首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To cope with osmotic stress,Sinorhizobium meliloti accumulates organic compatible solutes such as glutamate, trehalose, N-acetylglutaminylglutamine amide, and the most potent osmoprotectant glycine betaine. In order to study the regulation of the glycine betaine biosynthetic pathway, a genetic and molecular analysis was performed. We have selected a Tn5 mutant ofS. meliloti which was deficient in choline dehydrogenase activity. The mutation was complemented using a genomic bank ofS. meliloti. Subcloning and DNA sequencing of a 8-6 kb region from the complemented plasmid showed four open reading frames with an original structural organization of thebet locus compared to that described inE. coli. (i) ThebetB and thebetA genes which encode a glycine betaine aldehyde dehydrogenase, and a choline dehydrogenase, respectively, are separated from thebetI gene (regulatory protein) by an additional gene namedbetC. The BetC protein shares about 30% identity with various sulphatases and is involved in the conversion of choline-O-sulphate into choline. Choline-O-sulphate is used as an osmoprotectant, or as a carbon or sulphur source and this utilization is dependent on a functionalbet locus. (ii) No sequence homologous tobetT (encoding a high-affinity choline transport system inE. coli) was found in the vicinity of thebet locus. (iii) ThebetB and thebetA genes, as well as thebetI and thebetC genes are, respectively, separated by 211 and 167 bp sequences containing inverted repeats. Southern blot analysis indicated that thebet locus is located on the chromosome, and not on the megaplasmids.  相似文献   

2.
3.
Marine bacterioplankton face stiff competition for limited nutrient resources. SAR11, a ubiquitous clade of very small and highly abundant Alphaproteobacteria, are known to devote much of their energy to synthesizing ATP-binding cassette periplasmic proteins that bind substrates. We hypothesized that their small size and relatively large periplasmic space might enable them to outcompete other bacterioplankton for nutrients. Using uptake experiments with 14C-glycine betaine, we discovered that two strains of SAR11, Candidatus Pelagibacter sp. HTCC7211 and Cand. P. ubique HTCC1062, have extraordinarily high affinity for glycine betaine (GBT), with half-saturation (K s) values around 1 nM and specific affinity values between 8 and 14 L mg cell−1 h−1. Competitive inhibition studies indicated that the GBT transporters in these strains are multifunctional, transporting multiple substrates in addition to GBT. Both strains could use most of the transported compounds for metabolism and ATP production. Our findings indicate that Pelagibacter cells are primarily responsible for the high affinity and multifunctional GBT uptake systems observed in seawater. Maximization of whole-cell affinities may enable these organisms to compete effectively for nutrients during periods when the gross transport capacity of the heterotrophic plankton community exceeds the supply, depressing ambient concentrations.  相似文献   

4.
The moderate halophile Vibrio costicola, growing on a chemically-defined medium, transformed choline into glycine betaine (betaine) by the membrane-bound enzyme choline dehydrogenase and the cytoplasmic enzyme betainal (betaine aldehyde) dehydrogenase. Choline dehydrogenase was strongly induced and betainal dehydrogenase less strongly induced by choline. The formation of these enzymes was also regulated by the NaCl concentration of the growth medium, increasing with increasing NaCl concentrations. Intracellular betaine concentrations also increased with increasing choline and NaCl concentrations in the medium. This increase was almost completely blocked by chloramphenicol, which does not block the increase in salt-tolerant active transport on transfer from a low to a high salt concentration.Choline dehydrogenase was inhibited by chloride salts of Na+, K+, and NH inf4 su+ , the inhibition being due to the Cl- ions. Betainal dehydrogenase was stimulated by 0.5 M salts and could function in up to 2.0 M salts.Cells grew as well in the presence as in the absence of choline in 0.5 M and 1.0 M NaCl, but formed no intracellular betaine. Choline stimulated growth in 2.0 M NaCl and was essential for growth in 3.0 M NaCl. Thus, while betaine is important for some of the adaptations to high salt concentration by V. costicola, it by no means accounts for all of them.Abbreviations CDMM chemically-defined minimal medium - PPT proteose-peptone tryptone medium - SDS sodium dodecyl sulfate Deceased, 1987  相似文献   

