonic (AA) and docosahexaenoic (DHA) acid incorporation and phospholipid remodelling in rat uterine stromal cells (UIII cells) was studied. Incorporation of AA and DHA into UIII cell phospholipids was Ca2+-independent. Bromoenollactone (BEL), a potent inhibitor of iPLA2, reduced lysophosphatidylcholine level and AA incorporation into phospholipids by approximately 20%. DHA incorporation was not affected by BEL, indicating that the pathways for AA and DHA incorporation are partially different. In control cells, the transfer of AA occurred mainly from diacyl-glycerophosphocholine (GroPCho) to alkenylacyl-glycerophosphoethanolamine (GroPEtn) and to a lesser extent from diacyl-GroPCho to diacyl-GroPEtn. [3H]DHA was redistributed from diacyl-GroPCho and alkylacyl-GroPEtn to alkenylacyl-GroPEtn. BEL treatment inhibited completely the redistributrion of AA within diacyl-GroPCho and diacyl -GroPEtn and reduced the [3H]DHA content of diacyl-GroPEtn, indicating that a BEL-sensitive iPLA2 controls the redistribution of polyunsaturated fatty acids to diacyl-GroPEtn. In contrast the redistribution of radioactive AA and DHA to alkenylacyl-GroPEtn was almost insensitive to BEL. The analysis of substrate specificity and BEL sensitivity of iPLA2 activity indicates that UIII cells exhibit at least two isoforms of iPLA2, one of which is BEL-sensitive and quite selective of diacyl species, and another one that is insensitive to BEL and selective for alkenylacyl-GroPEtn. Taken together, these results suggest that several iPLA2 participate independently in the remodelling of UIII cell phospholipids.  相似文献   

14.
Cytochrome P450 (CYP) omega-oxidases convert arachidonic acid (AA) to 20-hydroxyeicosatetraenoic acid (20-HETE), a lipid mediator that modulates vascular tone. We observed that a microsomal preparation containing recombinant human CYP4F3B, which converts AA to 20-HETE, converted eicosapentaenoic acid (EPA) to 20-OH-EPA. Likewise, docosahexaenoic acid (DHA) was converted to 22-OH-DHA, indicating that human CYP4F3B also can oxidize 22-carbon omega-3 fatty acids. Consistent with these findings, addition of 0.5-5 microM EPA, DHA or omega-3 docosapentaenoic acid (DPA) to incubations containing 0.5 microM [3H]AA inhibited [3H]20-HETE production by 15-65%. [3H]20-OH-EPA was rapidly taken up by COS-7 cells, and almost all of the incorporated radioactivity remained as unmodified 20-OH-EPA. The 20-OH-EPA stimulated luciferase activity in COS-7 cells that express peroxisome proliferator-activated receptor alpha, indicating that this EPA metabolite may function as a lipid mediator. These findings suggest that some functional effects of omega-3 fatty acid supplementation may be due to inhibition of 20-HETE formation or the conversion of EPA to the corresponding omega-oxidized product.  相似文献   

15.
Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids.  相似文献   

16.
Metabolic cascades involving arachidonic acid (AA) and docosahexaenoic acid (DHA) within brain can be independently targeted by drugs, diet and pathological conditions. Thus, AA turnover and brain expression of AA-selective cytosolic phospholipase A(2) (cPLA(2)), but not DHA turnover or expression of DHA-selective Ca(2+)-independent iPLA(2), are reduced in rats given agents effective against bipolar disorder mania, whereas experimental excitotoxicity and neuroinflammation selectively increase brain AA metabolism. Furthermore, the brain AA and DHA cascades are altered reciprocally by dietary n-3 polyunsaturated fatty acid (PUFA) deprivation in rats. DHA loss from brain is slowed and iPLA(2) expression is decreased, whereas cPLA(2) and COX-2 are upregulated, as are brain concentrations of AA and its elongation product, docosapentaenoic acid (DPA). Positron emission tomography (PET) has shown that the normal human brain consumes 17.8 and 4.6 mg/day, respectively, of AA and DHA, and that brain AA consumption is increased in Alzheimer disease patients. In the future, PET could help to determine how human brain AA or DHA consumption is influenced by diet, aging or disease.  相似文献   

17.
Evolutionary Aspects of Diet: The Omega-6/Omega-3 Ratio and the Brain   总被引:4,自引:0,他引:4  
Several sources of information suggest that human beings evolved on a diet that had a ratio of omega-6 to omega-3 fatty acids (FA) of about 1/1; whereas today, Western diets have a ratio of 10/1 to 20–25/1, indicating that Western diets are deficient in omega-3 FA compared with the diet on which humans evolved and their genetic patterns were established. Omega-6 and omega-3 FA are not interconvertible in the human body and are important components of practically all cell membranes. Studies with nonhuman primates and human newborns indicate that docosahexaenoic acid (DHA) is essential for the normal functional development of the brain and retina, particularly in premature infants. DHA accounts for 40% of the membrane phospholipid FA in the brain. Both eicosapentaenoic acid (EPA) and DHA have an effect on membrane receptor function and even neurotransmitter generation and metabolism. There is growing evidence that EPA and DHA could play a role in hostility and violence in addition to the beneficial effects in substance abuse disorders and alcoholism. The balance of omega-6 and omega-3 FA is important for homeostasis and normal development throughout the life cycle.  相似文献   

18.
Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status.  相似文献   

19.
Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of 14C-palmitate, 14C-DHA, or 14C-EPA. MEP reduced the radioactivity of brain aqueous fractions for 14C-palmitate-, 14C-EPA-, and 14C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.  相似文献   

20.
Cyclooxygenase-2 (COX-2) is important in the progression of epithelial tumors. Evidence indicates that omega-6 PUFAs such as arachidonic acid (AA) promote the growth of tumor cells; however, omega-3 fatty acids [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] inhibit tumor cell proliferation. We investigated the effects of omega-3 PUFA on the expression and function of COX-2 in 70W, a human melanoma cell line that metastasizes to the brain in nude mice. We show that 1) tumor necrosis factor-alpha upregulates the expression of both COX-2 mRNA and prostaglandin E2 (PGE2) production, and 2) omega-3 and omega-6 PUFA regulate COX-2 mRNA expression and PGE2 production. AA increased COX-2 mRNA expression and prostaglandin production in omega-6-stimulated 70W cells. Conversely, COX-2 mRNA expression decreased in cells incubated with EPA or DHA. AA increased Matrigel invasion 2.4-fold, whereas EPA or DHA did not. Additionally, PGE2 increased in vitro invasion 2.5-fold, whereas exposure to PGE3 significantly decreased invasion. Our results demonstrate that incubation of 70W cells with either AA or PGE2 increased invasiveness, whereas incubation with EPA or DHA downregulated both COX-2 mRNA and protein expression, with a subsequent decrease in Matrigel invasion. Taken together, these results indicate that omega-3 PUFA regulate COX-2-mediated invasion in brain-metastatic melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号