首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Analyses of zooplankton fatty acid (FA) composition in laboratory experiments and samples collected from lakes in New Zealand spanning a wide gradient of productivity were used to assess the extent to which FAs might infer their diet. We used the cladocerans, Daphnia and Ceriodaphnia, and the calanoid copepod, Boeckella, as test organisms, and monocultures of cryptophytes, chlorophytes and cyanobacteria as food. Based on reproductive success, cryptophytes were the highest food quality, chlorophytes were intermediate and cyanobacteria the poorest. 2. Several FA groups were highly correlated between zooplankton and their diets. They were monounsaturated fatty acids (MUFAs), and ω3 and ω6 polyunsaturated fatty acids (PUFAs) for cladocerans, and saturated fatty acids (SAFAs) and ω3 PUFAs for copepods. Several FAs varied significantly less in the zooplankton than in their monoculture diets, e.g. MUFAs in Daphnia, and ω3 and ω6 PUFAs in Ceriodaphnia, despite clear dietary dependency for these FAs. 3. Zooplankton collected from lakes in New Zealand had more eicosapentaenoic acid (EPA) (Daphnia), more highly unsaturated ω3 and ω6 FAs (C20, C22; Daphnia, Ceriodaphnia, Boeckella) and less ω3 C18 PUFAs (Daphnia, Ceriodaphnia, Boeckella) and ω6 C18 PUFAs (Daphnia, Ceriodaphnia) than measured in the same species reared on phytoplankton in the laboratory. 4. Analyses of FA composition of seston and freshwater zooplankton globally showed that, in general, zooplankton had a significantly higher proportion of arachidonic acid and EPA than seston, and copepods also had a higher percentage of docosahexaenoic acid than seston. 5. These results suggest that zooplankton selectively incorporate the most physiologically important FAs. This could be a consequence of preferential assimilation, selective feeding on more nutritious cells or locating and feeding within higher food quality food patches.  相似文献   

2.
The first distribution, biomass and toxicity study of a newly established bloom of the colonial cyanobacteria Microcystis aeruginosa was conducted on October 15, 2003 in the upper San Francisco Bay Estuary. Microcystis aeruginosa was widely distributed throughout 180 km of waterways in the upper San Francisco Bay Estuary from freshwater to brackish water environments and contained hepatotoxic microcystins at all stations. Other cyanobacteria toxins were absent or only present in trace amounts. The composition of the microcystins among stations was similar and dominated by demethyl microcystin-LR followed by microcystin-LR. In situ toxicity computed for the >75 m cell diameter size fraction was well below the 1 g l–1 advisory level set by the World Health Organization for water quality, but the toxicity of the full population is unknown. The toxicity may have been greater earlier in the year when biomass was visibly higher. Toxicity was highest at low water temperature, water transparency and salinity. Microcystins from the bloom entered the food web and were present in both total zooplankton and clam tissue. Initial laboratory feeding tests suggested the cyanobacteria was not consumed by the adult copepod Eurytemora affinis, an important fishery food source in the estuary.  相似文献   

3.
The patterns of spatial and temporal shifts in bloom‐forming cyanobacteria and the driving factors for these patterns were determined by analyzing the distribution of these cyanobacteria in Lake Chaohu using data from satellite images and field samples collected during 2012 and 2013. The cyanobacterial blooms primarily occupied the western region of Lake Chaohu, and the direction and speed of the prevailing wind determined the spatial distribution of these blooms. The cyanobacteria in Lake Chaohu were dominated by species of Microcystis and Anabaena. Microcystis reached its peak in June, and Anabaena had peaks in May and November, with an overall biomass that was higher than that of Microcystis. Microcystis generally occupied the western region of the lake in summer, whereas Anabaena dominated in other regions and seasons. Temperature may be responsible for these seasonal shifts. However, total phosphorus (TP), pH, temperature, turbidity and nitrate/nitrite nitrogen determined the coexistence of the two genera in different regions in summer. TP was correlated with Microcystis dominance, and pH and light availability were correlated with Anabaena dominance. Our results contribute to the understanding of shifts in bloom‐forming cyanobacteria and are important for the control of cyanobacterial blooms.  相似文献   