5.
Betaine aldehyde dehydrogenase has been purified to homogeneity from rat liver mitochondria. The properties of betaine aldehyde dehydrogenase were similar to those of human cytoplasmic E3 isozyme in substrate specificity and kinetic constants for substrates. The primary structure of four tryptic peptides was also similar; only two substitutions, at most, per peptide were observed. Thus, betaine aldehyde dehydrogenase is not a specific enzyme, as formerly believed; activity with betaine aldehyde is a property of aldehyde dehydrogenase (EC 1.2.1.3), which has broad substrate specificity. Up to the present time the enzyme was thought to be cytoplasmic in mammals. This report establishes, for the first time, mitochondrial subcellular localization for aldehyde dehydrogenase, which dehydrogenates betaine aldehyde, and its colocalization with choline dehydrogenase. Betaine aldehyde dehydrogenation is an important function in the metabolism of choline to betaine, a major osmolyte. Betaine is also important in mammalian organisms as a major methyl group donor and nitrogen source. This is the first purification and characterization of mitochondrial betaine aldehyde dehydrogenase from any mammalian species.  相似文献   

6.
Vibrio cholerae is a halophilic facultative human pathogen found in marine and estuarine environments. Accumulation of compatible solutes is important for growth of V. cholerae at NaCl concentrations greater than 250 mM. We have identified and characterized two compatible solute transporters, OpuD and PutP, that are involved in uptake of glycine betaine and proline by V. cholerae. V. cholerae does not, however, possess the bet genes, suggesting that it is unable to synthesize glycine betaine. In contrast, many Vibrio species are able to synthesize glycine betaine from choline. It has been shown that many bacteria not only synthesize but also secrete glycine betaine. We hypothesized that sharing of compatible solutes might be a mechanism for cooperativity in microbial communities. In fact, we have demonstrated that, in high-osmolarity medium, V. cholerae growth and biofilm development are enhanced by supplementation with either glycine betaine or spent media from other bacterial species. Thus, we propose that compatible solutes provided by other microorganisms may contribute to survival of V. cholerae in the marine environment through facilitation of osmoadaptation and biofilm development.  相似文献   

7.
Wide salinity ranges experienced during the seasonal freeze and melt of sea ice likely constrain many biological processes. Microorganisms generally protect against fluctuating salinities through the uptake, production, and release of compatible solutes. Little is known, however, about the use or fate of glycine betaine (GBT hereafter), one of the most common compatible solutes, in sea‐ice diatoms confronted with shifts in salinity. We quantified intracellular concentrations and used [14C]‐labeled compounds to track the uptake and fate of the nitrogen‐containing osmolyte GBT and its precursor choline in three Antarctic sea‐ice diatoms Nitzschia lecointei, Navicula cf. perminuta, and Fragilariopsis cylindrus at ?1°C. Experiments show that these diatoms have effective transporters for GBT, but take up lesser amounts of choline. Neither compound was respired. Uptake of GBT protected cells against hyperosmotic shock and corresponded with reduced production of extracellular polysaccharides in N. lecointei cells, which released 85% of the retained GBT following hypoosmotic shock. The ability of sea‐ice diatoms to rapidly scavenge and release compatible solutes is likely an important strategy for survival during steep fluctuations in salinity. The release and recycling of compatible solutes may play an important role in algal–bacterial interactions and nitrogen cycling within the semi‐enclosed brines of sea ice.  相似文献   

8.
Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.  相似文献   

9.
The ubiquitous algal metabolite dimethylsulfoniopropionate (DMSP) is a major source of carbon and reduced sulfur for marine bacteria. Recently, the enzyme responsible for the demethylation of DMSP, designated DmdA, was identified, and homologs were found to be common in marine bacterioplankton cells. The recombinant DmdA proteins from the cultured marine bacteria Pelagibacter ubique HTCC1062 and Silicibacter pomeroyi DSS-3 were purified with a three-step procedure using anion-exchange, hydrophobic interaction, and hydroxyapatite chromatographies. The P. ubique enzyme possessed an Mr on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 38,500. Under nondenaturing conditions, the Mr was 68,000, suggesting that the enzyme was likely to be a dimer. The purified enzyme exhibited strict substrate specificity for DMSP, as DmdA from both S. pomeroyi and P. ubique possessed no detectable demethylase activity with glycine betaine, dimethyl glycine, methylmercaptopropionate, methionine, or dimethylsulfonioacetate. Less than 1% activity was found with dimethylsulfoniobutanoate and dimethylsulfoniopentanoate. The apparent Kms for DMSP were 13.2 ± 2.0 and 5.4 ± 2.3 mM for the P. ubique and S. pomeroyi enzymes, respectively. In cell extracts of S. pomeroyi DSS-3, the apparent Km for DMSP was 8.6 ± 1.2 mM, similar to that of purified recombinant DmdA. The intracellular concentration of DMSP in chemostat-grown S. pomeroyi DSS-3 was 70 mM. These results suggest that marine bacterioplankton may actively accumulate DMSP to osmotically significant concentrations that favor near-maximal rates of DMSP demethylation activity.  相似文献   

