首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ralstonia solanacearum is a well-known phytopathogen causing bacterial wilt in a large number of agriculturally important crops. The pathogenicity of R. solanacearum is expressed due to the presence of various virulence factors and effector proteins. In this study, various virulence factors and type III effector proteins of R. solanacearum that are present in the strains Rs-09-161 and Rs-10-244 were identified through bioinformatics approach and compared with other reference strains. R. solanacearum strains, Rs-09-161 and Rs-10-244 belong to the phylotype I, biovar3, and are the only sequenced strains from India infecting solanaceous vegetables. Similarity matrix obtained by comparing the sequences of virulence genes of Rs-09-161 and Rs-10-244 with other reference strains indicated that Rs-09-161 and Rs-10-244 share more than 99% similarity between them and are closely related to GMI1000. The virulence factors in R. solanacearum appear to be highly conserved in the R. solanacearum species complex. Rs-09-161 has 72 type III effectors whereas Rs-10-244 has 77. Comparison of the complete genes of type III effectors of Rs-09-161, Rs-10-244 and GMI1000 revealed the presence of 60 common effectors within them. Further, Rs-09-161 has two unique effectors and Rs-10-244 has four unique effectors. Phylogenetic trees of RipA, RipG, RipH and RipS effector sequences resulted in the grouping of the isolates based on their phylotypes. Group 1 consists of strains that belong to phylotype I including Rs-09-161 and Rs-10-244. Phylotype III strain CMR15 forms a group closely associated with phylotype I. The strains belonging to phylotypes II and IV have separated to form two different groups.  相似文献   

3.
4.
The soil‐borne pathogen Ralstonia solanacearum causes bacterial wilt in a broad range of plants. The main virulence determinants of R. solanacearum are the type III secretion system (T3SS) and its associated type III effectors (T3Es), translocated into the host cells. Of the conserved T3Es among R. solanacearum strains, the Fbox protein RipG7 is required for R. solanacearum pathogenesis on Medicago truncatula. In this work, we describe the natural ripG7 variability existing in the R. solanacearum species complex. We show that eight representative ripG7 orthologues have different contributions to pathogenicity on M. truncatula: only ripG7 from Asian or African strains can complement the absence of ripG7 in GMI1000 (Asian reference strain). Nonetheless, RipG7 proteins from American and Indonesian strains can still interact with M. truncatula SKP1‐like/MSKa protein, essential for the function of RipG7 in virulence. This indicates that the absence of complementation is most likely a result of the variability in the leucine‐rich repeat (LRR) domain of RipG7. We identified 11 sites under positive selection in the LRR domains of RipG7. By studying the functional impact of these 11 sites, we show the contribution of five positively selected sites for the function of RipG7CMR15 in M. truncatula colonization. This work reveals the genetic and functional variation of the essential core T3E RipG7 from R. solanacearum. This analysis is the first of its kind on an essential disease‐controlling T3E, and sheds light on the co‐evolutionary arms race between the bacterium and its hosts.  相似文献   

5.
The compatible interaction between the model plant, Arabidopsis thaliana, and the GMI1000 strain of the phytopathogenic bacterium, Ralstonia solanacearum, was investigated in an in vitro pathosystem. We describe the progression of the bacteria in the root from penetration at the root surface to the xylem vessels and the cell type-specific, cell wall-associated modifications that accompanies bacterial colonization. Within 6?days post inoculation, R. solanacearum provoked a rapid plasmolysis of the epidermal, cortical, and endodermal cells, including those not directly in contact with the bacteria. Plasmolysis was accompanied by a global degradation of pectic homogalacturonanes as shown by the loss of JIM7 and JIM5 antibody signal in the cell wall of these cell types. As indicated by immunolabeling with Rsol-I antibodies that specifically recognize R. solanacearum, the bacteria progresses through the root in a highly directed, centripetal manner to the xylem poles, without extensive multiplication in the intercellular spaces along its path. Entry into the vascular cylinder was facilitated by cell collapse of the two pericycle cells located at the xylem poles. Once the bacteria reached the xylem vessels, they multiplied abundantly and moved from vessel to vessel by digesting the pit membrane between adjacent vessels. The degradation of the secondary walls of xylem vessels was not a prerequisite for vessel colonization as LM10 antibodies strongly labeled xylem cell walls, even at very late stages in disease development. Finally, the capacity of R. solanacearum to specifically degrade certain cell wall components and not others could be correlated with the arsenal of cell wall hydrolytic enzymes identified in the bacterial genome.  相似文献   

6.
Many species of rhizobial bacteria can invade their plant hosts and induce development of symbiotic nitrogen-fixing nodules only if they are able to produce an acidic exopolysaccharide (EPS) with certain structural and molecular weight characteristics.13 Sinorhizobium meliloti that produces the functional form of the exopolysaccharide succinoglycan induces formation of invasion structures called infection threads in the root hair cells of its plant hosts alfalfa and Medicago truncatula. However, S. meliloti mutants that cannot produce succinoglycan are not able to induce infection thread formation, resulting in an early arrest of nodule development and in nitrogen starvation of the plant. Mounting evidence has suggested that succinoglycan acts as a signal to these host plants to permit the entry of S. meliloti. Now, our microarray screen and functional category analysis of differentially-expressed genes show that M. truncatula plants inoculated with wild type S. meliloti receive a signal to increase their translation capacity, alter their metabolic activity and prepare for invasion, while those inoculated with a succinoglycan-deficient mutant do not receive this signal, and also more strongly express plant defense genes.Key words: nitrogen fixation, nodule, succinoglycan, microarray, legume, rhizobial bacteria, Sinorhizobium meliloti, Medicago truncatula, infection thread, root hair  相似文献   