4.
Zooplankton may at times graze cyanobacteria. However, their top-down effects are considered to be low, particularly in tropical regions dominated by small-size grazers that may be unable to consume efficiently filamentous or colonial species. Recently, cyanobacteria blooms were reported in the Senegal River hydrosystem. We conducted feeding experiments to assess the ability of copepods (Pseudodiaptomus hessei and Mesocyclops ogunnus), cladocerans (Moina micrura and Ceriodaphnia cornuta), and rotifers (Brachionus angularis, B. falcatus, and Keratella sp.) to control different cyanobacteria (Cylindrospermopsis raciborskii, Anabaena solitaria, A. flos-aquae, and Microcystis aeruginosa). None of the zooplankton species ingested M. aeruginosa. Mesocyclops ogunnus did not consume any of the cyanobacteria. Both cladocerans consumed the smallest filaments of cyanobacteria, whereas all the rotifers and P. hessei consumed a broader food-size spectrum. The functional feeding responses suggest that the concentration and size of the filaments are not the sole criteria for food consumption. The high zooplankton community grazing rates, estimated by applying the clearance rates measured in the laboratory to the in situ zooplankton abundance, indicate that grazing by zooplankton potentially constitutes an important controlling factor for the filamentous cyanobacteria in the tropics.  相似文献   

5.
Cyanobacterial blooms are found in many freshwater ecosystems around the world, but the effect of environmental factors on their growth and the proportion of species still require more investigation. In this study, the physiological responses of bloom‐forming cyanobacteria M icrocystis aeruginosa FACHB912, M icrocystis flos‐aquae FACHB1028 and P seudanabaena sp. FACHB1282 to iron deficiency were investigated. Their specific growth rates were found to decrease as the available iron concentration decreased. At low available iron concentrations of 1 × 10?7 M (pFe 21.3) and 5 × 10?8 M (pFe 21.6), M . aeruginosa had the lowest specific growth rate among three studied species. The cell sizes of M . flos‐aquae and Pseudanabaena sp. were significantly smaller under the lowest iron concentration. The chlorophyll a content of the three species decreased at the lowest iron concentration. The maximal relative electron transport rate, photosynthetic efficiency, and light‐saturation parameter of M . aeruginosa were lower than the other two cyanobacteria at pFe 21.3. Therefore, M . aeruginosa was the least able to adapt to iron deficiency. Under iron deficiency, the functional absorption cross‐section of PSII and electron transport rate on the acceptor side of PSII decreased in M . aeruginosa, while the connectivity factor between individual photosynthetic units increased in M . flos‐aquae, and the electron transport rate on the acceptor side of PSII and between PSII and PSI decreased in P seudanabaena sp. The ability to store iron was highest in M . flos‐aquae, followed by P seudanabaena sp. and M . aeruginosa. Thus, these results provide necessary information for detecting the role of iron in the succession of cyanobacterial species in Lake Taihu, the third largest freshwater lake in China, because all three species were isolated from this lake.  相似文献   

6.
Seasonality of burden and prevalence of phototrophic (microalgal) epibionts Characidiopsis ellipsoidea, Colacium vesiculosum and Colacium sp. on dominating crustacean zooplankton (Daphnia longispina, Cyclops vicinus and Mesocyclops leuckarti) were studied in a small reservoir Bugach with cyanobacterial bloom. The correlations between the seasonal dynamics of prevalence and the dynamics of others biotic and abiotic factors were calculated. The conclusions were as follows. The substrate species, that determined the development of the epibionts on the three studied crustacean zooplankton, was Daphnia longispina (Cladocera). Despite intensive epibiotic infestation of crustacean zooplankton, epibionts did not appear to have caused non-consumptive mortality of the crustacean zooplankton. But they could have contributed to the Daphnia summer decline by increasing mortality due to its consumption by planktivorous fishes. The phototropic epibionts may successfully coexist with cyanobacterial bloom. The possible role of the epibionts in changing nutrient fluxes in pelagic food web is discussed.  相似文献   

