首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geostatistical techniques were used to assess the spatial patterns of spores of arbuscular mycorrhizal fungi (AMF) in soils from two contrasting plant communities: a salt marsh containing only arbuscular mycorrhizal and non-mycorrhizal plants in a distinct clumped distribution pattern and a maquis with different types of mycorrhiza where most plants were relatively randomly distributed. Also evaluated was the relationship between the spatial distribution of spores and AM plant distribution and soil properties. A nested sampling scheme was applied in both sites with sample cores taken from nested grids. Spores of AMF and soil characteristics (organic matter and moisture) were quantified in each core, and core sample location was related to plant location. Semivariograms for spore density indicated strong spatial autocorrelation and a patchy distribution within both sites for all AM fungal genera found. However, the patch size differed between the two plant communities and AM fungal genera. In the salt marsh, AM fungal spore distribution was correlated with distance to AM plants and projected stand area of AM plants. In maquis, spatial AM fungal spore distribution was correlated with organic matter. These results suggest that spore distribution of AMF varied between the two plant communities according to plant distribution and soil properties.  相似文献   

2.
Sequencing of the 5' end of the large ribosomal subunit (LSU rDNA) and quantitative polymerase chain reaction (qPCR) were combined to assess the impact of four annual Medicago species (Medicago laciniata, Medicago murex, Medicago polymorpha and Medicago truncatula) on the genetic diversity of arbuscular mycorrhizal (AM) fungi, and on the relative abundance of representative AM fungal genotypes, in a silty-thin clay soil (Mas d'Imbert, France). Two hundred and forty-six Glomeromycete LSU rDNA sequences from the four plant species and the bulk soil were analysed. The high bootstrap values of the phylogenetic tree obtained allowed the delineation of 12 operational taxonomic units (OTUs), all belonging to Glomus. Specific primers targeting Glomeromycetes and major OTUs were applied to quantify their abundance by qPCR. Glomeromycetes and targeted OTUs were significantly more abundant in the root tissues than in the bulk soil, and the frequencies of three of them differed significantly in the root tissues of the different plant species. These differences indicate that, despite the absence of strict host specificity in mycorrhizal symbiosis, there was a preferential association between some AM fungal and plant genotypes.  相似文献   

3.
While several recent studies have described changes in microbial communities associated with exotic plant invasion, how arbuscular mycorrhizal fungi (AMF) communities respond to exotic plant invasion is not well known, despite the salient role of this group in plant interactions. Here, we use molecular methods (terminal restriction fragment length polymorphism analyses based on the large subunit of the rRNA gene) to examine AMF community structure in sites dominated by the invasive mycorrhizal forb, Centaurea maculosa Lam. (spotted knapweed), and in adjacent native grassland sites. Our results indicate that significant AMF community alteration occurs following C. maculosa invasion. Moreover, a significant reduction in the number of restriction fragment sizes was found for samples collected in C. maculosa-dominated areas, suggesting reduced AMF diversity. Extraradical hyphal lengths exhibited a significant, on average 24%, reduction in C. maculosa-versus native grass-dominated sites. As both AMF community composition and abundance were altered by C.maculosa invasion, these data are strongly suggestive of potential impacts on AMF-mediated ecosystem processes. Given that the composition of AMF communities has the potential to differentially influence different plant species, our results may have important implications for site restoration after weed invasion.  相似文献   

4.
Growth and enzymatic activities of extraradical mycelia (ERM) of native mycorrhizal symbionts associated with three orchid species, Dactylorhiza fuchsii, D. majalis and Platanthera bifolia, were studied. ERM extracted from the mycorrhizosphere of these species showed features typical for fungi that form orchid mycorrhiza. In the first pot experiment, three different treatments were applied on tubers of D. fuchsii transplanted from a natural site: control (no specific treatment), reinoculated (surface-sterilized tubers reinoculated with mycorrhizal fungi-colonised roots), and benomyl (nonsterilized tubers treated with fungicide). However, no significant differences in ERM growth and intensity of root mycorrhizal colonisation at harvest were observed among these treatments. ERM associated with reinoculated D. fuchsii plants showed significantly higher alkaline phosphatase (ALP) enzymatic activity at week 36 than at week 24, but no differences were observed for NADH diaphorase activity. Benomyl application significantly reduced ALP activity in comparison with reinoculated plants at week 36. In the second experiment, plants of all three species were either untreated (control), or repeatedly treated with benomyl. Similarly to the results of the first experiment, benomyl application did not reduce the ERM growth of mycorrhizal symbionts associated with D. majalis and D. fuchsii. The low ERM growth associated with benomyl-treated P. bifolia was probably caused by poor root system development in this treatment. Significantly higher mycorrhizal colonisation was found for D. fuchsii compared to P. bifolia in control treatments at the end of cultivation. The ERM of native symbionts of the three orchid species studied seemed to have a different growth pattern over time and responded differently to fungicide application.  相似文献   

