首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Changes in the biota of Chany Lake along a salinity gradient   总被引:1,自引:0,他引:1  
Relationships among salinity and diversity, abundance, biomass of major biological components of Chany Lake (western Siberia, Russia) are examined across a salinity gradient. As salinity increased from 0.8 to 6.4 g l−1, the species richness of aquatic vascular plants decreased from 16 to 2 species, of phytoplankton from 98 to 52 species, and of zooplankton from 61 to 16 species, but changes in species diversity of zoobenthos were negligible. Guest Editor: John M. Melack Saline Waters and their Biota  相似文献   

2.
赵敏  赵锐锋  张丽华  赵海莉  周远刚 《生态学报》2019,39(11):4116-4126
湿地植物多样性的研究对维持湿地生态系统完整性和稳定性有着重要意义。以黑河中游湿地为研究对象,基于野外采样数据和不同盐分梯度植物群落多样性指数,重点分析不同盐分梯度植物多样性变化及其与土壤因子关系。结果表明:黑河中游湿地植物组成比较丰富,共出现植物30科71属102种;随土壤盐分梯度增加,植物群落组成发生显著变化,Margalef丰富度指数(R)和Shannon-Weiner多样性指数(H)均减小,说明研究区植物多样性随盐分增加而减少;不同盐分梯度影响植物多样性的土壤因子存在差异,低盐梯度是pH、速效钾和全氮,中盐梯度是pH、速效磷和速效钾,高盐梯度是有机质、全磷、速效钾和速效氮。该研究结果对于认识不同盐分梯度下影响植物多样性的主要土壤因子具有重要意义,同时对黑河中游湿地植物多样性的有效管理和维持具有一定的参考价值。  相似文献   

3.
气候变化背景下,降雨变化能够深刻影响河口湿地土壤水盐条件,而土壤水盐条件是影响植物群落特征的关键环境因子。本研究以黄河三角洲湿地植物群落为对象,依托野外降雨控制试验平台(减雨60%、减雨40%、自然对照、增雨40%、增雨60%),探讨了经过6年降雨处理后湿地植物群落特征对降雨量变化的响应及机制。结果表明: 随降雨量增加,土壤电导率显著降低,土壤湿度显著增大。降雨量变化影响了植物群落物种组成,增雨处理降低了碱蓬和盐地碱蓬的优势地位,提高了荻和白茅的优势地位。随降雨量增加,植物群落Shannon指数和Margalef丰富度指数显著提高。与对照相比,增减雨处理均降低了群落频度、多度和盖度,增雨60%处理群落频度显著降低54.9%,减雨60%、减雨40%、增雨40%、增雨60%处理群落多度分别显著降低38.9%、33.8%、35.8%和45.7%。随降雨量增加,植物群落地上生物量显著增加,但可能受淹水胁迫的影响,增雨60%处理地上生物量显著低于增雨40%。Margalef丰富度指数与地上生物量呈显著正相关;地上生物量、Shannon指数、Margalef丰富度指数、Simpson多样性指数均与土壤电导率呈显著负相关;地上生物量与土壤湿度呈显著正相关。降雨量变化通过改变黄河三角洲湿地土壤水盐条件显著影响了植物群落生长特征、物种组成和多样性。  相似文献   

4.
The phylogenetic diversity of microorganisms living at high salt concentrations is surprising. Halophiles are found in each of the three domains: Archaea, Bacteria, and Eucarya. The metabolic diversity of halophiles is great as well: they include oxygenic and anoxygenic phototrophs, aerobic heterotrophs, fermenters, denitrifiers, sulfate reducers, and methanogens. The diversity of metabolic types encountered decreases with salinity. The upper salinity limit at which each dissimilatory process takes place is correlated with the amount of energy generated and the energetic cost of osmotic adaptation. Our understanding of the biodiversity in salt-saturated environments has increased greatly in recent years. Using a combination of culture techniques, molecular biological methods, and chemotaxonomic studies, we have obtained information on the nature of the halophilic Archaea as well as the halophilic Bacteria that inhabit saltern crystallizer ponds. Several halophilic microorganisms are being exploited in biotechnology. In some cases, such as the production of ectoine, the product is directly related to the halophilic behavior of the producing microorganism. In other cases, such as the extraction of β-carotene from Dunaliella or the potential use of Haloferax species for the production of poly-β-hydroxyalkanoate or extracellular polysaccharides, similar products can be obtained from non-halophiles, but halophilic microorganisms may present advantages over the use of non-halophilic counterparts. Journal of Industrial Microbiology & Biotechnology (2002) 28, 56–63 DOI: 10.1038/sj/jim/7000176 Received 20 May 2001/ Accepted in revised form 20 June 2001  相似文献   

