首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New data on spermiogenesis and the ultrastructure of spermatozoa of ‘true’ tapeworms (Eucestoda) are summarized. Since 2001, more than 50 species belonging to most orders of the Eucestoda have been studied or reinvestigated, particularly members of the Caryophyllidea, Spathebothriidea, Diphyllobothriidea, Bothriocephalidea, Trypanorhyncha, Tetraphyllidea, Proteocephalidea, and Cyclophyllidea. A new classification of spermatozoa of eucestodes into seven basic types is proposed and a key to their identification is given. For the first time, a phylogenetic tree inferred from spermatological characters is provided. New information obtained in the last decade has made it possible to fill numerous gaps in the character data matrix, enabling us to carry out a more reliable analysis of the evolution of ultrastructural characters of sperm and spermiogenesis in eucestodes. The tree is broadly congruent with those based on morphological and molecular data, indicating that convergent evolution of sperm characters in cestodes may not be as common as in other invertebrate taxa. The main gaps in the current knowledge of spermatological characters are mapped and topics for future research are outlined, with special emphasis on those characters that might provide additional information about the evolution of tapeworms and their spermatozoa. Future studies should be focused on representatives of those major groups (families and orders) in which molecular data indicate paraphyly or polyphyly (e.g. ‘Tetraphyllidea’ and Trypanorhyncha) and on those that have a key phylogenetic position among eucestodes (e.g. Diphyllidea, ‘Tetraphyllidea’, Lecanicephalidea, Nippotaeniidea).  相似文献   

2.
A phylogenetic analysis of tapeworms (Eucestoda) based on complete sequences of the 18S rRNA genes of 43 taxa (including new sequences of 12 species) was carried out, with the emphasis on the groups parasitising teleost fish and reptiles. Spathebothriidea and Trypanorhyncha (the latter group being paraphyletic) appeared as basal groups of the Eucestoda but their position was not stable. The tetrafossate orders (Litobothriidea, Lecanicephalidea, Tetraphyllidea, Proteocephalidea, Nippotaeniidea, Tetrabothriidea and Cyclophyllidea) were well separated from the remaining groups. Results supported polyphyly of the Pseudophyllidea formed by two distinct clades: one with diphyllobothriids (Diphyllobothrium, Schistocephalus, Spirometra and Duthiersia) and another including Abothrium, Probothriocephalus, Eubothrium and Bothriocephalus. The former pseudophyllidean clade formed a separate branch with the Caryophyllidea (Khawia and Hunterella) and Haplobothriidea (Haplobothrium), the latter taxon being closely related to either caryophyllideans or diphyllobothriids in different analyses. Proteocephalideans formed a monophyletic group in all analyses and constituted a clade within the Tetraphyllidea thus rendered paraphyletic. Within the Proteocephalidea, the Acanthotaeniinae (Acanthotaenia from reptiles in Africa) and Gangesiinae (Gangesia and Silurotaenia from silurid fish in the Palearctic Region) were separated from parasites of freshwater fish and mammals. The family Proteocephalidae was found to be paraphyletic due to the placement of a monticelliid species, Monticellia sp., in a clade within the former family. The genus Proteocephalus appeared as an artificial assemblage of unrelated taxa which is congruent with previous molecular analyses.  相似文献   

