首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cutforth T  Moring L  Mendelsohn M  Nemes A  Shah NM  Kim MM  Frisén J  Axel R 《Cell》2003,114(3):311-322
Olfactory sensory neurons expressing a given odorant receptor (OR) project with precision to specific glomeruli in the olfactory bulb, generating a topographic map. In this study, we demonstrate that neurons expressing different ORs express different levels of ephrin-A protein on their axons. Moreover, alterations in the level of ephrin-A alter the glomerular map. Deletion of the ephrin-A5 and ephrin-A3 genes posteriorizes the glomerular locations for neurons expressing either the P2 or SR1 receptor, whereas overexpression of ephrin-A5 in P2 neurons results in an anterior shift in their glomeruli. Thus the ephrin-As are differentially expressed in distinct subpopulations of neurons and are likely to participate, along with the ORs, as one of a complement of guidance receptors governing the targeting of like axons to precise locations in the olfactory bulb.  相似文献   

3.
The spiking response of receptor neurons to various odorants has been analyzed at different concentrations. The interspike intervals were measured extracellularly before, during and after the stimulation from the olfactory epithelium of the frog Rana ridibunda. First, a quantitative method was developed to distinguish the spikes in the response from the spontaneous activity. Then, the response intensity, characterized by its median instantaneous frequency, was determined. Finally, based on statistical analyses, this characteristic was related to the concentration and quality of the odorant stimulus. It was found that the olfactory neuron is characterized by a low modulation in frequency and a short range of discriminated intensities. The significance of the results is discussed from both a biological and a modelling point of view.  相似文献   

4.
Fan J  Ngai J 《Developmental biology》2001,229(1):119-127
Individual olfactory sensory neurons are thought to express only one odorant receptor gene from a repertoire of hundreds to thousands of genes. How do these sensory neurons choose just one specific odorant receptor to express during their differentiation? As an initial attempt toward understanding the process of odorant receptor gene regulation, we studied when odorant receptor expression is activated during sensory neuron regeneration. We find that receptor gene expression is activated in postmitotic neurons and can occur in the absence of the olfactory bulb. These results suggest that receptor expression is restricted to the terminal stages of olfactory neuron differentiation, and sensory neurons do not simply inherit the odorant receptor that is already expressed in mitotic precursor cells. Our results also support a model in which odorant receptor gene expression occurs independent of the olfactory bulb.  相似文献   

5.
In the mouse olfactory epithelium, there are about ten million olfactory sensory neurons, each expressing a single type of odorant receptor out of approximately 1000. Olfactory sensory neurons expressing the same odorant receptor converge their axons to a specific set of glomeruli on the olfactory bulb. How odorant receptors play an instructive role in the projection of axons to the olfactory bulb has been one of the major issues of developmental neurobiology. Recent studies revealed previously overlooked roles of odorant receptor-derived cAMP signals in the axonal projection of olfactory sensory neurons; the levels of cAMP and neuronal activity appear to determine the expression levels of axon guidance/sorting molecules and thereby direct the axonal projection of olfactory sensory neurons. These findings provide new insights as to how peripheral inputs instruct neuronal circuit formation in the mammalian brain.  相似文献   

6.
中脑多巴胺能神经元(mesodiencephalic dopamine,mdDA,neurons)由于涉及帕金森病、精神分裂症和药物成瘾等多种神经疾病的病理过程而历来受到人们的重视。研究中脑多巴胺能神经元的发育机制将给这些疾病的治疗带来希望。近来的研究表明多巴胺能神经元轴突的导向由各种诱向因子决定,诱向因子主要由相应投射部位的细胞所分泌,其中研究得最多的是ephrins,netrins,semaphorins,Slits及它们各自的受体。介绍胚胎期中脑多巴胺能神经元轴突导向过程及其主要诱向因子。  相似文献   

7.
We modeled the firing rate of populations of olfactory receptor neurons (ORNs) responding to an odorant at different concentrations. Two cases were considered: a population of ORNs that all express the same olfactory receptor (OR), and a population that expresses many different ORs. To take into account ORN variability, we replaced single parameter values in a biophysical ORN model with values drawn from statistical distributions, chosen to correspond to experimental data. For ORNs expressing the same OR, we found that the distributions of firing frequencies are Gaussian at all concentrations, with larger mean and standard deviation at higher concentrations. For a population expressing different ORs, the distribution of firing frequencies can be described as the superposition of a Gaussian distribution and a lognormal distribution. Distributions of maximum value and dynamic range of spiking frequencies in the simulated ORN population were similar to experimental results.  相似文献   

8.
9.
The vertebrate olfactory epithelium provides an excellent model system to study the regulatory mechanisms of neurogenesis and neuronal differentiation due to its unique ability to generate new sensory neurons throughout life. The replacement of olfactory sensory neurons is stimulated when damage occurs in the olfactory epithelium. In this study, transgenic mice, with a transgene containing human diphtheria toxin receptor under the control of the olfactory marker protein promoter (OMP-DTR), were generated in which the mature olfactory sensory neurons could be specifically ablated when exposed to diphtheria toxin. Following diphtheria toxin induced neuronal ablation, we observed increased numbers of newly generated growth associated protein 43 (GAP43)-positive immature olfactory sensory neurons. OMP-positive neurons were continuously produced from the newly generated GAP43-positive cells. The expression of the signal transduction components adenylyl cyclase type III and the G-protein α subunit Gα olf was sensitive to diphtheria toxin exposure and their levels decreased dramatically preceding the disappearance of the OMP-positive sensory neurons. These data validate the hypothesis that OMP-DTR mice can be used as a tool to ablate the mature olfactory sensory neurons in a controlled fashion and to study the regulatory mechanisms of the neuronal replacement.  相似文献   