5.
为研究温度和盐度对蛤仔新品种斑马蛤耗氧排氨的影响,以野生蛤仔为对照,实验设置15、20、25、30和35℃五个温度梯度和20、25、30、35和40五个盐度梯度,结果表明:温度和盐度对斑马蛤的耗氧率和排氨率影响显著(P < 0.05)。在温度15-35℃内,随着温度的增加,耗氧率和排氨率整体上呈增加的趋势。在20-40盐度内,耗氧率随着盐度的升高先减少后增加,排氨率随着盐度的升高先增加后减少,在盐度为30时达到最高值。在水温为15℃,盐度20-40内,斑马蛤的O:N为9.534-62.008;在盐度为35,水温在15-35℃内,斑马蛤的O:N是20.700-74.138。与野生蛤仔比较,斑马蛤的耐高温能力要强于野生蛤仔,从Q10的变化反映出斑马蛤对温度的敏感性相对较弱,适应温度变化的能力比较强;斑马蛤的耐低盐和耐高盐能力强于野生蛤仔。研究结果为进一步完善蛤仔斑马蛤的人工养殖技术提供参考。  相似文献   

6.
The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.  相似文献   

7.
滨海盐土是重要的农业土地后备资源。微生物是土壤中物质循环的关键动力,然而盐度对土壤微生物群落特征影响的研究还很缺乏。本研究采集滨海地区的土壤样品,研究非盐、轻盐和高盐3组不同盐度对土壤细菌数量、多样性和群落构建的影响。结果表明: 与非盐和轻盐土壤相比,高盐土壤的脱氢酶活性和细菌数量显著降低,而细菌α多样性没有变化,细菌群落结构发生分异。利用零模型反演群落构建过程,发现盐度是细菌群落构建过程的主控因子,盐度主导的高确定性过程控制了滨海盐土细菌的群落结构。说明在现有的盐度范围内,高盐土壤中同样含有丰富的微生物种质资源,具有盐土改良的生物学基础,然而由于高确定性的群落构建机制,外源物种很难定殖于滨海盐土。因此,在利用微生物技术改良滨海盐土时,应尽可能筛选耐盐的土著菌种,提高定殖效率。  相似文献   

8.
Protists make up an important component of aquatic ecosystems, playing crucial roles in biogeochemical processes on local and global scales. To reveal the changes of diversity and community structure of protists along the salinity gradients, community compositions of active protistan assemblages were characterized along a transect from the lower Pearl River estuary to the open waters of the South China Sea (SCS), using high-throughput sequencing of the hyper-variable V9 regions of 18S rRNA. This study showed that the alpha diversity of protists, both in the freshwater and in the coastal SCS stations was higher than that in the estuary. The protist community structure also changed along the salinity gradient. The relative sequence abundance of Stramenopiles was highest at stations with lower salinity and decreased with the increasing of salinity. By contrast, the contributions of Alveolata, Hacrobia and Rhizaria to the protistan communities generally increased with the increasing of salinity. The composition of the active protistan community was strongly correlated with salinity, indicating that salinity was the dominant factor among measured environmental parameters affecting protistan community composition and structure.  相似文献   

