首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • 1 We investigated the relationship between geographical distribution and ecological tolerance within the ancient asexual family Darwinulidae. Distribution maps were compiled based on data from the literature, the Non‐marine Ostracod Distribution in Europe database and personal collections. Ecological tolerance was assessed experimentally by exposing individual ostracods to a combination of eight different salinities (range from 0 to 30 g L?1) and three different temperatures (10, 20 and 30 °C).
  • 2 The type species of the family, Darwinula stevensoni, is ubiquitous and cosmopolitan; the two species Penthesilenula brasiliensis and Microdarwinula zimmeri also have an intercontinental distribution. Two other darwinulid species tested here (Vestalenula molopoensis and P. aotearoa) are known only from their type localities. The latter is also true for most extant darwinulids.
  • 3 Darwinula stevensoni and P. brasiliensis had a broad salinity tolerance, tolerating distilled water and also salinity up to 25–30 g L?1, whereas the maximum salinity tolerance of V. molopoensis was 12 g L?1 and of P. aotearoa, 20 g L?1.
  • 4 The results indicate that both ecological specialists and generalists, as well as intermediate forms, exist in the Darwinulidae and that taxa with the broadest ecological tolerance also have the widest distribution.
  相似文献   

2.
Nested clade analyses (NCA) and likelihood mapping were applied to DNA sequence data of the ribosomal ITS1 and mitochondrial COI region from two non-marine ostracod species. The aim was to test whether Pleistocene glaciations may have shaped genetic and geographic patterns. According to the results from both types of analyses, evidence was lacking for any kind of geographic grouping of European (and one African) population from the putatively ancient asexual ostracod, Darwinula stevensoni. This counters the possibility that a recent selective sweep could have caused the low intraspecific, genetic diversity observed in this species. One of the most cited hypotheses to explain geographic parthenogenesis invokes faster, postglacial colonization by asexual lineages. However, no evidence for northern ‘range expansion’ of asexual haplotypes was found for Eucypris virens, a species with geographic parthenogenesis. Rather, the outcome of the NCA reveals that phylogeographic relationships are characterized by ‘restricted dispersal with isolation by (geographic) distance’. This result suggests that either no faster, postglacial range expansion of asexuals occurred in E. virens or, that patterns of subsequent colonization became ‘overwritten’ by more recent dispersal events. Likelihood mapping provides evidence for the second scenario because genetic instead of geographic clustering was statistically supported. Handling editor: K. Martens  相似文献   

3.

Background

Fully asexually reproducing taxa lack outcrossing. Hence, the classic Biological Species Concept cannot be applied.

Methodology/Principal Findings

We used DNA sequences from the mitochondrial COI gene and the nuclear ITS2 region to check species boundaries according to the evolutionary genetic (EG) species concept in five morphospecies in the putative ancient asexual ostracod genera, Penthesilenula and Darwinula, from different continents. We applied two methods for detecting cryptic species, namely the K/θ method and the General Mixed Yule Coalescent model (GMYC). We could confirm the existence of species in all five darwinulid morphospecies and additional cryptic diversity in three morphospecies, namely in Penthesilenula brasiliensis, Darwinula stevensoni and in P. aotearoa. The number of cryptic species within one morphospecies varied between seven (P. brasiliensis), five to six (D. stevensoni) and two (P. aotearoa), respectively, depending on the method used. Cryptic species mainly followed continental distributions. We also found evidence for coexistence at the local scale for Brazilian cryptic species of P. brasiliensis and P. aotearoa. Our ITS2 data confirmed that species exist in darwinulids but detected far less EG species, namely two to three cryptic species in P. brasiliensis and no cryptic species at all in the other darwinulid morphospecies.

Conclusions/Significance

Our results clearly demonstrate that both species and cryptic diversity can be recognized in putative ancient asexual ostracods using the EG species concept, and that COI data are more suitable than ITS2 for this purpose. The discovery of up to eight cryptic species within a single morphospecies will significantly increase estimates of biodiversity in this asexual ostracod group. Which factors, other than long-term geographic isolation, are important for speciation processes in these ancient asexuals remains to be investigated.  相似文献   