3.
The construction of a stable phylogeny for the Cestoda, indicating the interrelationships of recognised orders and other major lineages, has proceeded iteratively since the group first received attention from phylogenetic systematists. Molecular analyses using nuclear ribosomal RNA gene fragments from the small (ssrDNA) and large (lsrDNA) subunits have been used to test competing evolutionary scenarios based on morphological data but could not arbitrate between some key conflicting hypotheses. To the ribosomal data, we have added a contiguous fragment of mitochondrial (mt) genome data (mtDNA) of partial nad1-trnN-trnP-trnI-trnK-nad3-trnS-trnW-cox1-trnT-rrnL-trnC-partial rrnS, spanning 4034-4447 bp, where new data for this region were generated for 18 species. Bayesian analysis of mtDNA and rDNA as nucleotides, and where appropriate as amino acids, demonstrated that these two classes of genes provide complementary signal across the phylogeny. In all analyses, except when using mt amino acids only, the Gyrocotylidea is sister group to all other Cestoda (Nephroposticophora), and Amphilinidea forms the sister group to the Eucestoda. However, an earliest-diverging position of Amphilinidea is strongly supported in the mt amino acid analysis. Amphilinidea exhibit a unique tRNA arrangement (nad1-trnI-trnL2-trnP-trnK-trnV-trnA-trnN-nad3), whereas Gyrocotylidea shares that of the derived lineages, providing additional evidence of the uniqueness of amphilinid genes and genomes. The addition of mtDNA to the rDNA genes supported the Caryophyllidea as the sister group to (Spathebothriidea+remaining Eucestoda), a hypothesis consistently supported by morphology. This relationship suggests a history of step-wise evolutionary transitions from simple monozoic, unsegmented tapeworms to the more familiar polyzoic, externally segmented (strobilate) forms. All our data partitions recovered Haplobothriidea as the sister group to Diphyllobothriidae. The sister-group relationship between Diphyllidea and Trypanorhyncha, as previously established using rDNA, is not supported by the mt data, although it is supported by the combined mt and rDNA analysis. With regards to the more derived taxa, in all except the mt amino acid analysis, the following topology is supported: (Bothriocephalidea (Litobothriidea (Lecanicephalidea (Rhinebothriidea (Tetraphyllidea, (Acanthobothrium, Proteocephalidea), (Nippotaeniidea, Mesocestoididae, Tetrabothriidea, Cyclophyllidea)))))), where the Tetraphyllidea are paraphyletic. Evidence from the mt data provides strong (nucleotides) to moderate (amino acids) support for Tetraphyllidea forming a group to the inclusion of Proteocephalidea, with the latter consistently forming the sister group to Acanthobothrium. The interrelationships among Nippotaeniidea, Mesocestoididae, Tetrabothriidea and Cyclophyllidea remain ambiguous and require further systematic attention. Mitochondrial and nuclear rDNA data provide conflicting signal for certain parts of the cestode tree. In some cases mt data offer results in line with morphological evidence, such as the interrelationships of the early divergent lineages. Also, Tetraphyllidea, although remaining paraphyletic with the inclusion of the Proteocephalidea, does not include the most derived cestodes; a result which has consistently been obtained with rDNA.  相似文献   

4.
The interrelationships of the tapeworms (Platyhelminthes: Cestoidea) were inferred by analysis of complete gene sequences (approximately 2,200 bp) of 18S small subunit ribosomal DNA (18S) and partial gene sequences (approximately 900 bp) of elongation factor-1alpha (Ef-1alpha). New collections were made of 23 species representing each of the 14 currently recognized orders of tapeworms, including the Amphilinidea, Gyrocotylidea, and the 12 orders of the Eucestoda. Sequences were determined directly from polymerase chain reaction (PCR) products by either manual or automated methods. Nucleotide sequences of platyhelminth species outside of the Cestoidea were obtained for rooting the resulting trees. The 18S sequences were aligned with reference to the secondary structural features of the gene and the Ef-1alpha sequences were aligned with reference to their corresponding amino acid residues. Significant length variation among taxa was observed in the V2, V4, and V7 variable regions of the 18S gene. Such positions where sequences could not be aligned confidently were excluded from the analyses. Third codon positions of the Ef-1alpha gene were inferred to be saturated at an ordinal level of comparison. In addition, a short (approximately 35 bp) intron region of the Ef-1alpha gene was found to be shared only among the eucestode taxa, with the exception of Spathebothrium simplex (Spathebothriidea), which lacked the intron. Complete alignments showing structural features of the genes and sites excluded from analysis are provided as appendices. The sequence data were partitioned into 7 data sets in order to examine the effects of analyses on different subsets of the data. Analyses were conducted on the 2 genes independently, different codon positions of Ef-1alpha, amino acid sequences of Ef-1alpha, and combinations thereof. All subsets of the data were analyzed under the criterion of maximum parsimony as well as minimum evolution using both maximum-likelihood estimated, and LogDet-transformed distances. Results varied among the different data partitions and methods of analysis. Nodes with strong character support, however, were consistently recovered, and a general pattern of evolution was observed. Monophyly of the Cestoidea (Amphilinidea + Gyrocotylidea + Eucestoda) and Eucestoda and the traditionally accepted positions of the Amphilinidea and Gyrocotylidea as sister lineages to the Eucestoda were supported. Within the Eucestoda, the Spathebothriidea was found to be the sister of all other eucestodes. The remaining orders generally formed a diphyletic pattern of evolution consisting of separate difossate and tetrafossate lineages. This pattern was not universally observed among the analyses, primarily because the trypanorhynch and diphyllidean taxa showed instability in their phylogenetic position. Additional relationships that showed high levels of nodal support included a sister relationship between the Pseudophyllidea and Haplobothriidea and a clade uniting the Cyclophyllidea, Nippotaeniidea, and Tetrabothriidea. The Tetraphyllidea, as currently defined, was found to be paraphyletic without the inclusion of the orders Proteocephalidea and, possibly, Lecanicephalidea. Ordinal status of a monophyletic Litobothriidea, currently classified within the Tetraphyllidea, was found to be supported from a phylogenetic perspective.  相似文献   

