首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Biodegradation of petroleum hydrocarbon oil (14,000 mg kg−1) were investigated in six biopiles batches, differing in the remediation strategy: bioaugmentation (selected consortium and kitchen waste were introduced), biostimulation (added with rhamnolipid, high-level, or low-level nutrient), and bioaugmentation plus biostimulation (added both with rhamnolipid and bacterial consortia). After the 140-day operation, the kitchen waste (KW) and the low-level nutrient (NEL) batches achieved the highest total petroleum hydrocarbon degradation efficiency (>80%). The result of the hydrocarbon analysis revealed that the bioaugmentation approaches were the most effective ones in removing aromatic component (64% and 68%), and KW and NEL were the only two approaches that can remove the polar component with positive efficiency, 11% and 21%, respectively. The terminal-restriction fragment length polymorphism percentage (T-RFLP) abundance applied with nonmetric multidimensional scaling indicated a similarity of the bacterial communities during the early fastest remediation stage. The results of the oligonucleotide array targeting the ribosomal internal transcribed spacer (ITS) region, along with the hydrocarbon fractional analysis, indicated a successive degradation completed by the bacterial-fungi consortia. Before Day 70, the bacterial community was dominant in decomposing the saturated and partially aromatic hydrocarbons. After Day 70, the fungal community found to be dynamic and responsible for degradation of the polar hydrocarbons composing of recalcitrant metabolites.  相似文献   

2.
Rhizosphere communities are critical to plant and ecosystem function, yet our understanding of the role of disturbance in structuring these communities is limited. We tested the hypothesis that soil contamination with petroleum hydrocarbons (PHCs) alters spatial patterns of ecto- (ECM) and ericoid (ERM) mycorrhizal fungal and root-associated bacterial community structure in the shared rhizosphere of pine (Pinus contorta var. latifolia) and lingonberry (Vaccinium vitis-idaea) in reconstructed sub-boreal forest soils. Pine seeds and lingonberry cuttings were planted into containers with an organic (mor humus, FH or coarse woody debris, CWD) layer overlying sandy mineral horizons (Ae and Bf) of forest soils collected from field sites in central British Columbia, Canada. After 4 months, 219 mg cm-2 crude oil was applied to the soil surface of half of the systems; systems were sampled 1 or 16 weeks later. Composition, relative abundance and vertical distribution of pine ECMs were assessed using light microscopy; community profiles were generated using LH-PCR of ribosomal DNA. Multivariate analysis revealed that plant and soil factors were more important determinants of community composition than was crude oil treatment. Fungal communities differed between pine and lingonberry roots; ECM communities were structured by soil layer whereas ERM communities varied between FH and CWD soil systems. Bacterial communities varied between plants and soil layers, indicating properties of ECM and ERM rhizospheres and the soil environment influence bacterial niche differentiation. This integration of mycorrhizal and bacterial community analysis contributes to a greater understanding of forest soil sustainability in forest ecosystems potentially contaminated with PHCs.  相似文献   

3.
【目的】探讨棉花(Gossypium spp.)生长对石油烃(TPH)污染盐碱土壤微生物群落结构的影响,揭示根际微生物与TPH降解的相关关系。【方法】利用磷脂脂肪酸(PLFA)方法解析根际土壤活性微生物群落随棉花生长的动态变化特征。【结果】根际土壤先后出现了21种PLFAs,包括:饱和脂肪酸(SAT),标识除放线菌之外的细菌;甲基支链末端型饱和脂肪酸(TBSAT),标识除放线菌之外的革兰氏阳性(G+)细菌;标识真菌的多不饱和脂肪酸(PUFA);标识放线菌的甲基支链中间型饱和脂肪酸(MBSAT);标识革兰氏阴性(G?)细菌的单不饱和脂肪酸(MONO)和环丙基脂肪酸(CYCLO)。棉花根际与未栽种棉花的对照(CK)相比,根际土壤微生物PLFAs种类在苗期、蕾期、吐絮期分别增加了100%、83.3%、20.0%,生物量分别增加了53.9%、6.60倍和60.7%;土壤TPH降解率分别提高13.0%、28.0%和30.6%。相关性分析表明:根际土壤TPH降解与根际土壤微生物总生物量具有低度正相关关系(|r|=0.5),但与a14:0、a16:0、i15:0标记的G+细菌生物量高度正相关(|r|≥0.8)。【结论】棉花生长对石油污染盐碱土壤活性微生物群落结构具有显著(p<0.05)的影响,且加速了土壤TPH的降解。该结果将为今后更好地开展石油污染盐碱土壤的生物修复技术研究提供理论依据。  相似文献   