4.
Genetic variability of the non-marine ostracod species Darwinula stevensoni was estimated by sequencing part of the nuclear and the mitochondrial genome. As Darwinulidae are believed to be ancient asexuals, accumulation of mutations should have occurred, both between alleles within lineages and between lineages, during the millions of years of parthenogenetic reproduction. However, our sequence data show the opposite: no variability in the nuclear ITS1 region was observed within or among individuals of D. stevensoni, despite sampling a geographical range from Finland to South Africa. Lack of allelic divergence might be explained by concerted evolution of rDNA repeats. Homogeneity among individuals may be caused either by slow molecular evolution in ITS1 or by a recent selective sweep. Variability of mitochondrial cytochrome oxidase (COI) was similar to intraspecific levels in other invertebrates, thus weakening the latter hypothesis. Calibrating interspecific, genetic divergences among D. stevensoni and other Darwinulidae using their fossil record enabled us to estimate rates of molecular evolution. Both COI and ITS1 evolve half as fast, at most, in darwinulids as in other invertebrates, and molecular evolution has significantly slowed down in ITS1 of D. stevensoni relative to other darwinulids. A reduced ITS1 mutation rate might explain this inconsistency between nuclear and mitochondrial evolution in D. stevensoni.  相似文献   

5.
Where sexual and asexual forms coexist within a species, the asexuals are often found to be prevalent in marginal habitats. This asexual distribution pattern has received evolutionary attention linked to the paradox of sex. In many marine species, there is a distributional trend of asexual modes being more common in lower salinity waters regarded as the ecogeographic marginal, being explained by negative effects of low salinities on sexual reproductive success. However, the distribution pattern of estuarine species recently adapted to low salinity waters has remained unknown. The brackish macroalga Ulva prolifera being a major benthic component of estuarine ecosystems includes a sexual variant and obligate asexual variants by means of motile spores. We examined the sexual–asexual distribution pattern of this alga along a salinity gradient in river estuaries. Surprisingly, opposite to the distributional trend of marine organisms, the results clearly showed the persistent predominance of sexuals in the lower salinity reaches than the asexuals. In addition, a frequent alternating of dioecious gametophytes and sporophytes in the sexual population was observed, suggesting the sexual reproductive process would be robustly performed in the low salinity waters. Considering U. prolifera had evolved from the ancestral marine species to become a true estuarine species of which the core habitat is the low salinity reaches, in a broad sense its sexual–asexual distribution pattern would be involved in asexual marginal occupations of the species range previously reported in other organisms. Based on the frozen niche variation model, we can give a concise explanation for the evolutionary process of this pattern; multiple asexuals with frozen genotypic variation had arisen from sexual ancestors undergoing low salinity adaptation and share the estuarine habitat with the sexuals at present.  相似文献   

6.
In animals and land plants, many asexual species originate through inter‐ or intraspecific crosses, and such heterozygous asexuals frequently are more abundant than their sexual relatives in marginal habitats. Although asexual species have been reported in various macroalgal taxa, detailed information regarding their distribution, heterozygosity, and origin is limited. Because many asexual tetrasporophyte strains of Caloglossa vieillardii have been isolated from South Australia, far from their core tropical habitats, we re‐examined the distribution range of asexual C. vieillardii and genotyped these and other western Pacific strains using an actin gene marker. We confirmed the marginal distribution of the asexuals; however, a small patch of sexual thalli was newly discovered 450 km further west from asexual populations in South Australia. Three heterozygous genotypes and one homozygous genotypes were detected from nine asexual populations; 21 heterozygous strains were obligately asexual, but one homozygous strain suddenly produced sexual gametophytes after several years of culture. We hypothesized that the most abundant heterozygous genotype (defined as type 3/4) in asexual populations occurred by a cross between type 3 and type 4 allele gametophytes, both of which were isolated from the Australian coasts. In the crossing experiments, certain combinations between type 3 females and type 4 males produced tetrasporophytes, which recycled successive tetrasporophytes. In the culture experiments, whereas both sexual and asexual strains successfully produced tetraspores at 12°C, no sexual strains released carpospores below 14°C. However, it is uncertain whether this slight difference of maturation temperature was related to the marginal distribution of asexual C. vieillardii.  相似文献   