9.
Williams  W. D. 《Hydrobiologia》1998,381(1-3):191-201
The paper considers the extent to which salinity determines the structure of biological communities (composition and species richness and diversity) in saline lakes, i.e. inland bodies of water with salinities in excess of 3 g l-1. It also considers the extent to which oxygen, ionic composition, pH, hydrological patterns (degree of permanence and impermanence of water), geographical position, palaeoclimatic events, chance, human intervention, and biological interactions especially predation determine biological communities in salt lakes. It suggests that salinity is less significant as a determinant of community structure in salt lakes than has been assumed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary The effect of the salinity, alkalinity and Fe application on the dry matter yield and availability of Fe, Mn, P and Na were studied in the greenhouse on pea (Pisum sativum L.) crop. The highest dry matter yield was recorded in normal soil which decreased with the increase in the salinity and alkalinity, minimum being at 40 ESP. Alkalinity was more harmful to pea crop than salinity.Fe at 10 ppm increased the dry matter yield significantly. Highest Fe concentration (408.12 ppm) was recorded in 40 ESP soil followed by 20 ESP (395.2 ppm). Salinity alongwith marginal or higher alkalinity reduced harmful effect of alkalinity. The uptake of Fe was the highest in normal soil due to the high dry matter yield. All the three sources increased the concentration of Fe and its uptake than the control in all the soils but did not show much distinction among themselves.The concentration of Mn decreased more with the increase in alkalinity than salinity but salinity with alkalinity improved Mn concentration. Similarly uptake of Mn also decreased sharply with the increase in salinity and alkalinity. The application of Fe sources decreased Mn concentration but increased the uptake. The highest decrease was caused with FeSO4 and lowest with Fe rayplex.Like Mn the concentration and uptake of P decreased with the increased levels of salinity and alkalinity. The addition of Fe decreased the concentration of P, highest depression being with Fe KE-MIN.Increase in ESP increased the concentration and the uptake of Na greatly. Addition of Fe through all the sources increased Na concentration and uptake significantly but sources did not differ much in their effect on Na.  相似文献   

11.
盐度、碱度对浮游生物和水化因子的影响   总被引:16,自引:4,他引:12  
于 1998年 7~ 8月间在山东省高青县赵店乡大芦湖养殖场选取一口盐碱池塘的池水为实验用水 ,用粗盐和碳酸氢钠调节盐度和碱度 ,以研究盐碱池塘在盐度和碱度升高的情况下其化学、生物因子的变化趋势 .结果表明 ,盐碱池塘中重碳酸盐碱度的升高会在短时间内降低水体 pH值、钙离子浓度和COD ;但碱度为 6.64± 0 .40mmol·L-1~ 13 .47± 0 .3 1mmol·L-1对浮游生物不会产生显著的不良影响 .盐度为 2 .10± 0 .2 2 g·L-1~11.2 9± 0 .99g·L-1会引起浮游生物生物量的降低 ,并减少浮游生物的种类 ,降低其多样性指数 ,影响浮游生物群落结构组成  相似文献   

12.
《Ecological Indicators》2008,8(4):404-416
In transitional waters the process of defining reference conditions (in the scope of the WFD) must account for the natural great variability of such environments. Therefore, stretches reflecting different physical–chemical and biological conditions throughout the system should be defined in order to correctly establish benthic specific reference conditions. Both salinity and sediment structure are major factors controlling physical–chemical conditions and therefore organisms’ distribution within an estuary. These environmental variables (salinity, sediment grain size composition and organic matter content) patterns were studied in the Mondego estuary and some clear gradients emerged. Also, ecological indices (AMBI, Margalef and Shannon-Wiener) were applied to subtidal benthic communities of the Mondego estuary and, generally, there was not only evidence of a decrease in diversity in the estuary from the downstream section towards its inner parts, but also differences were found between areas of distinct sediment composition. After comparing environmental patterns with biodiversity trends, the information was used to define homogeneous sectors along a temperate estuary in Portugal. In the Mondego estuary six zones, covering the main physical gradients affecting benthic communities, were defined: four in the northern arm and two in southern arm. Zones established will allow future determination of benthic reference conditions adjusted for each of the sectors, according to their characteristics, and consequently the conditions they provide for benthic assemblages settlement.  相似文献   