10.
11.
An olfactory sensory neuron (OSN) expresses selectively one member from a repertoire of approximately 1000 odorant receptor (OR) genes and projects its axon to a specific glomerulus in the olfactory bulb. Both processes are here recapitulated by MOR23 and M71 OR minigenes, introduced into mice. Minigenes of 9 kb and as short as 2.2 kb are selectively expressed by neurons that do not coexpress the endogenous gene but coproject their axons to the same glomeruli. Deletion of a 395 bp upstream region in the MOR23 minigene abolishes expression. In this region we recognize sequence motifs conserved in many OR genes. Transgenic lines expressing the OR in ectopic epithelial zones form ectopic glomeruli, which also receive input from OSNs expressing the cognate endogenous receptor. This suggests a recruitment through homotypic interactions between OSNs expressing the same OR.  相似文献   

12.
13.
14.
Axon guidance: receptor complexes and signaling mechanisms   总被引:5,自引:0,他引:5  
The generation of a functional neuronal network requires that axons navigate precisely to their appropriate targets. Molecules that specify guidance decisions have been identified, and the signaling events that occur downstream of guidance receptors are beginning to be understood. New research shows that guidance receptor signaling can be hierarchical -- one receptor silencing the other -- thereby allowing navigating growth cones to interpret opposing guidance cues. Among the known intracellular signaling molecules shared by all guidance receptor families, Rho GTPases appear to be primary regulators of actin dynamics and growth cone guidance. Novel effector molecules complete the picture and suggest additional signaling mechanisms.  相似文献   

15.
Proliferation, differentiation and death of olfactory neurons occur continually, even in adult animals. New data suggest that growth factors regulate the rate of cell proliferation. Early growth of olfactory axons in embryonic development is accompanied by the migration of epithelial cells from the olfactory placode toward the presumptive olfactory bulb. Maturation and ciliogenesis at the dendritic end of the cell is apparently dependent on a signal(s) from the bulb. The total life span of the neuron depends on maintenance of contact with the bulb. Olfactory life span is normally variable but is curtailed substantially in the absence of the bulb.  相似文献   

16.
Reisert J  Lai J  Yau KW  Bradley J 《Neuron》2005,45(4):553-561
In vertebrate olfactory receptor neurons (ORNs), the odorant-triggered receptor current flows through two distinct ion channels on the sensory cilia: Ca2+ influx through a cyclic nucleotide-gated (CNG) channel followed by Cl- efflux through a Ca2+-activated anion channel. The excitatory Cl- current amplifies the small CNG current and crucially depends on a high intracellular Cl- concentration. We show here that a (Na+)-(K+)-(2Cl-) cotransporter, NKCC1, is required for this Cl- current, in that ORNs deficient in Nkcc1 or incubated with an NKCC blocker (bumetanide) lack the Cl- current. Surprisingly, immunocytochemistry indicates that NKCC1 is located on the somata and dendrites of ORNs rather than the cilia, where transduction occurs. This topography is remarkably similar to the situation in secretory epithelial cells, where basolateral Cl- uptake and apical Cl- efflux facilitate transepithelial fluid movement. Thus, a single functional architecture serves two entirely different purposes, probably underscoring the epithelial origin of the ORNs.  相似文献   

17.
18.
Olfactory receptors (ORs) are a large family of proteins involved in the recognition and discrimination of numerous odorants. These receptors belong to the G-protein coupled receptor (GPCR) hyperfamily, for which little structural data are available. In this study we predict the binding site residues of OR proteins by analyzing a set of 1441 OR protein sequences from mouse and human. The central insight utilized is that functional contact residues would be conserved among pairs of orthologous receptors, but considerably less conserved among paralogous pairs. Using judiciously selected subsets of 218 ortholog pairs and 518 paralog pairs, we have identified 22 sequence positions that are both highly conserved among the putative orthologs and variable among paralogs. These residues are disposed on transmembrane helices 2 to 7, and on the second extracellular loop of the receptor. Strikingly, although the prediction makes no assumption about the location of the binding site, these amino acid positions are clustered around a pocket in a structural homology model of ORs, mostly facing the inner lumen. We propose that the identified positions constitute the odorant binding site. This conclusion is supported by the observation that all but one of the predicted binding site residues correspond to ligand-contact positions in other rhodopsin-like GPCRs.  相似文献   

19.
Gene manipulation and molecular biological techniques for the study of olfaction are well developed in mice, while electrophysiological properties of mouse olfactory sensory neurons have been less extensively investigated. We used the whole-cell voltage-clamp technique in mouse isolated olfactory sensory neurons to investigate both voltage-gated and transduction currents. Voltage-gated currents were composed of transient inward currents followed by outward currents with transient and sustained components. Of the tested olfactory sensory neurons, 12% responded to the odorant cineole with an inward current. Caged compounds were introduced into the cytoplasm through the patch pipette and flash photolysis of caged cyclic nucleotides activated an inward current in 94% of the cells. When the flash was localized at the cilia, the response latency, rising time and duration were shorter than when the flash illuminated the soma. The amplitude of the photolysis response was dependent on light intensity and the relation was fitted by the Hill equation, with a Hill coefficient of 3.2. These results demonstrate that it is possible to obtain recordings in the whole-cell configuration from olfactory sensory neurons isolated from the mouse and that voltage-gated currents and transduction properties are largely similar to those of amphibians.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号