7.
Small-bodied cladocerans and cyclopoid copepods are becoming increasingly dominant over large crustacean zooplankton in eutrophic waters where they often coexist with cyanobacterial blooms. However, relatively little is known about their algal diet preferences. We studied grazing selectivity of small crustaceans (the cyclopoid copepods Mesocyclops leuckarti, Thermocyclops oithonoides, Cyclops kolensis, and the cladocerans Daphnia cucullata, Chydorus sphaericus, Bosmina spp.) by liquid chromatographic analyses of phytoplankton marker pigments in the shallow, highly eutrophic Lake Võrtsjärv (Estonia) during a seasonal cycle. Copepods (mainly C. kolensis) preferably consumed cryptophytes (identified by the marker pigment alloxanthin in gut contents) during colder periods, while they preferred small non-filamentous diatoms and green algae (identified mainly by diatoxanthin and lutein, respectively) from May to September. All studied cladoceran species showed highest selectivity towards colonial cyanobacteria (identified by canthaxanthin). For small C. sphaericus, commonly occuring in the pelagic zone of eutrophic lakes, colonial cyanobacteria can be their major food source, supporting their coexistence with cyanobacterial blooms. Pigments characteristic of filamentous cyanobacteria and diatoms (zeaxanthin and fucoxanthin, respectively), algae dominating in Võrtsjärv, were also found in the grazers’ diet but were generally avoided by the crustaceans commonly dominating the zooplankton assemblage. Together these results suggest that the co-occurring small-bodied cyclopoid and cladoceran species have markedly different algal diets and that the cladocera represent the main trophic link transferring cyanobacterial carbon to the food web in a highly eutrophic lake.  相似文献   

8.
9.
The seasonal dynamics of phyto- and zooplankton, as well as their trophic interactions, were studied for the shallow freshwater hypereutrophic Curonian Lagoon in the Baltic Sea in 2007–2009. The water temperature and high concentrations of nutrients were the limiting factors in the seasonal dynamics of the studied communities. Decreases in the B z /B ph ratio and the grazing pressure of phytophagous zooplankton were observed over the last few decades due to the eutrophication process and cyanobacteria blooms. The large zooplankton consumes a significant amount of primary production (Chlorococcales and Bacillariophyta) when the predator pressure of the fish fry is absent. This grazing pressure may precondition cyanobacteria scum.  相似文献   

10.
Phytoplankton dynamics in a deep, tropical, hyposaline lake   总被引:3,自引:3,他引:0  
The annual variation of the phytoplankton assemblage of deep (64.6 m), hyposaline (8.5 g l–1) Lake Alchichica, central Mexico (19 ° N, 97° W), was analyzed in relation to thermal regime, and nutrients concentrations. Lake Alchichica is warm monomictic with a 3-month circulation period during the dry, cold season. During the stratified period in the warm, wet season, the hypolimnion became anoxic. N–NH3 ranged between non detectable (n.d.) and 0.98 mg l–1, N–NO2 between n.d. and 0.007 mg l–1, N–NO3 from 0.1 to 1.0 mg l–1 and P–PO4 from n.d. to 0.54 mg l–1. Highest nutrient concentrations were found in the circulation period. Chlorophyll a varied from <1 to 19.8 g l–1 but most values were <5 g l–1. The euphotic zone (>1% PAR) usually comprised the top 15–20 m. Nineteen algae species were identified, most of them are typical inhabitants of salt lakes. Diatoms showed the highest species number (10) but the small chlorophyte Monoraphidium minutum, the single-cell cyanobacteria, Synechocystis aquatilis, and the colonial chlorophyte, Oocystis parva, were the numerical dominant species over the annual cycle. Chlorophytes, small cyanobacteria and diatoms dominated in the circulation period producing a bloom comparable to the spring bloom in temperate lakes. At the end of the circulation and at the beginning of stratification periods, the presence of a bloom of the nitrogen-fixing cyanobacteria, N. spumigena, indicated nitrogen-deficit conditions. The well-stratified season was characterized by low epilimnetic nutrients levels and the dominance of small single-cell cyanobacteria and colonial chlorophytes. Phytoplankton dynamics in tropical Lake Alchichica is similar to the pattern observed in some deep, hyposaline, North American temperate lakes.  相似文献   