7.
In the midwestern United States the Daphnia pulex complex consists of a mosaic of sexual and asexual populations, providing a useful model system for studying the evolutionary forces underlying the maintenance of sex. One asexual and two sexual populations were surveyed for genetic variation for isozymes, mitochondrial DNA, and life-history characters. While the sexual populations exhibited substantial levels of genetic variance for fitness characters, no variation was detected in the asexual population at any level. However, a parallel survey among asexual clones derived from other ponds revealed large amounts of quantitative variation among clones, even among those with the same molecular profile. As a group, the asexuals are more variable for life histories than are the sexual populations. The molecular data indicate a relatively recent origin for the extant asexual D. pulex. The polyphyletic origin of these clones, combined with their microevolutionary potential, provides an explanation for their broad geographic distribution. The distribution of sex in the complex cannot be explained with the standard models that assume an invariant asexual population in reproductive isolation from the parental species. Although the frequency of asexuality may be driven by the spread of a sex-limited meiosis suppressor through sexual populations, the complete displacement of sexuality may be prevented by ecological distinctions between the two classes of individuals. On average, the asexuals are larger but produce smaller clutches than the sexuals.  相似文献   

8.
Van Doninck  Karine  Schön  Isa  Martens  Koen  Goddeeris  Boudewijn 《Hydrobiologia》2003,500(1-3):331-340
The life-cycle of the ancient asexual ostracod Darwinula stevensoni was studied during 1 year in a eutrophic pond in Belgium. The reproductive period of this species started in March and was effectively completed by September of the same year. All changes in population structure took place during the spring and summer months and a rapid turnover of the instars was observed. The life-cycle of Darwinula stevensoni appears to take one year or less in Belgium and this is considerably shorter than the 4 years which had been reported previously from subarctic populations. The difference to the present study is most likely temperature-related. Maximal densities of D. stevensoni were observed in June and July and attained 105 ind. m–2. During winter, densities were lower with a mean of 104 ind. m–2. Consequently, the calculated population size of each month was high throughout the year. Together with the low mutation rate, such a large population size could effectively counteract the stochastic loss of mutation-free genotypes as predicted by Muller's ratchet. D. stevensoni is a brooder; the maximum number of embryos and juvenile instars (up to third stage) found within a single female was 11.  相似文献   

9.
Ecological theories of sexual reproduction assume that sexuality is advantageous in certain conditions, for example, in biotically or abiotically more heterogeneous environments. Such theories thus could be tested by comparative studies. However, the published results of these studies are rather unconvincing. Here, we present the results of a new comparative study based exclusively on the ancient asexual clades. The association with biotically or abiotically homogeneous environments in these asexual clades was compared with the same association in their sister, or closely related, sexual clades. Using the conservative definition of ancient asexuals (i.e., age >1 million years), we found eight pairs of taxa of sexual and asexual species, six differing in the heterogeneity of their inhabited environment on the basis of available data. The difference between the environmental type associated with the sexual and asexual species was then compared in an exact binomial test. The results showed that the majority of ancient asexual clades tend to be associated with biotically, abiotically, or both biotically and abiotically more homogeneous environments than their sexual controls. In the exploratory part of the study, we found that the ancient asexuals often have durable resting stages, enabling life in subjectively homogeneous environments, live in the absence of intense biotic interactions, and are very often sedentary, inhabiting benthos, and soil. The consequences of these findings for the ecological theories of sexual reproduction are discussed.  相似文献   

10.
Recent and ancient asexuality in Timema walkingsticks   总被引:1,自引:0,他引:1  
Determining the evolutionary age of asexual lineages should help in inferring the temporal scale under which asexuality and sex evolve and assessing selective factors involved in the evolution of asexuality. We used 416 bp of the mitochondrial COI gene to infer phylogenetic relationships of virtually all known Timema walkingstick species, including extensive intraspecific sampling for all five of the asexuals and their close sexual relatives. The asexuals T. douglasi and T. shepardii were very closely related to each other and evolutionarily young (less than 0.5 million years old). For the asexuals T. monikensis and T. tahoe, evidence for antiquity was weak since only one population of each was sampled, intraspecific divergences were low, and genetic distances to related sexuals were high: maximum-likelihood molecular-clock age estimates ranged from 0.26 to 2.39 million years in T. monikensis and from 0.29-1.06 million years in T. tahoe. By contrast, T. genevieve was inferred to be an ancient asexual, with an age of 0.81 to 1.42 million years. The main correlate of the age of asexual lineages was their geographic position, with younger asexuals being found further north.  相似文献   

11.