10.
Ruegeria pomeroyi DSS‐3 possesses two general pathways for metabolism of dimethylsulphoniopropionate (DMSP), an osmolyte of algae and abundant carbon source for marine bacteria. In the DMSP cleavage pathway, acrylate is transformed into acryloyl‐CoA by propionate‐CoA ligase (SPO2934) and other unidentified acyl‐CoA ligases. Acryloyl‐CoA is then reduced to propionyl‐CoA by AcuI or SPO1914. Acryloyl‐CoA is also rapidly hydrated to 3‐hydroxypropionyl‐CoA by acryloyl‐CoA hydratase (SPO0147). A SPO1914 mutant was unable to grow on acrylate as the sole carbon source, supporting its role in this pathway. Similarly, growth on methylmercaptopropionate, the first intermediate of the DMSP demethylation pathway, was severely inhibited by a mutation in the gene encoding crotonyl‐CoA carboxylase/reductase, demonstrating that acetate produced by this pathway was metabolized by the ethylmalonyl‐CoA pathway. Amino acids and nucleosides from cells grown on 13C‐enriched DMSP possessed labelling patterns that were consistent with carbon from DMSP being metabolized by both the ethylmalonyl‐CoA and acrylate pathways as well as a role for pyruvate dehydrogenase. This latter conclusion was supported by the phenotype of a pdh mutant, which grew poorly on electron‐rich substrates. Additionally, label from [13C‐methyl] DMSP only appeared in carbons derived from methyl‐tetrahydrofolate, and there was no evidence for a serine cycle of C‐1 assimilation.  相似文献   

11.
Dissolved organic phosphorus (DOP) is a critical nutritional resource for marine microbial communities. However, the relative bioavailability of different types of DOP, such as phosphomonoesters (P-O-C) and phosphoanhydrides (P-O-P), is poorly understood. Here we assess the utilization of these P sources by a representative bacterial copiotroph, Ruegeria pomeroyi DSS-3. All DOP sources supported equivalent growth by R. pomeroyi, and all DOP hydrolysis rates were upregulated under phosphorus depletion (−P). A long-chain polyphosphate (45polyP) showed the lowest hydrolysis rate of all DOP substrates tested, including tripolyphosphate (3polyP). Yet the upregulation of 45polyP hydrolysis under −P was greater than any other substrate analyzed. Proteomics revealed three common P acquisition enzymes potentially involved in polyphosphate utilization, including two alkaline phosphatases, PhoD and PhoX, and one 5′-nucleotidase (5′-NT). Results from DOP substrate competition experiments show that these enzymes likely have broad substrate specificities, including chain length-dependent reactivity toward polyphosphate. These results confirm that DOP, including polyP, are bioavailable nutritional P sources for R. pomeroyi, and possibly other marine heterotrophic bacteria. Furthermore, the chain-length dependent mechanisms, rates and regulation of polyP hydrolysis suggest that these processes may influence the composition of DOP and the overall recycling of nutrients within marine dissolved organic matter.  相似文献   