4.
Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (-5, 0, and 7 degrees C). An additional treatment was incubation for alternating 24-h periods at 7 and -5 degrees C. Hydrocarbons were biodegraded at or above 0 degrees C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and -5 degrees C treatments, respectively, was 450, 300, and 600 microg/g of soil. No TPH removal was observed at -5 degrees C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and -5 degrees C treatment.  相似文献   

5.
In recent years large quantities of mixtures of chlorinated hydrocarbons have accumulated in the environment due to the widespread use and production of these compounds. Microbes have been found to demonstrate a widespread and diverse potential to adapt to the dechlorination of such compounds. Therefore the aim of this study was to investigate the presence and diversity of reductive and hydrolytic dehalogenase genes in a site contaminated with a mixture of chlorinated hydrocarbons. Primers targeting reductive and hydrolytic bacterial dehalogenase genes were designed. In addition, DGGE analysis was performed in order to determine the presence of any known dehalogenase-producing organisms. Total DNA isolated from borehole water samples was used as the template for the amplification reactions. All PCR products obtained with the reductive and hydrolytic gene primers, as well as the dominant bands present on the DGGE gel were cloned and sequenced. Sequencing of the individual amplicons revealed significant identities to the tceA gene of Dehalococcoides ethenogenes 195, the vcrA gene of Dehalococcoides sp. VS as well as the dhlA and dhlB genes of Xanthobacter autotrophicus GJ10. DGGE analysis indicated a high level of commonality with the different sampling times and depths. However, sequence analysis revealed that 66% of the cloned fragments showed significant (95–99%) identity with uncultured microorganisms. Phylogenetic analysis of the sequences revealed that the DGGE clones clustered into two groups when compared to known bacteria having hydrocarbon degradative capabilities. This indicated that the sequences of the clones were diverse when compared to known microorganisms. This diversity represents a largely untapped genetic pool that can be exploited for the discovery of novel biocatalysts that can be employed in bioremediation. In addition, the presence of both hydrolytic and reductive dehalogenases provided strong evidence that bacteria capable of dehalogenation of chlorinated hydrocarbons may be present in sites contaminated with these compounds.  相似文献   

6.
7.
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub‐Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis‐idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis‐idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis‐idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub‐Arctic plants can initiate spring‐like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring‐like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts.  相似文献   

8.
The effect of enrichment with phthalate on the biodegradation of polycyclic aromatic hydrocarbons (PAH) was tested with bioreactor-treated and untreated contaminated soil from a former manufactured gas plant (MGP) site. Soil samples that had been treated in a bioreactor and enriched with phthalate mineralized (14)C-labeled phenanthrene and pyrene to a greater extent than unenriched samples over a 22.5-h incubation, but did not stimulate benzo[a]pyrene mineralization. In contrast to the positive effects on (14)C-labeled phenanthrene and pyrene, no significant differences were found in the extent of biodegradation of native PAH when untreated contaminated soil was incubated with and without phthalate amendment. Denaturing-gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes from unenriched and phthalate-enriched soil samples were substantially different, and clonal sequences matched to prominent DGGE bands revealed that beta-Proteobacteria related to Ralstonia were most highly enriched by phthalate addition. Quantitative real-time PCR analyses confirmed that, of previously determined PAH-degraders in the bioreactor, only Ralstonia-type organisms increased in response to enrichment, accounting for 89% of the additional bacterial 16S rRNA genes resulting from phthalate enrichment. These findings indicate that phthalate amendment of this particular PAH-contaminated soil did not significantly enrich for organisms associated with high molecular weight PAH degradation or have any significant effect on overall degradation of native PAH in the soil.  相似文献   

9.
The cold-adapted bacterial communities in petroleum hydrocarbon-contaminated and non-impacted soils from two northern Canadian environments, Kuujjuaq, Que., and Alert, Nunavut, were analyzed using a polyphasic approach. Denaturing gradient gel electrophoresis (DGGE) separation of 16S rDNA PCR fragments from soil total community DNA revealed a high level of bacterial diversity, as estimated by the total number of bands visualized. Dendrogram analysis clustered the sample sites on the basis of geographical location. Comparison of the overall microbial molecular diversity suggested that in the Kuujjuaq sites, contamination negatively impacted diversity whereas in the Alert samples, diversity was maintained or increased as compared to uncontaminated controls. Extraction and sequencing analysis of selected 16S rDNA bands demonstrated a range of similarity of 86-100% to reference organisms, with 63.6% of the bands representing high G+C Gram-positive organisms in the order Actinomycetales and 36.4% in the class Proteobacteria. Community level physiological profiles generated using Biolog GN plates were analyzed by cluster analysis. Based on substrate oxidation rates, the samples clustered into groups similar to those of the DGGE dendrograms, i.e. separation based upon geographic origin. The coinciding results reached using culture-independent and -dependent analyses reinforces the conclusion that geographical origin of the samples, rather than petroleum contamination level, was more important in determining species diversity within these cold-adapted bacterial communities.  相似文献   