5.
Symbiotic associations between plants and arbuscular mycorrhizal (AM) fungi are ubiquitous in many herbaceous plant communities and can have large effects on these communities and ecosystem processes. The extent of species-specificity between these plant and fungal symbionts in nature is poorly known, yet reciprocal effects of the composition of plant and soil microbe communities is an important assumption of recent theoretical models of plant community structure. In grassland ecosystems, host plant species may have an important role in determining development and sporulation of AM fungi and patterns of fungal species composition and diversity. In this study, the effects of five different host plant species [Poa pratensis L., Sporobolus heterolepis (A. Gray) A. Gray, Panicum virgatum L., Baptisia bracteata Muhl. ex Ell., Solidago missouriensis Nutt.] on spore communities of AM fungi in tallgrass prairie were examined. Spore abundances and species composition of fungal communities of soil samples collected from patches within tallgrass prairie were significantly influenced by the host plant species that dominated the patch. The AM fungal spore community associated with B. bracteata showed the highest species diversity and the fungi associated with Pa. virgatum showed the lowest diversity. Results from sorghum trap cultures using soil collected from under different host plant species showed differential sporulations of AM fungal species. In addition, a greenhouse study was conducted in which different host plant species were grown in similar tallgrass prairie soil. After 4 months of growth, AM fungal species composition was significantly different beneath each host species. These results strongly suggest that AM fungi show some degree of host-specificity and are not randomly distributed in tallgrass prairie. The demonstration that host plant species composition influences AM fungal species composition provides support for current feedback models predicting strong regulatory effects of soil communities on plant community structure. Differential responses of AM fungi to host plant species may also play an important role in the regulation of species composition and diversity in AM fungal communities. Received: 29 January 1999 / Accepted: 20 October 1999  相似文献   

6.
Bacteria associated with arbuscular mycorrhizal (AM) fungal spores may play functional roles in interactions between AM fungi, plant hosts and defence against plant pathogens. To study AM fungal spore-associated bacteria (AMB) with regard to diversity, source effects (AM fungal species, plant host) and antagonistic properties, we isolated AMB from surface-decontaminated spores of Glomus intraradices and Glomus mosseae extracted from field rhizospheres of Festuca ovina and Leucanthemum vulgare. Analysis of 385 AMB was carried out by fatty acid methyl ester (FAME) profile analysis, and some also identified using 16S rRNA gene sequence analysis. The AMB were tested for capacity to inhibit growth in vitro of Rhizoctonia solani and production of fluorescent siderophores. Half of the AMB isolates could be identified to species (similarity index 0.6) within 16 genera and 36 species. AMB were most abundant in the genera Arthrobacter and Pseudomonas and in a cluster of unidentified isolates related to Stenotrophomonas. The AMB composition was affected by AM fungal species and to some extent by plant species. The occurrence of antagonistic isolates depended on AM fungal species, but not plant host, and originated from G. intraradices spores. AM fungal spores appear to host certain sets of AMB, of which some can contribute to resistance by AM fungi against plant pathogens.  相似文献   

7.
Extraradical hyphae (ERH) of arbuscular mycorrhizal fungi (AMF) extend from plant roots into the soil environment and interact with soil microbial communities. Evidence of positive and negative interactions between AMF and soil bacteria point to functionally important ERH-associated communities. To characterize communities associated with ERH and test controls on their establishment and composition, we utilized an in-growth core system containing a live soil–sand mixture that allowed manual extraction of ERH for 16S rRNA gene amplicon profiling. Across experiments and soils, consistent enrichment of members of the Betaproteobacteriales, Myxococcales, Fibrobacterales, Cytophagales, Chloroflexales, and Cellvibrionales was observed on ERH samples, while variation among samples from different soils was observed primarily at lower taxonomic ranks. The ERH-associated community was conserved between two fungal species assayed, Glomus versiforme and Rhizophagus irregularis, though R. irregularis exerted a stronger selection and showed greater enrichment for taxa in the Alphaproteobacteria and Gammaproteobacteria. A distinct community established within 14 days of hyphal access to the soil, while temporal patterns of establishment and turnover varied between taxonomic groups. Identification of a conserved ERH-associated community is consistent with the concept of an AMF microbiome and can aid the characterization of facilitative and antagonistic interactions influencing the plant-fungal symbiosis.Subject terms: Symbiosis, Microbiome  相似文献   