5.
利用DNA测序技术对台湾海峡部分鱼类绦虫的16S rRNA和18S rRNA基因片段序列进行了分析。使用PAUP4·0b10软件构建的进化树显示,目前关于绦虫二叶目、锥吻目、假叶目、盘头目和四叶目的划分是比较合理的,绦虫进化基本遵循了头节形态从简单到复杂的进化规律。报道了国内首次发现的双叶目绦虫,进化树结果初步支持了巨槽属和棘头属的划分。此外,结果也支持了前孔属绦虫的分类地位。但是,对耳槽属绦虫与阶室属绦虫的形态学划分与分子系统学相矛盾,利用16S rRNA基因对盘头目各种的进化树分析与形态学差异很大,这些问题都需要更多研究来进行深入分析。  相似文献   

6.
The addition of large subunit ribosomal DNA (lsrDNA) to small subunit ribosomal DNA (ssrDNA) has been shown to add resolution to phylogenies at various taxonomic levels for a diversity of phyla. We added nearly complete lsrDNA (4057-4593bp) sequences to ssrDNA (1940-2228bp) for 26 ingroup and 3 outgroup taxa in an attempt to provide an improved ordinal phylogeny for the Cestoda. Ten lsrDNA and seven ssrDNA sequences were generated from new taxa and 13 existing partial lsrDNA sequences were sequenced to completion. The majority of phylogenetic signal in the combined analysis came from lsrDNA (69.6% of parsimonious informative sites, as opposed to 30.4% obtained from ssrDNA), resulting in almost identical topologies for lsrDNA and lsr+ssrDNA (pairwise symmetric distance=6) in model-based analyses. Topology testing found trees based on partial lsrDNA (domains D1-D3)+ssrDNA and complete lsr+ssrDNA to differ significantly; the addition of lsrDNA domains D4-D12 had a significant effect on topology. Overall nodal support was greatest in the combined analysis and weakest for ssrDNA only. Our molecular phylogenies differed significantly from those based on morphology alone. Acetabulate lineages form a monophyletic group, with the Tetraphyllidea being paraphyletic. Support for the combined data was high for the following topology: (Litobothriidea (Lecanicephalidea (Rhinebothrium/Rhodobothrium (Clistobothrium (Pachybothrium(Acanthobothrium Proteocephalidea) (Mesocestoididae, Nippotaeniidea, Cyclophyllidea, Tetrabothriidea)))))); all genus names refer to tetraphyllidean lineages. Although the interrelationships among the four most derived taxa remain uncertain, overall ambiguity of the acetabulate interrelationships was reduced. The Pseudophyllidea were recovered as polyphyletic, with support for a sister-group relationship between Diphyllobothriidae and Haplobothriidea. The monophyly of the Trypanorhyncha was recovered for the first time based on molecular data. The positions of the Trypanorhyncha, Diphyllidea and "Bothriocephaliidea" in relation to other orders remains ambiguous. Higher congruence was found between trees based on model-based phylogenetic methods than with those constructed under the parsimony criterion. Although some uncertainties remain, the addition of lsrDNA D4-D12 has provided an overall more resolved and better supported cestode phylogeny, which further promotes the utility of complete lsrDNA as phylogenetic marker where ssrDNA alone proves inadequate.  相似文献   