11.
12.
The spatial distribution of zooplankton in relation to two types of land‐use (forested and pastoral‐arable) of a lake's surroundings and to various habitats (helophytes, elodeids, nymphaeids and open water) was examined along 16 parallel transects on a macrophyte‐dominated lake (area – 13.3 ha; mean depth – 1.4 m). The type of habitat was the main determinant of zooplankton community structure. Dissected‐leaved elodeids harboured the richest and most abundant community with typically littoral (e.g., Colurella uncinata) and pelagic species (e.g., Keratella cochlearis). Two species (Polyarthra major and P. vulgaris) selectively chose the open water and one (Lecane quadridentata) the Typha stand. No spatial differentiation in zooplankton abundance was recorded between the two types of the catchment area. One possible explanation may be the shallowness and small area of this lake which may support full mixing and no difference in physical‐chemical gradients. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

14.
Field and experimental studies were conducted to evaluate the combined impacts of cyanobacterial blooms and small algae on seasonal and long-term changes in the abundance and community structure of crustacean zooplankton in a large, eutrophic, Chinese lake, Lake Chaohu. Seasonal changes of the crustacean zooplankton from 22 sampling stations were investigated during September 2002 and August 2003, and 23 species belonging to 20 genera were recorded. Daphnia spp. dominated in spring but disappeared in mid-summer, while Bosmina coregoni and Ceriodaphnia cornuta dominated in summer and autumn. Both maximum cladoceran density (310 ind. l−1) and biomass (5.2 mg l−1) appeared in autumn. Limnoithona sinensis, Sinocalanus dorrii and Schmackeria inopinus were the main species of copepods. Microcystis spp. were the dominant phytoplankton species and formed dense blooms in the warm seasons. In the laboratory, inhibitory effects of small colonial Microcystis on growth and reproduction of Daphnia carinata were more remarkable than those of large ones, and population size of D. carinata was negatively correlated with density of fresh large colonial Microcystis within a density range of 0–100 mg l−1 (r = −0.82, P< 0.05). Both field and experimental results suggested that seasonal and long-term changes in the community structure of crustacean zooplankton in the lake were shaped by cyanobacterial blooms and biomass of the small algae, respectively, i.e., colonial and filamentous cyanobacteria contributed to the summer replacement of dominant crustacean zooplankton from large Daphnia spp. to small B. coregoni and C. cornuta, while increased small algae might be responsible for the increased abundance of crustacean zooplankton during the past decades.  相似文献   