8.
As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.  相似文献   

9.
Attachment of certain bacteria to living arbuscular mycorrhizal fungal extraradical hyphae may be an important prerequisite for interactions between these microorganisms, with implications for nutrient supply and plant health. The attachment of five different strains of gfp-tagged soil bacteria (Paenibacillus brasilensis PB177 (pnf8), Bacillus cereus VA1 (pnf8), Pseudomonas fluorescens SBW25 :: gfp/lux, Arthrobacter chlorophenolicus A6G, and Paenibacillus peoriae BD62 (pnf8)) to vital and nonvital extraradical hyphae of the arbuscular mycorrhizal fungi Glomus sp. MUCL 43205 and Glomus intraradices MUCL 43194 was examined. Arthrobacter chlorophenolicus did not attach to hyphae, whereas the other bacterial strains did to a varying degree. Only P. brasilensis showed greater attachment to vital hyphae than nonvital hyphae of both Glomus species tested. Pseudomonas fluorescens showed a higher attachment to vital compared with nonvital Glomus sp. MUCL 43205 hyphae, whereas this relationship was opposite for attachment to G. intraradices. Both B. cereus and P. peoriae showed higher attachment to nonvital hyphae. This study provides novel evidence that under laboratory conditions soil bacteria differ in their ability to colonize vital and nonvital hyphae and that this can also be influenced by the arbuscular mycorrhizal fungal species involved. The significance of bacterial attachment to mycorrhizal fungal extraradical hyphae is discussed.  相似文献   

10.
采用Illumina MiSeq高通量测序技术,研究江西鄱阳湖周边平原岗地的泡桐纯林及桐-药复合经营模式(泡桐-玉竹、泡桐-麦冬和泡桐-射干)下泡桐丛枝菌根真菌(arbuscular mycorrhizae fungi, AMF)群落结构特征。研究发现,泡桐AMF群落主要由球囊霉科、巨孢囊霉科、无梗囊霉科和多孢囊霉科组成,其中球囊霉科真菌占绝对优势,但不同科的相对丰度在不同经营模式下仍存在差异。与泡桐纯林相比,桐-药复合经营模式会降低泡桐菌根侵染率及AMF群落多样性。只有泡桐-射干经营模式中的泡桐含有多孢囊霉科真菌,且相对多度占2.73%。研究结果表明桐-药复合经营模式下中药材种类的差异会不同程度地改变泡桐AMF的群落结构。这为进一步研究桐-药复合经营模式下泡桐AMF的生态功能和资源利用提供了科学依据。  相似文献   

11.
Symbiotic arbuscular mycorrhizal fungi (AMF) have been shown to influence both the diversity and productivity of grassland plant communities. These effects have been postulated to depend on the differential effects of individual mycorrhizal taxa on different plant species; however, so far there are few detailed studies of the dynamics of AMF colonization of different plant species. In this study, we characterized the communities of AMF colonizing the roots of two plant species, Prunella vulgaris and Antennaria dioica, in a Swedish seminatural grassland at different times of the year. The AMF small subunit rRNA genes were subjected to PCR, cloning, sequencing, and phylogenetic analysis. Nineteen discrete sequence types belonging to Glomus groups A and B and to the genus Acaulospora were distinguished. No significant seasonal changes in the species compositions of the AMF communities as a whole were observed. However, the two plant species hosted significantly different AMF communities. P. vulgaris hosted a rich AMF community throughout the entire growing season. The presence of AMF in A. dioica decreased dramatically in autumn, while an increased presence of Ascomycetes species was detected.  相似文献   

12.
13.
Arbuscular mycorrhizal fungi (AMF) play important key roles in the soil ecosystems as they link plants to the root-inaccessible part of soil. The aims of this study were to investigate which environmental factors influence the spatial and temporal structuring of AMF communities associated to Picconia azorica in two Azorean islands (Terceira and São Miguel islands), and investigate the seasonal variation in AMF communities between the two islands. Communities of AMF associated with P. azorica in native forest of two Azorean islands (Terceira and São Miguel) were characterised by spore morphology or molecular analysis. Forty-five AMF spore morphotypes were detected from the four fragments of P. azorica forest representing nine families of AMF. Acaulosporaceae (14) and Glomeraceae (9) were the most abundant families. AMF density and root colonisation varied significantly between islands and sampling sites. Root colonisation and spore density exhibited temporal patterns, which peaked in spring and were higher in Terceira than in São Miguel. The relative contribution of environmental factors showed that factors such as elevation, relative air humidity, soil pH, and soil available P, K, and Mg influenced AMF spore production and root colonisation. Different sporulation patterns exhibited by the members of the commonest families suggested different life strategies. Adaptation to a particular climatic and soil condition and host phenology may explain seasonal differences in sporulation patterns. Cohorts of AMF associated to P. azorica are shaped by regional processes including environmental filters such as soil properties and natural disturbance.  相似文献   