7.
Interrelationships of the tapeworms (Platyhelminthes: Cestoda) were examined by use of small (SSU) and large (LSU) subunit ribosomal DNA sequences and morphological characters. Fifty new complete SSU sequences were added to 21 sequences previously determined, and 71 new LSU (D1-D3) sequences were determined for the complementary set of taxa representing each of the major lineages of cestodes as currently understood. New sequences were determined for three amphilinidean taxa, but were removed from both alignments due to their excessively high degree of divergence from other cestode sequences. A morphological character matrix coded for supraspecific taxa was constructed by the modification of matrices from recently published studies. Maximum-parsimony (MP) analyses were performed on the LSU, SSU, LSU+SSU, and morphological data partitions, and minimum-evolution (ME) analyses utilizing a general time reversible model of nucleotide substitution including estimates of among-site rate heterogeneity were performed on the molecular data partitions. Resulting topologies were rooted at the node separating the Gyrocotylidea from the Eucestoda. The LSU data were found to be more informative than the SSU data and were more consistent with inferences from morphology, although nodal support was generally weak for most basal nodes. One class of transitions was found to be saturated for comparisons between the most distantly related taxa (gyrocotylideans vs cyclophyllideans and tetrabothriideans). Differences in the topologies resulting from MP and ME analyses were not statistically significant. Nonstrobilate orders formed the basal lineages of trees resulting from analysis of LSU data and morphology. Difossate orders were basal to tetrafossate orders, the latter of which formed a strongly supported clade. A clade including the orders Cyclophyllidea, Nippotaeniidea, and Tetrabothriidea was supported by all data partitions and methods of analysis. Paraphyly of the orders Pseudophyllidea, Tetraphyllidea, and Trypanorhyncha was consistent among the molecular data partitions. Inferences are made regarding a monozoic (nonsegmented) origin of the Eucestoda as represented by the Caryophyllidea and for the evolution of the strobilate and acetabulate/tetrafossate conditions having evolved in a stepwise pattern.  相似文献   

8.
Vitellocytes have two important functions in cestode embryogenesis: (1) formation of hard egg-shell (e.g. Pseudophyllidea) or a delicate capsule (e.g. Cyclophyllidea), and (2) supplying nutritive reserves for the developing embryos. During evolution any of these two functions can be reduced or intensified in different taxa depending on the type of their embryonic development, degree of ovoviviparity and life cycles. Within the Cestoda, there are three monozoic taxa with only one set of genital organs: Amphilinidea, Gyrocotylidea and Caryophyllidea. In these monozoic taxa and some polyzoic groups with well developed vitellaria (e.g. Pseudophyllidea, Trypanorhyncha) a single oocyte [=germocyte] and a large number of vitellocytes (up to 30) are enclosed within a thick, hardened egg-shell, forming a type of eggs typical for the basic pattern of Neodermata. Only one type of egg-shell enclosures, the so-called 'heterogeneous shell-globule vesicle' is common for the above mentioned cestode taxa. Each membrane-bounded vesicle of mature vitellocytes contains numerous electron-dense shell globules embedded in a translucent matrix. In free-living Neoophora and Monogenea there are two types of vesicles with dense granules; the second is considered to be proteinaceous reserve material. Within the Cestoda, the numbers of vitellocytes per germocyte are reduced in those taxa forming eggs of the 'Cyclophyllidean-type' (e.g. Cyclophyllidea, Tetraphyllidea, Pseudophyllidea). This is particularly evident in Cyclophyllidea; for example, in vitellocytes of Hymenolepis diminuta (Hymenolepididae) there are numerous vitelline granules of homogeneously electron-dense material; in Catenotaenia pusilla (Catenotaeniidae) there are three large, homogenous vitelline vesicles, while in Inermicapsifer madagascariensis (Anoplocephalidae) there is only one large vitelline vesicle, containing homogeneously electron-dense material, which occupies most of the vitelline cell volume. In this respect the Tetraphyllidea and Proteocephalidea, in forming eggs that lack a hard egg-shell, hold an intermediate position. A comparison of interrelationships which exist among types of vitellocytes, vitellogenesis, types of embryonic development, ovoviviparity and life cycles indicates parallelisms and analogies in adaptation to the parasitic way of life in different groups of cestodes. Knowledge on cestode vitellogenesis may also have an important applied aspect. Vitellocytes, due to their high metabolic rate, represent a very sensitive target for analysing effect of anthelminthic drugs upon the egg formation (ovicidal effects); rapid degeneration of vitellocytes is usually accompanied by a cessation of egg production.  相似文献   