7.
Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.  相似文献   

8.
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects approximately 70 effector proteins into plant cells via the Hrp type III secretion system in an early stage of infection. To identify an as-yet-unidentified avirulence factor possessed by the Japanese tobacco-avirulent strain RS1000, we transiently expressed RS1000 effectors in Nicotiana benthamiana leaves and monitored their ability to induce effector-triggered immunity (ETI). The expression of RipB strongly induced the production of reactive oxygen species and the expressions of defence-related genes in N. benthamiana. The ripB mutant of RS1002, a nalixidic acid-resistant derivative of RS1000, caused wilting symptoms in N. benthamiana. A pathogenicity test using R. solanacearum mutants revealed that the two already known avirulence factors RipP1 and RipAA contribute in part to the avirulence of RS1002 in N. benthamiana. The Japanese tobacco-virulent strain BK1002 contains mutations in ripB and expresses a C-terminal-truncated RipB that lost the ability to induce ETI in N. benthamiana, indicating a fine-tuning of the pathogen effector repertoire to evade plant recognition. RipB shares homology with Xanthomonas XopQ, which is recognized by the resistance protein Roq1. The RipB-induced resistance against R. solanacearum was abolished in Roq1-silenced plants. These findings indicate that RipB acts as a major avirulence factor in N. benthamiana and that Roq1 is involved in the recognition of RipB.  相似文献   

9.
Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.  相似文献   

10.
11.
Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium''s gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum''s sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production.  相似文献   

12.
13.
14.
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.  相似文献   

15.
Interfamily transfer of plant pattern recognition receptors (PRRs) represents a promising biotechnological approach to engineer broad‐spectrum, and potentially durable, disease resistance in crops. It is however unclear whether new recognition specificities to given pathogen‐associated molecular patterns (PAMPs) affect the interaction of the recipient plant with beneficial microbes. To test this in a direct reductionist approach, we transferred the Brassicaceae‐specific PRR ELONGATION FACTOR‐THERMO UNSTABLE RECEPTOR (EFR), conferring recognition of the bacterial EF‐Tu protein, from Arabidopsis thaliana to the legume Medicago truncatula. Constitutive EFR expression led to EFR accumulation and activation of immune responses upon treatment with the EF‐Tu‐derived elf18 peptide in leaves and roots. The interaction of M. truncatula with the bacterial symbiont Sinorhizobium meliloti is characterized by the formation of root nodules that fix atmospheric nitrogen. Although nodule numbers were slightly reduced at an early stage of the infection in EFRMedicago when compared to control lines, nodulation was similar in all lines at later stages. Furthermore, nodule colonization by rhizobia, and nitrogen fixation were not compromised by EFR expression. Importantly, the M. truncatula lines expressing EFR were substantially more resistant to the root bacterial pathogen Ralstonia solanacearum. Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on disease resistance against a bacterial pathogen. In addition, our results indicate that Rhizobium can either avoid PAMP recognition during the infection process, or is able to actively suppress immune signaling.  相似文献   

16.
陈立  魏谦卓  大西浩平 《微生物学报》2019,59(11):2061-2068
青枯劳尔氏菌是导致多种重要经济作物毁灭性枯萎(bacterial wilt)的一种土传病害,严重危害热带和亚热带地区食品安全。该细菌通过III型分泌系统(T3SS)向寄主细胞注射大量效应蛋白(T3Es)。效应蛋白是把双刃剑,既可诱导植物感病,又能激活植物防御系统。具有特殊重复结构的效应蛋白被归类成多基因家族,各家族成员协同致病,但其分子机制尚不清楚。本文围绕近年来有关多基因家族效应蛋白结构、功能和致病性等方面最新进展进行综述,为青枯菌致病机理和病害防治提供新思路。  相似文献   

17.
18.
19.
[目的]研究Ⅲ型效应子SKWP对青枯菌OE1-1在寄主植物体内增殖能力的影响。[方法]构建青枯菌RK7197(野生型突变体,带Gm抗性)和SKWP单基因缺失突变体(带PB抗性),通过竞争力指数分析SKWP各效应子对青枯菌OE1-1在叶片组织内增殖能力的影响。[结果]竞争力指数适合在寄主植物茄子上分析各效应子功能,6个SKWP效应子对OE1-1细菌增殖能力影响不同,SKWP4影响最明显。[结论]竞争力指数可提供一个新视野来分析SKWP各效应子对青枯菌OE1-1在寄主茄子上增殖能力的影响。  相似文献   

20.
Medicago truncatula is widely used as a model legume for symbiotic and pathogenic microbial interaction studies. Although a number of Agrobacterium-mediated transformation methods have been developed for M. truncatula, a rapid root transformation system was not yet available for this model plant. Here, we describe an easy method for rapid transgene expression in root hairs of M. truncatula, using young seedlings co-cultivated with the disarmed hypervirulent A. tumefaciens strain AGL1. This method leads to efficient expression of various GUS and fluorescent reporters in M. truncatula root hairs. We showed that transgene expression is detected as soon as 2 days following co-culture, in root hairs of a particular responsive zone lying 0.5–2 cm behind the root tip. This method can be used with a variety of M. truncatula genotypes, and is particularly useful for rapid investigation of the sub-cellular localization of fluorescent fusion proteins. Moreover, combining distinct Agrobacterium strains during the initial co-culture step efficiently generates co-transformed root hairs, suitable for co-localization of different fluorescent fusion proteins in the same cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号