14.
The aim of the study was to assess how the extraradical mycelium (ERM) of arbuscular mycorrhizal (AM) fungi contributes to Cd immobilization in the rhizosphere. Substrates prepared by cultivation of AM and non-mycorrhizal tobacco (Nicotiana tabacum L.) in quartz sand in two experiments were amended with Cd in a range of concentrations and Cd immobilization was assessed as Cd toxicity using root growth tests. Split-root plants, inoculated at one part of the root system, and hyphal compartments colonized by ERM only were used to separate the effects of ERM from plant-mediated effects of mycorrhiza and from the effects of roots. AM decreased Cd toxicity in the substrates obtained by 12 weeks of cultivation (Experiment 1), while the effect was less clear after 8 weeks (Experiment 2). No indication was found for an involvement of plant-mediated effects; in contrast, the effect of ERM could be clearly demonstrated. Lower Cd toxicity in the substrates colonized by ERM was related to ERM-induced alkalinization, but not directly to ERM density. It is concluded that the ERM of AM fungi may enhance Cd immobilisation in soil not only due to its high Cd sorption capacity but also by its activity.  相似文献   

15.
16.
Land‐use changes and forest fragmentation have strong impact on biodiversity. However, little is known about the influence of new landscape configurations on arbuscular mycorrhizal fungal (AMF) community composition. We used 454 pyrosequencing to assess AMF diversity in plant roots from a fragmented forest. We detected 59 virtual taxa (VT; phylogenetically defined operational taxonomic units) of AMF – including 10 new VT – in the roots of Euphorbia acerensis. AMF communities were mainly composed of members of family Glomeraceae and were similar throughout the fragmented landscape, despite variation in forest fragment size (i.e. small, medium and large) and isolation (i.e. varying pairwise distances). AMF communities in forest fragments were phylogenetically clustered compared with the global, but not regional and local AMF taxon pools. This indicates that non‐random community assembly processes possibly related to dispersal limitation at a large scale, rather than habitat filtering or biotic interactions, may be important in structuring the AMF communities. In this system, forest fragmentation did not appear to influence AMF community composition in the roots of the ruderal plant. Whether this is true for AMF communities in soil and the roots of other ecological groups of host plants or in other habitats deserves further study.  相似文献   

17.
Yang  Haishui  Koide  Roger T.  Zhang  Qian 《Plant and Soil》2016,399(1-2):373-387
Plant and Soil - Our aim was to investigate the effects of short-term waterlogging in shaping communities of the obligately aerobic AMF in roots of Populus deltoides. AMF community in populus roots...  相似文献   

18.
Both competition and environmental filtering are expected to influence the community structure of microbes, but there are few tests of the relative importance of these processes because trait data on these organisms is often difficult to obtain. Using phylogenetic and functional trait information, we tested whether arbuscular mycorrhizal (AM) fungal community composition in an old field was influenced by competitive exclusion and/or environmental filtering. Communities at the site were dominated by species from the most speciose family of AM fungi, the Glomeraceae, though species from two other lineages, the Acaulosporaceae and Gigasporaceae were also found. Despite the dominance of species from a single family, AM fungal species most frequently co-existed when they were distantly related and when they differed in the ability to colonize root space on host plants. The ability of AM fungal species to colonize soil did not influence co-existence. These results suggest that competition between closely related and functionally similar species for space on plant roots influences community assembly. Nevertheless, in a substantial minority of cases communities were phylogenetically clustered, indicating that closely related species could also co-occur, as would be expected if i) the environment restricted community membership to single functional type or ii) competition among functionally similar species was weak. Our results therefore also suggest that competition for niche space between closely related fungi is not the sole influence of mycorrhizal community structure in field situations, but may be of greater relative importance than other ecological mechanisms.  相似文献   

19.
摘要:【目的】基础PCR的各种分子技术已广泛地应用于丛枝菌根真菌(AMF)的群落研究。为探讨不同PCR引物对丛枝菌根真菌群落的特异性差异扩增。【方法】本研究选取4对AMF特异性引物(NS31-AM1,AML1-AML2,NS31-AML2和SSUmCf-LSUmBr),通过PCR、克隆及测序技术对AMF的多样性及群落结构进行了分析比较。【结果】不同引物对AMF的扩增特异性及覆盖度均有显著性差异,且不同引物得到的AMF群落结构也存在显著性差异。SSUmCf-LSUmBr的扩增特异性及覆盖度最高,NS31-AML2和NS31-AM1次之,而AML1-AML2则相对较差。【结论】NS31-AML2的扩增区段能很好地与越来越被认可的AMF VT分类数据库(http://maarjam.botany.ut.ee)相匹配,且扩增片段长度也适合于目前的高通量测序技术。基于此,本文推荐NS31-AML2为AMF群落研究中的首选引物。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号