9.
Adult tetraphyllidean tapeworms (Platyhelminthes: Eucestoda) from the spiral intestines of 3 species of potamotrygonid stingrays (Paratrygon aiereba, Potamotrygon castexi, and Portamotrygon motoro) in the Madre de Dios river in Peru were found to host numerous cysts embedded in their parenchymal tissues. Histological sections of the cysts revealed the presence of a scolex bearing 4 suckers and an unarmed apical organ consistent with larval stages of both Cyclophyllidea and Proteocephalidea. To further elucidate their identities, partial 28S ribosomal DNA (rDNA) sequences were characterized from 3 cysts and 4 adult Rhinebothrium spp. 'host' worms and screened against all available cestode 28S rDNA data. Initial BLAST screening and subsequent alignment ruled out the possibility that the cysts were cyclophyllidean, and the cyst and adult sequences were thus aligned together with all available lecanicephalidean, litobothriidean, proteocephalidean, and tetraphyllidean sequences. Sequences from all 3 cysts were identical, and phylogenetic analysis clearly placed them among derived members of the Proteocephalidea, although no exact match was found. Sequences from the adult host worms formed 2 identical pairs and grouped together with other tetraphyllidean species from rays. These results are compared with records of hyperparasites of South American catfish cestodes. This is the first confirmed record of a proteocephalidean cestode parasitizing a tetraphyllidean cestode.  相似文献   

10.
Trilobites are a highly diverse group of extinct arthropods that persisted for nearly 300 million years. During that time, there was a profusion of morphological form, and they occupied a plethora of marine habitats. Their diversity, relative abundance, and complex morphology make them excellent candidates for phylogenetic analysis, and partly as a consequence they have been the subject of many cladistic studies. Although phylogenetic knowledge is certainly incomplete, our understanding of evolutionary patterns within the group has dramatically increased over the last 30 years. Moreover, trilobites have formed an important component of various studies of macroevolutionary processes. Here, we summarize the phylogenetic breadth of knowledge on the Trilobita, and present various hypotheses about phylogenetic patterns within the group, from the highest to the lowest taxonomic levels. Key topics we consider include the question of trilobite monophyly, the phylogenetic position of trilobites vis à vis extant arthropod groups, and inter- and intra-ordinal relationships.  相似文献   

11.
Novel molecular data are presented to resolve the long-standing issue of the non-monophyly of the elasmobranch-hosted tapeworm order Tetraphyllidea relative to the other acetabulate eucestode orders. Bayesian inference analyses of various combinations of full ssrDNA, and full or partial lsrDNA (D1–D3), sequence data, which included 134 species representing 97 genera across the 15 eucestode orders, were conducted. New ssrDNA data were generated for 82 species, partial lsrDNA data for 53 species, and full lsrDNA data for 29 species. The monophyly of each of the elasmobranch-hosted orders Cathetocephalidea, Litobothriidea, Lecanicephalidea and Rhinebothriidea was confirmed, as was the non-monophyly of the Tetraphyllidea. Two relatively stable groups of tetraphyllidean taxa emerged and are hereby designated as new orders. The Onchoproteocephalidea n. ord. is established to recognise the integrated nature of one undescribed and 10 described genera of hook-bearing tetraphyllideans, previously placed in the family Onchobothriidae, with the members of the order Proteocephalidea. The Phyllobothriidea n. ord. is established for a subset of 12 non-hooked genera characterised by scoleces bearing four bothridia each with an anterior accessory sucker; most parasitise sharks and have been assigned to the Phyllobothriidae at one time or another. Tentative ordinal placements are suggested for eight additional genera; placements for the remaining tetraphyllidean genera have not yet emerged. We propose that these 17 genera remain in the “Tetraphyllidea”. Among these, particularly labile across analyses were Anthobothrium, Megalonchos, Carpobothrium, Calliobothrium and Caulobothrium. The unique association of Chimaerocestus with holocephalans, rather than with elasmobranchs, appears to represent a host-switching event. Both of the non-elasmobranch hosted clades of acetabulate cestodes (i.e. Proteocephalidea and Cyclophyllidea and their kin) appear to have had their origins with elasmobranch cestodes. Across analyses, the sister group to the clade of “terrestrial” cestode orders was found to be an elasmobranch-hosted genus, as was the sister to the freshwater fish- and tetrapod-hosted Proteocephalidea. Whilst further data are required to resolve outstanding nomenclatural and phylogenetic issues, the present analyses contribute significantly to an understanding of the evolutionary radiation of the entire Cestoda. Clearly, elasmobranch tapeworms comprise the backbone of cestode phylogeny.  相似文献   