12.
The uptake and degradation of nanomolar levels of [methyl-14C]choline in estuarine water samples and in seawater filtrate cultures composed mainly of natural free-living bacteria was studied. Uptake of [14C]choline exhibited Michaelis-Menten kinetics, with Kt + Sn values of 1.7 to 2.9 nM in filtrate cultures and 1.7 to 4.1 nM in estuarine-water samples. Vmax values ranged from 0.5 to 3.3 nM · h−1. The uptake system for choline in natural microbial assemblages therefore displays very high affinity and appears able to scavenge this compound at the concentrations expected in seawater. Uptake of choline was inhibited by some natural structural analogs and p-chloromercuribenzoate, indicating that the transporter may be multifunctional and may involve a thiol binding site. When 11 nM [14C]choline was added to water samples, a significant fraction (>50%) of the methyl carbon was respired to CO2 in incubations lasting 10 to 53 h. Cells taking up [14C]choline produced [14C]glycine betaine ([14C]GBT), and up to 80% of the radioactivity retained by cells was in the form of GBT, a well-known osmolyte. Alteration of the salinity in filtrate cultures affected the relative proportion of [14C]choline degraded or converted to [14C]GBT, without substantially affecting the total metabolism of choline. Increasing the salinity from 14 to 25 or 35 ppt caused more [14C]GBT to be produced from choline but less 14CO2 to be produced than in the controls. Lowering the salinity to 7 ppt decreased [14C]GBT production and increased 14CO2 production slightly. Intracellular accumulations of [14C]GBT in the salt-stressed cultures were osmotically significant (34 mM). Choline may be used as an energy substrate by estuarine bacteria and may also serve as a precursor of the osmoprotectant GBT, particularly as bacteria are mixed into higher-salinity waters.  相似文献   

13.
Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [14C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [14C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.  相似文献   

14.
Anaerobic degradation of betaine by marine Desulfobacterium strains   总被引:2,自引:0,他引:2  
From enrichment cultures with betaine (20 mM) and sulfate (20 mM) as the substrates and intertidal mud as an inoculum, a betaine-oxidizing, sulfate-reducing bacterium (strain PM4) was isolated. Strain PM4 was an oval to rod-shaped, Gram-negative, motile bacterium, which was able to oxidize lactate completely to CO2 and contained, during growth on betaine and sulfate, high activities of key enzymes of the acetyl CoA/CO dehydrogenase pathway (carbon monoxide dehydrogenase and formate dehydrogenase), but not of 2-oxo-glutarate dehydrogenase, a key enzyme of the citric acid cycle. On the basis of its morphological and physiological characteristics, strain PM4 was identified as a Desulfobacterium strain. Desulfobacterium PM4 grew on betaine with a doubling time of approximately 20 h at 30°C and produced N, N-dimethylglycine (in a 1:1 ratio) and sulfide as products. In this type of betaine metabolism one of the methyl groups of betaine is oxidized to CO2 and the reducing equivalents generated are used for the reduction of sulfate. Desulfobacterium autotrophicum (DSM 3382) grew also on betaine and sulfate with the formation of N,N-dimethylglycine, sulfide and CO2.  相似文献   

15.
Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.  相似文献   

16.
The betaine aldehyde dehydrogenases (BADH; EC 1.2.1.8) are so-called because they catalyze the irreversible NAD(P)+-dependent oxidation of betaine aldehyde to glycine betaine, which may function as (i) a very efficient osmoprotectant accumulated by both prokaryotic and eukaryotic organisms to cope with osmotic stress, (ii) a metabolic intermediate in the catabolism of choline in some bacteria such as the pathogen Pseudomonas aeruginosa, or (iii) a methyl donor for methionine synthesis. BADH enzymes can also use as substrates aminoaldehydes and other quaternary ammonium and tertiary sulfonium compounds, thereby participating in polyamine catabolism and in the synthesis of γ-aminobutyrate, carnitine, and 3-dimethylsulfoniopropionate. This review deals with what is known about the kinetics and structural properties of these enzymes, stressing those properties that have only been found in them and not in other aldehyde dehydrogenases, and discussing their mechanistic and regulatory implications.  相似文献   