10.
This study focused on the capacity of finished compost, often used as packing material in biofiltration units, to support microbial biodegradation of trichloroethylene (TCE). Finished compost was enriched with methane or propane (10% head space) to stimulate cometabolic biodegradation of gaseous TCE. Successful hydrocarbon enrichment, as indicated by rapid depletion of hydrocarbon gas and measurable growth of hydrocarbon-utilizing micro-organisms, occurred within a week. Within batch reactor flasks, approximately 75% of head space TCE (1–40 ppmv) was rapidly sorbed onto compost material. Up to 99% of the remaining head space TCE was removed via biodegradation in compost enriched with either hydrocarbon. Hydrocarbon enrichment with methane or propane corresponded to 10-fold increases in methanotrophic or propanotrophic populations, respectively. Based on growth assessment under different nutritional regimes, there appeared to be complex metabolic interactions within the microbial community in enriched compost. Five separate bacterial cultures were derived from the hydrocarbon-enriched compost and assayed for the ability to degrade TCE.  相似文献   

11.
Effects of water regime on archaeal communities in Arctic soils from Spitsbergen were studied using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rRNA genes, with subsequent sequencing of amplicons and ordination analysis of binary DGGE data. Samples with major differences in soil water regime showed significant differences in their archaeal community profiles. Methanomicrobiales, Methanobacteriaceae and Methanosaeta were detectable only in environments that were wet during most of the growth season, while a novel euryarchaeotal cluster was detected only in less reduced solifluction material. Group 1.3b of Crenarchaeota had a high relative abundance within the archaeal community in a wide range of wet soils. Along a natural soil moisture gradient, changes in archaeal community composition were observed only in upper soil layers. The results indicated that members of Methanomicrobiales were relatively tolerant to soil aeration. Differences in archaeal community composition associated with soil water regime were predominant over regional and seasonal variation, and over differences between individual wetlands. The results suggest that the observed 'on-off switch' mechanism of soil hydrology for large-scale variations in methane emissions from northern wetlands is at least partly caused by differences in the community structure of organisms involved in methane production.  相似文献   

12.
Arctic soils contain large amounts of organic matter due to very slow rates of detritus decomposition. The first step in decomposition results from the activity of extracellular enzymes produced by soil microbes. We hypothesized that potential enzyme activities are low relative to the large stocks of organic matter in Arctic tundra soils, and that enzyme activity is low at in situ temperatures. We measured the potential activity of six hydrolytic enzymes at 4 and 20 °C on four sampling dates in tussock, intertussock, shrub organic, and shrub mineral soils at Toolik Lake, Alaska. Potential activities of N‐acetyl glucosaminidase, β‐glucosidase, and peptidase tended to be greatest at the end of winter, suggesting that microbes produced enzymes while soils were frozen. In general, enzyme activities did not increase during the Arctic summer, suggesting that enzyme production is N‐limited during the period when temperatures would otherwise drive higher enzyme activity in situ. We also detected seasonal variations in the temperature sensitivity (Q10) of soil enzymes. In general, soil enzyme pools were more sensitive to temperature at the end of the winter than during the summer. We modeled potential in situβ‐glucosidase activities for tussock and shrub organic soils based on measured enzyme activities, temperature sensitivities, and daily soil temperature data. Modeled in situ enzyme activity in tussock soils increased briefly during the spring, then declined through the summer. In shrub soils, modeled enzyme activities increased through the spring thaw into early August, and then declined through the late summer and into winter. Overall, temperature is the strongest factor driving low in situ enzyme activities in the Arctic. However, enzyme activity was low during the summer, possibly due to N‐limitation of enzyme production, which would constrain enzyme activity during the brief period when temperatures would otherwise drive higher rates of decomposition.  相似文献   

13.
Hydrocarbon-contaminated soil and groundwater at oil and gas production sites may be additionally impacted by salts due to release of produced waters. However, little is known about the effect of salt on the in-situ biodegradation of hydrocarbons by terrestrial microbes, especially at low temperatures. To study this effect, we prepared a groundwater-soil slurry from two sites in Canada: a former flare pit site contaminated with flare pit residue (Site A), and a natural gas processing facility contaminated with natural gas condensate (Site B). The slurry with its indigenous microbes was amended with radiolabeled hydrocarbons dissolved in free product plus nutrients and/or NaCl, and incubated in aerobic biometer flasks with gyrotory shaking at either 25 or 10°C for up to 5 weeks. Cumulative production of 14CO2 was measured and the lag time, rate and extent of mineralization were calculated. For Site A, concentrations of NaCl ≥1% (w/v) delayed the onset of mineralization of both 14C-hexadecane and 14C-phenanthrene under nutrient-amended conditions, but once biodegradation began the degradation rates were similar over the range of salt concentrations tested (0–5% NaCl). For Site B, increasing concentrations of NaCl ≥1% (w/v) increased the lag time and decreased the rate and extent of mineralization of aliphatic and aromatic substrates. Of particular interest is the observation that low concentrations of salt (≤1% NaCl) slightly stimulated mineralization in some cases.  相似文献   