Background  

The existence of "ancient asexuals", taxa that have persisted for long periods of evolutionary history without sexual recombination, is both controversial and important for our understanding of the evolution and maintenance of sexual reproduction. A lack of sex has consequences not only for the ecology of the asexual organism but also for its genome. Several genetic signatures are predicted from long-term asexual (apomictic) reproduction including (i) large "allelic" sequence divergence (ii) lack of phylogenetic clustering of "alleles" within morphological species and (iii) decay and loss of genes specific to meiosis and sexual reproduction. These genetic signatures can be hard to assess since it is difficult to demonstrate the allelic nature of very divergent sequences, divergence levels may be complicated by processes such as inter-specific hybridization, and genes may have secondary roles unrelated to sexual reproduction. Apomictic species of Meloidogyne root knot nematodes have been suggested previously to be ancient asexuals. Their relatives reproduce by meiotic parthenogenesis or facultative sexuality, which in combination with the abundance of nematode genomic sequence data, makes them a powerful system in which to study the consequences of reproductive mode on genomic divergence.  相似文献   

12.
Keywords. Salt excretion in leaves of some mangrove species may serve as an important defense against fungal attack, reducing the vulnerability of typically high-density, monospecific forest stands to severe disease pressure. In field surveys of a Caribbean mangrove forest in Panama, Avicennia germinans suffered much less damage from foliar diseases than did Laguncularia racemosa or Rhizophora mangle. Similarly, Avicennia leaves supported the least superficial fungal growth, endophytic colonization, and diversity, followed by Laguncularia and Rhizophora. Host specificity of leaf-colonizing fungi was greater than expected at random. We hypothesize that the different salt tolerance mechanisms in the three mangrove species may differentially regulate fungal colonization. The mangroves differ in their salt tolerance mechanisms such that Avicennia (which excretes salt through leaf glands) has the highest salinity of residual rain water on leaves, Laguncularia (which accumulates salt in the leaves) has the greatest bulk salt concentration, and Rhizophora (which excludes salt at the roots) has little salt associated with leaves. The high salt concentrations associated with leaves of Avicennia and Laguncularia, but not the low salinity of Rhizophora, were sufficient to inhibit the germination of many fungi associated with mangrove forests.  相似文献   

13.
It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.  相似文献   

14.
Parthenogenetic lineages within non-marine ostracods can occur either in mixed (with sexual and asexual females) or exclusively asexual taxa. The former mode of reproduction is associated with a high intraspecific diversity at all levels (genetic, morphological, ecological) and, at least in the Cypridoidea, with geographical parthenogenesis. Obligate asexuality is restricted to the Darwinuloidea, the strongest candidate for an ancient asexual animal group after the bdelloid rotifers, and is characterized by low diversity. We have compared rates of molecular evolution for the nuclear ITS1 region and the mitochondrial COI gene amongst the three major lineages of non-marine ostracods with sexual, mixed and asexual reproduction. Absolute rates of molecular evolution are low for both regions in the darwinulids. The slow-down of evolution in ITS1 that has been observed for Darwinula stevensoni (Brady & Robertson) apparently does not occur in other darwinulid species. ITS1 evolves more slowly than COI within non-marine ostracod families, including the darwinulids, but not between superfamilies. The ancient asexuals might have a higher relative substitution rate in ITS1, as would be expected from hypotheses that predict the accumulation of mutations in asexuals. However, the speed-up of ITS could also be ancient, for example through the stochastic loss of most lineages within the superfamily after the Permian–Triassic mass extinction. In this case, the difference in rate would have occurred independently from any effects of asexual reproduction.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 93–100.  相似文献   

15.
We tested the regeneration niche hypothesis by comparing the germination ecology of two sympatric Diplusodon species differing in their geographic range and microhabitat. Diplusodon orbicularis is an endemic shrub achieving high densities on sandy soils, whereas Diplusodon hirsutus has a wider geographic range and establishes on rocky outcrops. Seeds were set to germinate under constant temperatures of 15, 20, 25, 30 and 35°C under 12 h light/12 h dark conditions. Light induced germination in both species, but germination under darkness was also observed. Optimum conditions for germination were 25°C/light for both species. The lack of differences in soil temperatures between rocky outcrops and sandy soils provides evidence of no temperature‐dependent microhabitat selection. Unexpectedly, germinability of the more widespread species was lower than that of the endemic congener. Higher germinability of D. orbicularis may account for higher densities when compared with D. hirsutus. Our results provide limited support for the role of germination in contributing to ecological breadth and geographic range.  相似文献   