13.
Abstract Dryland salinity presents an overwhelming threat to terrestrial and aquatic habitats in Australia, and yet there remains very little empirical evidence of the impacts of secondary salinization on the biodiversity of riparian communities. Here we describe the response of a riparian plant community to stream and soil salinization, 25 years after the experimental clearing of a catchment in south‐western Australia. Riparian plant species diversity was inversely related to soil salinity, and plant species composition was significantly altered by increased soil salinity. Despite the evidence for an impact of salinization on the taxonomic diversity and composition of the riparian plant community, there was little evidence for any effect of salinization on functional group diversity, or on ecological functioning, as measured by the percentage of above‐ground plant cover.  相似文献   

14.
Flooding and salinity stress are predicted to increase in coastal Louisiana as relative sea level rise (RSLR) continues in the Gulf of Mexico region. Although wetland plant species are adapted to these stressors, questions persist as to how marshes may respond to changed abiotic variables caused by RSLR, and how herbivory by native and non-native mammals may affect this response. The effects of altered flooding and salinity on coastal marsh communities were examined in two field experiments that simultaneously manipulated herbivore pressure. Marsh sods subjected to increased or decreased flooding (by lowering or raising sods, respectively), and increased or decreased salinity (by reciprocally transplanting sods between a brackish and fresh marsh), were monitored inside and outside mammalian herbivore exclosures for three growing seasons. Increased flooding stress reduced species numbers and biomass; alleviating flooding stress did not significantly alter species numbers while community biomass increased. Increased salinity reduced species numbers and biomass, more so if herbivores were present. Decreasing salinity had an unexpected effect: herbivores selectively consumed plants transplanted from the higher-salinity site. In plots protected from herbivory, decreased salinity had little effect on species numbers or biomass, but community composition changed. Overall, herbivore pressure further reduced species richness and biomass under conditions of increased flooding and increased salinity, supporting other findings that coastal marsh species can tolerate increasingly stressful conditions unless another factor, e.g., herbivory, is also present. Also, species dropped out of more stressful treatments much faster than they were added when stresses were alleviated, likely due to restrictions on dispersal. The rate at which plant communities will shift as a result of changed abiotic variables will determine if marshes remain viable when subjected to RSLR. Received: 8 April 1998 / Accepted: 15 June 1998  相似文献   

15.
Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.  相似文献   

16.
本文探讨了系列海水盐度砂培的红树植物秋茄和海莲幼苗叶片、根尖的过氧化物酶活性及其同工酶对不同盐度条件的反应。结果表明:(1)秋茄苗:在低盐度0‰至10‰范围,叶过氧化物酶活性随盐度提高而略有增强,15‰以上则降低;根尖过氧化物酶活性则不同,随盐度(0—35‰)提高而降低。(2)海莲苗:随其生长基盐度(5—25‰)提高,叶过氧化物酶活性迅速降低,而根尖过氧化物酶活性在5‰至10‰盐度时略有提高,15‰以上迅速降低;而后高盐度(25一35‰)活性降低不明显。这表明,在盐度的影响下,秋茄苗过氧化物酶活性变化程度小而海莲大。(3)在同工酶谱表现上,两种植物幼苗(叶,根)均为主级酶带受盐度影响不明显,但次级酶带对盐度敏感。  相似文献   

17.
曾志华  杨民和  佘晨兴  仝川 《生态学报》2014,34(10):2674-2681
为认识盐度对河口潮汐沼泽湿地土壤产甲烷菌的影响,应用PCR-RFLP技术及测序分析对闽江河口区淡水-半咸水盐度梯度上分布的4个短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构进行研究。闽江河口区短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构受盐度影响明显,位于下洋洲和塔礁洲的短叶茳芏潮汐淡水沼泽湿地土壤产甲烷菌的香农-威纳多样性指数值分别为2.81和2.65,位于蝙蝠洲和鳝鱼滩的短叶茳芏潮汐半咸水沼泽湿地土壤产甲烷菌香农-威纳多样性指数值分别仅为2.33和2.27。系统发育分析表明:短叶茳芏沼泽湿地土壤产甲烷菌类群主要有甲烷杆菌目(Methanobacteriales),包括Methanobacterium、Methanobrevibacter和Methanobacteriaceae;甲烷微菌目(Methanomicrobiales),主要有Methanoregula,以及甲烷八叠球菌目(Methanosarcinales),主要有Methanosarcina和Methanococcoides。闽江河口区短叶茳芏潮汐淡水沼泽湿地土壤主要的优势产甲烷菌有Methanoregula、Methanosarcina和Methanobacterium,而短叶茳芏潮汐半咸水沼泽湿地土壤主要的优势产甲烷菌则转化为仅以Methanoregula为主。  相似文献   