15.
A process-based leaf gas exchange model for C3 plants was developed which specifically describes the effects observed along light gradients of shifting nitrogen investment in carboxylation and bioenergetics and modified leaf thickness due to altered stacking of photosynthetic units. The model was parametrized for the late-successional, shade-tolerant deciduous species Acer saccharum Marsh. The specific activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) and the maximum photosynthetic electron transport rate per unit cytochrome f (cyt f) were used as indices that vary proportionally with nitrogen investment in the capacities for carboxylation and electron transport. Rubisco and cyt f per unit leaf area are related in the model to leaf dry mass per area (MA), leaf nitrogen content per unit leaf dry mass (Nm), and partitioning coefficients for leaf nitrogen in Rubisco (PR) and in bioenergetics (PB). These partitioning coefficients are estimated from characteristic response curves of photosynthesis along with information on lear structure and composition. While PR and PB determine the light-saturated value of photosynthesis, the fraction of leaf nitrogen in thylakoid light-harvesting components (PL) and the ratio of leaf chlorophyll to leaf nitrogen invested in light harvesting (CB), which is dependent on thylakoid stoichiometry, determine the initial photosynthetic light utilization efficiency in the model. Carbon loss due to mitochondrial respiration, which also changes along light gradients, was considered to vary in proportion with carboxylation capacity. Key model parameters - Nm, PR, PB, PLCB and stomatal sensitivity with respect to changes in net photosynthesis (Gr) – were examined as a function of MA, which is linearly related to irradiance during growth of the leaves. The results of the analysis applied to A. saccharum indicate that PB and PR increase, and Gf, PL and CB decrease with increasing MA. As a result of these effects of irradiaiice on nitrogen partitioning, the slope of the light-saturated net photosynthesis rate per unit leaf dry mass (Ammax) versus Nm relationship increased with increasing growth irradiance in mid-season. Furthermore, the nitrogen partitioning coefficients as well as the slopes of Ammax versus Nm were independent of season, except during development of the leaf photosynthetic apparatus. Simulations revealed that the acclimation to high light increased Ammax by 40% with respect to the low light regime. However, light-saturated photosynthesis per leaf area (Aamax) varied 3-fold between these habitats, suggesting that the acclimation to high light was dominated by adjustments in leaf anatomy (Aamax=AmmaxMA) rather than in foliar biochemistry. This differed from adaptation to low light, where the alterations in foliar biochemistry were predicted to be at least as important as anatomical modifications. Due to the light-related accumulation of photosynthetic mass per unit area, Aamax depended on MA and leaf nitrogen per unit area (Na). However, Na conceals the variation in both MA and Nm (Na=NmMA), and prevents clear separation of anatomical adjustments in foliage structure and biochemical modifications in foliar composition. Given the large seasonal and site nutrient availability-related variation in Nm, and the influences of growth irradiance on nitrogen partitioning, the relationship between Aamax and Na is universal neither in time nor in space and in natural canopies at mid-season is mostly driven by variability in MA. Thus, we conclude that analyses of the effects of nitrogen investments on potential carbon acquisition should use mass-based rather than area-based expressions.  相似文献   

16.
Modern anthropogenic modifications to aquatic environments, specifically hydrodynamic alterations, play a major role in cyanobacterial bloom potential. In shallow-water ecosystems, salinity is a driver of microbial communities and increases in salinity may facilitate the bloom potential of competitive cyanobacteria. This study investigated the osmotic response and mortality rate of a persistent bloom-forming (18 months) cyanobacterium, Cyanothece sp., isolated from Lake St Lucia (South Africa), after sudden hypo-osmotic shock. Laboratory experiments were performed with Cyanothece sp. cells to observe osmotic responses and to determine mortalities during salinity reductions. In general, Cyanothece sp. cells conformed to the external medium at all salinity levels used in the treatments, reducing their intracellular osmolality in response to salinity downshifts. There were limits to this, however, as successful downshift was not observed during the freshwater exposure treatment. Highest mortality rates occurred in cultures that were grown at high salinities (i.e. 180, 240 and 300 units), as well as in treatments with large salinity downshifts (e.g. 120 salinity unit reduction and direct freshwater exposure). Cyanothece sp. has been shown to sustain bloom status for long periods. Its ability to tolerate high salinities and respond to sudden salinity downshifts is an important factor in its bloom success. However, it is still susceptible to reductions in salinity that may occur due to heavy rainfall and floods, which highlights the importance that freshwater plays in the bloom ecology of a persistent bloom-forming halotolerant cyanobacterium, as freshwater inputs markedly influence the physiology of the cells and their survival ability.  相似文献   

17.
In invasion processes, both abiotic and biotic factors are considered essential, but the latter are usually disregarded when modeling the potential spread of exotic species. In the framework of set theory, interactions between biotic (B), abiotic (A), and movement‐related (M) factors in the geographical space can be hypothesized with BAM diagrams and tested using ecological niche models (ENMs) to estimate A and B areas. The main aim of our survey was to evaluate the interactions between abiotic (climatic) and biotic (host availability) factors in geographical space for exotic symbionts (i.e., non‐free‐living species), using ENM techniques combined with a BAM framework and using exotic Entocytheridae (Ostracoda) found in Europe as model organisms. We carried out an extensive survey to evaluate the distribution of entocytherids hosted by crayfish in Europe by checking 94 European localities and 12 crayfish species. Both exotic entocytherid species found, Ankylocythere sinuosa and Uncinocythere occidentalis, were widely distributed in W Europe living on the exotic crayfish species Procambarus clarkii and Pacifastacus leniusculus, respectively. No entocytherids were observed in the remaining crayfish species. The suitable area for A. sinuosa was mainly restricted by its own limitations to minimum temperatures in W and N Europe and precipitation seasonality in circum‐Mediterranean areas. Uncinocythere occidentalis was mostly restricted by host availability in circum‐Mediterranean regions due to limitations of P. leniusculus to higher precipitation seasonality and maximum temperatures. The combination of ENMs with set theory allows studying the invasive biology of symbionts and provides clues about biogeographic barriers due to abiotic or biotic factors limiting the expansion of the symbiont in different regions of the invasive range. The relative importance of abiotic and biotic factors on geographical space can then be assessed and applied in conservation plans. This approach can also be implemented in other systems where the target species is closely interacting with other taxa.  相似文献   