17.
A whole-cell biotransformation system for the reduction of prochiral carbonyl compounds, such as methyl acetoacetate, to chiral hydroxy acid derivatives [methyl (R)-3-hydroxy butanoate] was developed in Escherichia coli by construction of a recombinant oxidation/reduction cycle. Alcohol dehydrogenase from Lactobacillus brevis catalyzes a highly regioselective and enantioselective reduction of several ketones or keto acid derivatives to chiral alcohols or hydroxy acid esters. The adh gene encoding for the alcohol dehydrogenase of L. brevis was expressed in E. coli. As expected, whole cells of the recombinant strain produced only low quantities of methyl (R)-3-hydroxy butanoate from the substrate methyl acetoacetate. Therefore, the fdh gene from Mycobacterium vaccae N10, encoding NAD+-dependent formate dehydrogenase, was functionally coexpressed. The resulting two-fold recombinant strain exhibited an in vitro catalytic alcohol dehydrogenase activity of 6.5 units mg–1 protein in reducing methyl acetoacetate to methyl (R)-3-hydroxy butanoate with NADPH as the cofactor and 0.7 units mg–1 protein with NADH. The in vitro formate dehydrogenase activity was 1.3 units mg–1 protein. Whole resting cells of this strain catalyzed the formation of 40 mM methyl (R)-3-hydroxy butanoate from methyl acetoacetate. The product yield was 100 mol% at a productivity of 200 mol g–1 (cell dry weight) min–1. In the presence of formate, the intracellular [NADH]/[NAD+] ratio of the cells increased seven-fold. Thus, the functional overexpression of alcohol dehydrogenase in the presence of formate dehydrogenase was sufficient to enable and sustain the desired reduction reaction via the relatively low specific activity of alcohol dehydrogenase with NADH, instead of NADPH, as a cofactor.  相似文献   

18.
The present study investigated aspects of betaine metabolism in an elasmobranch fish, the winter skate (Leucoraja ocellata). Based on the level of choline dehydrogenase (ChoDH) activity, the liver and kidney appear to be the major sites of betaine synthesis and the mitochondrial localization of ChoDH and betaine aldehyde dehydrogenase (BADH) indicates that the metabolic organization of betaine synthesis in winter skate is similar to other vertebrates. Food deprivation did not affect white muscle betaine content, and prolonged starvation (70 days) appeared to decrease the total hepatic betaine synthetic capacity. There was no decrease in ChoDH or BADH activity at the mitochondrial level with starvation, suggesting any decrease is due to catabolism of hepatic reserves rather than downregulation of betaine synthesis. Skates fed a high betaine diet (frozen squid approximately 55 micromol g(-1)) had elevated white muscle betaine content compared to those fed a low betaine diet (frozen herring <2 micromol g(-1)); however, high dietary betaine intake did not affect the activity of betaine synthesizing enzymes in liver. Acclimation to elevated salinity (120 and 130% seawater) did not result in an increase in white muscle betaine content. Taken as a whole, the present data suggest that diet is a major determinant of muscle betaine in the winter skate and that betaine is of marginal importance as an intracellular osmolyte in this species.  相似文献   

19.
Glycinebetaine is synthesized in plants by the two‐step oxidation of choline, with betaine aldehyde as the intermediate. The reactions are catalyzed by choline mono‐oxygenase and betaine aldehyde dehydrogenase. Rice plants, which do not accumulate glycinebetaine, possess a gene encoding betaine aldehyde dehydrogenase, whose activity is detectable at low levels. To evaluate the compatibility in rice of glycinebetaine on growth and tolerance to salt, cold and heat, we produced transgenic rice plants by introduction of a cDNA for betaine aldehyde dehydrogenase of barley, which is localized in peroxisomes unlike the chloroplast‐specific localization of betaine aldehyde dehydrogenase in spinach and sugar beet. The transgenic rice plants converted high levels of exogenously applied betaine aldehyde (up to 10 mol m–3) to glycinebetaine more efficiently than did wild‐type plants. The elevated level of glycinebetaine in transgenic plants conferred significant tolerance to salt, cold and heat stress. However, very high levels of glycinebetaine, resulting from conversion of applied betaine aldehyde to glycinebetaine or from exogenous application, inhibited increases in length of rice plants but not increases in dry weight. Our results suggested that the benefits of accumulation of glycinebetaine by rice plants might be considerable under high light conditions.  相似文献   

20.
The sequence was determined of 6493 nucleotides encompassing the bet genes of Escherichia coli which encode the osmoregulatory choline-glycine betaine pathway. Four open reading frames were identified: betA encoding choline dehydrogenase, a flavoprotein of 61.9kDa; betB encoding betaine aldehyde dehydrogenase (52.8kDa); betT encoding a proton-motive-force-driven, high-affinity transport system for choline (75.8kDa); and betl, capable of encoding a protein of 21.8kDa, implicated as a repressor involved in choline regulation of the bet genes. Identification of the genes was supported by subcloning, physical mapping of lambda placMu53 insertions, amino acid sequence similarity, or N-terminal amino acid sequencing. The bet genes are tightly spaced, with betT located upstream of, and transcribed divergently to, the tandemly linked betIBA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号