14.
15.
16.
Climate change research has demonstrated that changing temperatures will have an effect on community‐level dynamics by altering species survival rates, shifting species distributions, and ultimately, creating mismatches in community interactions. However, most of this work has focused on increasing temperature, and still little is known about how the variation in temperature extremes will affect community dynamics. We used the model aquatic community held within the leaves of the carnivorous plant, Sarracenia purpurea, to test how food web dynamics will be affected by high temperature variation. We tested the community response of the first (bacterial density), second (protist diversity and composition), and third trophic level (predator mortality), and measured community respiration. We collected early and late successional stage inquiline communities from S. purpurea from two North American and two European sites with similar average July temperature. We then created a common garden experiment in which replicates of these communities underwent either high or normal daily temperature variation, with the average temperature equal among treatments. We found an impact of temperature variation on the first two, but not on the third trophic level. For bacteria in the high‐variation treatment, density experienced an initial boost in growth but then decreased quickly through time. For protists in the high‐variation treatment, alpha‐diversity decreased faster than in the normal‐variation treatment, beta‐diversity increased only in the European sites, and protist community composition tended to diverge more in the late successional stage. The mortality of the predatory mosquito larvae was unaffected by temperature variation. Community respiration was lower in the high‐variation treatment, indicating a lower ecosystem functioning. Our results highlight clear impacts of temperature variation. A more mechanistic understanding of the effects that temperature, and especially temperature variation, will have on community dynamics is still greatly needed.  相似文献   

17.
Complexity involved in the transport of soils and the restrictive legislation for the area makes on-site bioremediation the strategy of choice to reduce hydrocarbons contamination in Antarctica. The effect of biostimulation (with N and P) and bioaugmentation (with two bacterial consortia and a mix of bacterial strains) was analysed by using microcosms set up on metal trays containing 2·5 kg of contaminated soil from Marambio Station. At the end of the assay (45 days), all biostimulated systems showed significant increases in total heterotrophic aerobic and hydrocarbon-degrading bacterial counts. However, no differences were detected between bioaugmented and nonbioaugmented systems, except for J13 system which seemed to exert a negative effect on the natural bacterial flora. Hydrocarbons removal efficiencies agreed with changes in bacterial counts reaching 86 and 81% in M10 (bioaugmented) and CC (biostimulated only) systems. Results confirmed the feasibility of the application of bioremediation strategies to reduce hydrocarbon contamination in Antarctic soils and showed that, when soils are chronically contaminated, biostimulation is the best option. Bioaugmentation with hydrocarbon-degrading bacteria at numbers comparable to the total heterotrophic aerobic counts showed by the natural microflora did not improve the process and showed that they would turn the procedure unnecessarily more complex.  相似文献   

18.
Sulfate reduction (SR) and trichloroethylene (TCE) biodegradation at two different temperatures (37 and 70 °C) were investigated in enrichment cultures prepared with two different samples of sediments collected from hydrothermal vents. The unadapted sediments were incubated with sulfate (4 g L−1) as the electron acceptor before TCE addition to enrich them in biomass and to establish a constant sulfate reduction (SR, 87% sulfate conversion and specific H2S concentration of 90.81 ± 8.19 mg H2S g VSS−1), afterwards TCE was added at an initial concentration of 300 ??mol L−1. The best results for TCE biodegradation were obtained at 37 °C. At this temperature, SR was up to 92%, whereas TCE biodegradation reached 75% and ethane was detected as the main degradation product. Under thermophilic conditions (70 °C) TCE biodegradation reached up to approximately 60% and the SR was 30% in 30 days of incubation with the chlorinated solvent. Along with these results, the 16S rDNA analysis from samples at 37 °C showed the presence of bacteria belonging to the genera: Clostridium, Bacillus and Desulfuromonas. The overall results on TCE degradation and SR suggest that cometabolic TCE degradation is carried out by sulfate or sulfur reducers and fermentative bacteria at mesophilic conditions.  相似文献   

19.
20.
The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0–0.5 m), one from an organic rich layer (2–2.5 m) and one from the sandy aquifer (4.5–5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号