18.
Agrawal  Manish K.  Bagchi  Divya  Bagchi  Suvendra N. 《Hydrobiologia》2001,464(1-3):37-44
Cyanobacterial blooms consisting of Microcystis spp., collected from 14 water-bodies in Central India, and an adapted culture, were studied for likely impact on zooplankton community. When fed with single cells of Microcystis from several locations, in mixtures with Chlorella, population growth of the cladoceran Moina macrocopa was suppressed. Microcystis alone was unsuitable as food. In three cases, bloom extracts enhanced mortality of starved zooplankton. Extracts from several sources inhibited protease activity when trypsin or a crude extract from zooplankton served as enzyme source. Upon fractionation by solid-phase extraction, the C-18 passed extract contained the anti-protease and toxic substances for zooplankton, whereas a methanol eluted fraction retained the trypsin inhibitory substance. The study suggests that production of protease inhibitors by cyanobacteria is a factor responsible for feeding inhibition and mortality in zooplankton, which in turn could regulate the community structure of grazers.  相似文献   

19.
Microcystis is a freshwater cyanobacterium frequently forming nuisance blooms in the summer months. The genus belongs to the predominant producers of the potent hepatotoxin microcystin. The success of Microcystis and its remarkable resistance to high light conditions are not well understood. Here, we have compared the metabolic response of Microcystis aeruginosa PCC7806, its microcystin‐deficient ΔmcyB mutant (Mut) and the cyanobacterial model organism Synechocystis PCC6803 to high light exposure of 250 μmol photons m?2 s?1 using GC/MS‐based metabolomics. Microcystis wild type and Mut show pronounced differences in their metabolic reprogramming upon high light. Seventeen per cent of the detected metabolites showed significant differences between the two genotypes after high light exposure. Whereas the microcystin‐producing wild type shows a faster accumulation of glycolate upon high light illumination, loss of microcystin leads to an accumulation of general stress markers such as trehalose and sucrose. The study further uncovers differences in the high light adaptation of the bloom‐forming cyanobacterium Microcystis and the model cyanobacterium Synechocystis. Most notably, Microcystis invests more into carbon reserves such as glycogen after high light exposure. Our data shed new light on the lifestyle of bloom‐forming cyanobacteria, the role of the widespread toxin microcystin and the metabolic diversity of cyanobacteria.  相似文献   

20.
Nutrient concentrations and other environmental factors were measured in the Daechung Reservoir for 25 weeks from spring until autumn in 1999. The high irradiance after heavy rainfall provided optimal meteorological conditions for bloom formation during summer, therefore, rain would also appear to forecast imminent bloom. The bloom formation was largely governed by cyanobacteria, in particular, Microcystis spp. and Anabaenaspp. Phycocyanin showed higher correlation with cyanobacteria (r = 0.744, P < 0.001) compared to chlorophyll-a(r = 0.599, P < 0.01). Therefore, phycocyanin was more accurate and useful than chlorophyll-a in quantitatively measuring cyanobacterial blooms. The atomic N:P ratio of the particulate form also showed a high correlation with cyanobacteria (r = 0.541, P < 0.01), increasing from 4.3 to 14.6 during bloom formation, while that of the dissolved form decreased from 25.5 to 8.7. These results indicated that the algae assimilated N significantly without comparable P uptake during the blooming season, which was in sharp contrast to the excessive storage of P during the spring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号