12.
Two ribosomal DNA sequences were used to infer phylogenetic relationships among the Eucestoda order Proteocephalidea. A 437 bp portion of the 16S mitochondrial and a 1149 bp 5' portion of the nuclear large sub-unit rRNA molecule were sequenced for 53 proteocephalidean cestodes (representing nine subfamilies and 22 genera) and for one outgroup species. Parsimony and distance-based analyses of the two databases, alone and combined, failed to support the monophyly of the two traditionally accepted families, of numerous subfamilies (with the exception of the Rudolphielliinae and Othinoscolescinae which were validated in our analysis) and of various genera, including the genus Nomimoscolex (Woodland), Ophiotaenia (La Rue) as well as the type genus Proteocephalus (Weinland). Palaearctic Proteocephalus species nevertheless constituted a well-defined clade. The two genes globally yielded compatible results; however, the nuclear ribosomal gene provided a better resolution of relations among Proteocephalidea.  相似文献   

13.
Partial sequencing of the 18S ribosomal RNA in nine parasitic and one free-living species of platyhelminth was used to test hypotheses on the phylogenetic relationships among the major groups. The eucestodes, amphilinideans, gyrocotylideans and monopisthocotylideans appeared as a monophyletic assemblage in a cladistic analysis of the data, with a very close association between the gyrocotylideans and monopisthocotylideans. The polyopisthocotylidean monogeneans were paraphyletic to the monopisthocotylideans. The digeneans appeared to be a sister group to the monogeneans and eucestodes, while the temnocephalidean was closely related to the free-living polyclad.  相似文献   

14.
Caryophyllidean cestodes (Platyhelminthes) represent an unusual group of tapeworms lacking serially repeated body parts that potentially diverged from the common ancestor of the Eucestoda prior to the evolution of segmentation. Here we evaluate the utility of two nuclear and two mitochondrial molecular markers (ssrDNA and lsrDNA, nad3 and cox1) for use in circumscribing generic boundaries and estimating interrelationships in the group. We show that these commonly employed markers do not contain sufficient signal to infer well-supported phylogenetic estimates due to substitution saturation. Moreover, we detected multiple trnK+nad3+trnS+trnW+cox1 haplotypes within individuals, indicating a history of gene exchange between the mitochondrial and nuclear genomes. The presence of such nuclear paralogs (i.e. numts), to our knowledge described here in cestodes for the first time, together with the results of phylogenetic, saturation and split-decomposition analyses all suggest that finding informative markers for estimating caryophyllidean evolution is unusually problematic in comparison to other major lineages of tapeworms.  相似文献   

15.
Early development of fertilized eggs is reviewed for the main groups within the phylum Platyhelminthes (Turbellaria, Temnocephaloidea, Monogenea, Digenea, Cestodaria and Cestoda). The Turbellaria show two different patterns of embryological development consequent on whether yolk material is contained within the ovum membrane (endolecithal) or whether yolk is added to the outside of the ovum (ectolecithal). In the parasitic groups, those that are oviparous or ovoviviparous produce shelled eggs of the ectolecithal type and, in addition, there are viviparous forms in which egg development shows variations and the amount of yolk, where present, is reduced. In every case examined, however, cleavage is of the spiral type. Within the Cestoda, clear distinction is made between those groups (orders) of worms which are oviparous as compared to those which are viviparous. It is suggested that oviparity is more primitive (ancestral) than viviparity based on adult morphology and on the evidence of life-cycle studies.The continued, post-oncospheral development of cestodes is described as is the ultrastructure of various representative cercoid larval forms. These include: the procercoid of Pseudophyllidea and Haplobothrioidea; the cercoid of Tetraphyllidea; and, within the Cyclophyllidea, the cercoscolex of the Dilepididae, the cysticercoid of the Hymenolepidae, and the cysticercus of the Taeniidae. During post-oncospheral development, in every case examined the posterior part of the developing larva, the cercomer, can be characterized by a microvillar tegument (at least during early development) whereas the more anterior larval body itself, destined to develop in the definitive host, develops microtriches. Modifications to the cercomer, and its microvilli, in the later stages of post-oncospheral development, occur particularly in the more advanced Cyclophyllidea such as the Taeniidae and in some Hymenolepididae.  相似文献   