16.
Asexuals often occupy broad geographical and ecological ranges. Two models have been proposed to explain the ubiquity of asexuals: the General‐Purpose Genotype (GPG) and the Frozen Niche Variation (FNV) model. According to these models, asexuals differ in their ecological niche width and may occupy narrow specialist niches or ubiquitous niches. A thousand water frogs from 37 different populations located in France in different habitats were studied, and two (hemi)clonal hybrid types were identified genetically, Rana esculenta and R. grafi. Altogether, 13 hemiclones were identified both in R. grafi and R. esculenta. Three of these were geographically and ecologically widely distributed, and usually very common in populations. In contrast, the remaining 10 hemiclones had small geographical ranges and were restricted to special habitat types, suggesting ecological niche specialization. The results suggest that in hybridogenetic water frogs GPG and FNV hemiclones coexist.  相似文献   

17.
Classical cost‐of‐sex models predict the rapid fixation of asexual reproduction. Coexistence of sexuals and asexuals is common among hermaphrodite plants, however, providing asexuals with access to sex via their male function; some of the sexually reproduced progeny they sire will be asexual. The ability of asexuals to sire progeny is often hindered by the production of poor quality pollen. Using cellular automata, it is shown that decreases in pollen quality in asexuals can greatly increase the period of coexistence of sexuals and asexuals and, consequently, the cumulative contribution of sex to asex. Extensive periods of coexistence are only likely, however, if pollen and seed are dispersed locally, in which case coexistence over thousands of generations can be achieved. It is argued that, with local dispersal, the negative relationship between pollen quality and the period of coexistence of sex and asex will result in patterns of geographic parthenogenesis in which asexuals that coexist with sexuals will exhibit a poor male function, whereas asexuals with a very efficient male function will occur in exclusively asexual populations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 954–966.  相似文献   

18.
Patterns of diversity reflect the balance between speciation and extinction over time. Here we estimate net diversification rates for samples of sexual and asexual rotifers using phylogenetic reconstructions from sequence data of one mtDNA locus, cytochrome oxidase c subunit I. All four clades of bdelloid rotifers, obligate asexuals, had higher number of species per clade and significantly higher accumulation of diversification events towards the root of the trees than the four clades of their sexual relatives, the monogonont rotifers. Such differences were robust to confounding effects of number of analysed sequences, haplotype diversity, overall genetic divergence, age of the clades or geographic coverage. Our results support the idea that differences in diversification rates could thus be ascribed to different mechanisms of speciation, with ecological speciation as the most plausible mechanism for asexual organisms.  相似文献   

19.
Summary The asexual geckoLepidodactylus lugubris, its sexual congenerL. sp. (Takapoto) and hybrids between the two species inhabit the atoll of Takapoto, providing a natural experiment for studying co-existence and interactions between asexual and sexual populations. The range of the sexual species is confined to one section of the lagoon beach and the trees and buildings which abut it, whereas the asexual is distributed across the whole atoll and occupies many habitats. Behavioural experiments revealed no asymmetry in levels of aggression between the two species, suggesting that the confinement ofL. sp. (Takapoto) to the lagoon beach is not due to agonistic interactions. Ecological differences among the constituent clones of the asexual species exist but cannot completely account for the broader habitat use of the asexual. Within a single habitat, one clone ofL. lugubris consumes a wider range of prey items than its sexual relative. Other studies have found that the asexuals are extremely heterozygous relative to the sexuals; we hypothesize that their broad ecological tolerance may be attributable to heterosis. The co-existence of the sexual and parthenogenetic lizards on this small island seems to be stable and may be facilitated by the specialization of the sexual taxon to beach habitats.  相似文献   

20.
Temperature and salinity tolerances were determined for larval California grunion, Leuresthes tenuis (Ayres), and compared with previous data for Gulf of California grunion, L. sardina (Jenkins & Evermann). Larvae of similar age and acclimation history showed little interspecific difference in thermal tolerance, as measured by half-hour LT50 values for 20–30 day old late postlarvae acclimated at various temperatures, and by upper and lower incipient lethal temperatures for 18°C-acclimated prolarvae. The upper incipient lethal temperature differed by 1 deg.-C (32°C for L. tenuis, 31°C for L. sardina), while the lower incipient lethal temperature for the 18°C acclimated prolarvae of both species was 7.5°C. L. tenuis larvae were much less euryhaline than L. sardina, with incipient lethal salinities of 4.2–41 %. for prolarvae and 8.6–38 %. for 20-day-old postlarvae; comparable values for L. sardina are 4–67.5 %. and 5–57.5 %. Both species show a decrease in temperature and salinity tolerance with age. The larvae of these disjunct congeners show a significant physiological divergence in euryhalinity but not in overall temperature tolerance. These tolerances are discussed in relation to the respective geographic ranges and behavioral responses of the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号