18.
The influence of periodic salinity changes was investigated for 42 days under semicontinuous culture conditions with phosphorus limitation using phytoplankton assemblages from Lake Waihola, a tidally influenced shallow lake. To simulate tidal effects on the phytoplankton community, salinity in the cultures was increased in pulses at different intervals (3.5, 7, and 14 days), and these cultures were compared with those that experienced constant freshwater conditions. Salinity pulses significantly affected competition and succession with a major loss in diversity during the first days of the experiment due to the initial pulse that caused a transition from freshwater to brackish conditions in the cultures. After this initial phase, diversity index (H') and species number (Scorr) decreased less rapidly. The loss in H' and Scorr over time was highest under constant freshwater conditions and lowest in the treatment with an interval of 3.5 days between salinity pulses. At the end of the experiment, the combination of initial loss in H' and Scorr and the time course of H' and Scorr resulted in a U‐shaped relation between the interval length of salinity pulses and both H' and Scorrtemp1.txttemp1.txt. Our results indicate that salinity pulses at intervals of a few days tend to promote phytoplankton diversity. If saline intrusions in coastal freshwater systems occur only at spring tides, this will lead to decreases in diversity and species richness.  相似文献   

19.
青海尕海是青藏高原柴达木盆地比较典型的高盐度且具有丰富卤虫资源的盐湖 ,海拔高程 2 849.6m。 1997年夏季我们对尕海盐湖浮游生物主要类群群落多样性特征进行了初步调查。调查期间在内湖主要水体 5个断面2 2个采样站共发现浮游藻类 46种 ,平均密度为 5 4.39× 10 4 Cells/L ;浮游动物 12种 ,全湖平均密度为 8.2 2个 /L ,平均生物量 0 .2 9mg/L。通过盐度含量较高 (119g/L)的内湖主要水体采样断面与盐度含量较低 (1.8g/L)的湖西北岸小水面采样断面比较 ,浮游生物不论是在种类组成特征、群落的多样性还是其个体丰度都存在十分明显的差异。结果表明 :在盐湖生态系统中 ,盐度是决定生物物种多样性及其个体丰度的关键因素之一。  相似文献   

20.
The diversity of sulfate-reducing bacteria (SRB) inhabiting the extreme hypersaline sediment (270 g L(-1) NaCl) of the northern arm of Great Salt Lake was studied by integrating cultivation and genotypic identification approaches involving PCR-based retrieval of 16S rRNA and dsrAB genes, the latter encoding major subunits of dissimilatory (bi) sulfite reductase. The majority (85%) of dsrAB sequences retrieved directly from the sediment formed a lineage of high (micro) diversity affiliated with the genus Desulfohalobium, while others represented novel lineages within the families Desulfohalobiaceae and Desulfobacteraceae or among Gram-positive SRB. Using the same sediment, SRB enrichment cultures were established in parallel at 100 and at 190 g L(-1) NaCl using different electron donors. After 5-6 transfers, dsrAB and 16S rRNA gene-based profiling of these enrichment cultures recovered a SRB community composition congruent with the cultivation-independent profiling of the sediment. Pure culture representatives of the predominant Desulfohalobium-related lineage and of one of the Desulfobacteraceae-affilated lineages were successfully obtained. The growth performance of these isolates and of the enrichment cultures suggests that the sediment SRB community of the northern arm of Great Salt Lake consists of moderate halophiles, which are salt-stressed at the in situ salinity of 27%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号