16.
The basis for a preliminary analysis of the relationships within the monophyletic Diphyllidea is outlined. Information on morphological characters and their interpretation within a phylogenetic context are presented. A cladistic analysis at the species level was conducted based on a matrix of 21 morphological characters. Character polarity was determined by taxonomic outgroup analysis relative to the basal orders, Pseudophyllidea and Haplobothriidea. The phylogeny for the diphyllideans was found to be poorly resolved based on characters currently available for evaluation. Computer assisted cladistic analysis found three equally parsimonious trees with a consistency index of 0.54. The topology of these trees shows that Ditrachybothridium macrocephalum is the basal taxon and the putative sister group for species of Echinobothrium; Macrobothridium rhynchobati is grouped among species of Echinobothrium. If the classification is to be consistent with this tree, M. rhynchobati should be included in the genus Echinobothrium. This observation should be carefully examined, considering the relative paucity of useful morphological characters currently available for this group.  相似文献   

17.
The brain architecture in four species of tapeworms from the order Trypanorhyncha has been studied. In all species, the brain consists of paired anterior and lateral lobes, and an unpaired central lobe. The anterior lobes connect by dorsal and ventral semicircular commissures; the central and lateral lobes connect by a median and an X-shaped crisscross commissure. In the center of the brain, five well-developed compact neuropils are present. The brain occupies a medial position in the scolex pars bothrialis. The ventral excretory vessels are situated outside the lateral lobes of the brain; the dorsal excretory vessels are located inside the brain and dorsal to the median commissure. The brain gives rize four anterior proboscis nerves and four posterior bulbar nerves with myelinated giant axons (GAs). The cell bodies of the GAs are located within the X-commissure and in the bulbar nerves. Highly developed serotonergic neuropils are present in the anterior and lateral lobes; numerous 5-HT neurons are found in the brain lobes including the central unpaired lobe. The X-cross commissure consists of the α-tub-immunoreactive and 5-HT-IR neurites. Eight ultrastructural types of neurons were found in the brain of the three species investigated. In addition, different types of synapses were present in the neuropils. Glial cells ensheath the brain lobes, the neuropils, the GAs, and the bulbar nerves. Glia cell processes form complex branching patterns of thin cytoplasmic sheets sandwiched between adjacent neural processes and filling the space between neurons. Multilayer myelin-like envelopes and a mesaxon-like structure have been found in Trypanorhyncha nervous system. We compared the brain architecture of Trypanorhyncha with that of an early basal cestode taxon, that is, Diphyllobothriidea, and present a hypothesis about the homology of the anterior brain lobes in order Trypanorhyncha; and the lateral lobes and median commissure are homologous brain structures within Eucestoda.  相似文献   

18.
Spermiogenesis and sperm ultrastructure of adult Cyathocephalus truncatus, a member of presumably basal group of "true" cestodes (Eucestoda), have been examined for the first time by using transmission electron microscopy. The process of sperm formation corresponds in basic pattern to that of the Pseudophyllidea. In addition, the 2 pairs of electron-dense attachment zones are present in median cytoplasmic process of C. truncatus. However, mature spermatozoa of C. truncatus differ significantly from those of the pseudophyllideans, especially in the morphology of the proximal and distal spermatozoon extremities. The proximal extremity of the mature spermatozoon lacks a crested body, which is present in more derived cestodes and some pseudophyllideans. The distal end of the mature spermatozoa exhibits different morphology in the gametes from testes and those from receptaculum seminis. New for the Eucestoda is a finding that a lateral cytoplasmic extension creates the distal end of the spermatozoa from testes, resembling sperm of some Monogenea and Digenea. In contrast, the distal extremity of the spermatozoa from receptaculum seminis contains only a nucleus. Despite the above-mentioned peculiarities, the ultrastructural data on sperm/spermiogenesis suggest close relationships of the Spathebothriidea and Pseudophyllidea.  相似文献   

19.
The polyphyletic nature of the tapeworm order Tetraphyllidea Carus, 1863 is addressed in part with the establishment of the new order Rhinebothriidea for a subset of the taxa formerly comprising the phyllobothriid subfamily Rhinebothriinae (Platyhelminthes: Eucestoda). Support for the order comes from Bayesian, maximum likelihood, and parsimony analyses of complete ssrDNA and partial (D1-D3) lsrDNA sequence data for 58 cestode species. These data consisted of novel data generated for 40 species in 15 genera of candidate rhinebothriines and the cathetocephalidean species Sanguilevator yearsleyi as well as comparable data taken from GenBank for an additional 18 cestode species in 17 genera. In total, the species analyzed consisted of two Cathetocephalidea, two Litobothriidea, two Lecanicephalidea, three Proteocephalidea, and 49 Tetraphyllidea. The tetraphyllideans consisted of three Onchobothriidae, three Serendipidae, and 43 Phyllobothriidae (one Thysanocephalinae, one Echeneibothriinae, five Phyllobothriinae, 35 candidate Rhinebothriinae and the poorly known Spongiobothrium). This work suggests that some elements of current membership in the group are in need of revision. For example, while inclusion of the echeneibothriine genus Echeneibothrium and the phyllobothriine genera Rhodobothrium and Anthocephalum, and also Spongiobothrium, in the Rhinebothriidea is supported, inclusion of Duplicibothrium and Caulobothrium in the new order is not. Histological sections and scanning electron microscopy of selected members of the study group suggest that the presence of bothridial stalks may serve as an effective morphological feature to characterise the order. The group is restricted to elasmobranchs, and appears to have a particular affinity for Myliobatiformes. The new order includes at least 13 genera. Intraordinal relationships were determined to be insufficiently stable to justify the formal reorganization of rhinebothriidean families at this time.  相似文献   

20.
The tapeworm Archigetes sieboldi Leuckart, 1878 (Platyhelminthes: Cestoda: Caryophyllidea) has been cited as a likely representative of the "protocestode" condition, owing to its lack of segmentation and ability to attain sexual maturity in the invertebrate host (aquatic oligochaetes). The idea has been variously amplified or rejected in the literature, although the actual phylogenetic position of the species has not been investigated until now. New collections of Archigetes sp. from both its vertebrate and invertebrate hosts provided the opportunity to estimate its phylogenetic position with the use of molecular systematics, while prompting new analyses aimed at assessing the early diversification of the Cestoda. Additional collections representing the Amphilinidea, Caryophyllidea, and Gyrocotylidea were combined with published gene sequences to construct data sets of complete 18S (110 taxa) and partial (D1-D3) 28S (107 taxa) rDNA sequences, including 8 neodermatan outgroup taxa. Estimates resulting from Bayesian inference, maximum likelihood, and maximum parsimony analyses of the separate and combined data sets supported a derived position of the genus within the Caryophyllidea, and thus reject the idea that Archigetes sp. may exemplify a "primitive" condition. Topological constraint analyses rejected the hypothesis that Archigetes represents the most basal lineage of the Eucestoda, but did not rule out that it could represent the earliest branching taxon of the Caryophyllidea. In all analyses, the Eucestoda were monophyletic and supported basal positions of the nonsegmented Caryophyllidea and Spathebothriidea relative to other major lineages of the Eucestoda, implying that segmentation is a derived feature of the common ancestor of the di- and tetrafossate eucestodes. However, constraint analyses could not provide unequivocal evidence as to the precise branching patterns of the cestodarian, spathebothriidean, and caryophyllidean lineages. Phylogenetic analyses favor the interpretation that sexual maturity of Archigetes sp. in the invertebrate host, and similar examples in members of the Spathebothriidea, are the result of progenesis and have little if any bearing on understanding the protocestode condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号