首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoscale magnetite can facilitate microbial extracellular electron transfer that plays an important role in biogeochemical cycles, bioremediation and several bioenergy strategies, but the mechanisms for the stimulation of extracellular electron transfer are poorly understood. Further investigation revealed that magnetite attached to the electrically conductive pili of Geobacter species in a manner reminiscent of the association of the multi‐heme c‐type cytochrome OmcS with the pili of Geobacter sulfurreducens. Magnetite conferred extracellular electron capabilities on an OmcS‐deficient strain unable to participate in interspecies electron transfer or Fe(III) oxide reduction. In the presence of magnetite wild‐type cells repressed expression of the OmcS gene, suggesting that cells might need to produce less OmcS when magnetite was available. The finding that magnetite can compensate for the lack of the electron transfer functions of a multi‐heme c‐type cytochrome has implications not only for the function of modern microbes, but also for the early evolution of microbial electron transport mechanisms.  相似文献   

2.
Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.  相似文献   

3.
《Trends in microbiology》2023,31(4):384-392
A dynamic field of study has emerged involving long-range electron transport by extracellular filaments in anaerobic bacteria, with Geobacter sulfurreducens being used as a model system. The interest in this topic stems from the potential uses of such systems in bioremediation, energy generation, and new bio-based nanotechnology for electronic devices. These conductive extracellular filaments were originally thought, based upon low-resolution observations of dried samples, to be type IV pili (T4P). However, the recently published atomic structure for the T4P from G. sulfurreducens, obtained by cryo-electron microscopy (cryo-EM), is incompatible with the numerous models that have been put forward for electron conduction. As with all high-resolution structures of T4P, the G. sulfurreducens T4P structure shows a partial melting of the α-helix that substantially impacts the aromatic residue positions such that they are incompatible with conductivity. Furthermore, new work using high-resolution cryo-EM shows that conductive filaments thought to be T4P are actually polymerized cytochromes, with stacked heme groups forming a continuous conductive wire, or extracellular DNA. Recent atomic structures of three different cytochrome filaments from G. sulfurreducens suggest that such polymers evolved independently on multiple occasions. The expectation is that such polymerized cytochromes may be found emanating from other anaerobic organisms.  相似文献   

4.
Electricity from microorganisms   总被引:1,自引:0,他引:1  
V. G. Debabov 《Microbiology》2008,77(2):123-131
Over the last ten years, the recently discovered process of direct electron transfer from anaerobically grown microorganisms to an electrode of a fuel cell has been the object of intense study. The microorganisms responsible for such electron transport were termed electrogenic; the devices using them to generate electric current, microbial fuel cells (MFCs). The review discussed the molecular mechanisms of electron transfer to the environment in the case of the two best studied microorganisms, Shewanella oneidensis and Geobacter sulfurreducens. The discovery of bacterial conducting pili (nanowires) used for electron transfer to the electrode and between bacterial cells was sensational. In the real MFCs, which use complex substrates (industrial liquid waste), microbial associations are active, often as biofilms. The progress in MFCs design and the prospects of their practical application are considered.  相似文献   

5.
The conductive pili of Geobacter species play an important role in electron transfer to Fe(III) oxides, in long-range electron transport through current-producing biofilms, and in direct interspecies electron transfer. Although multiple lines of evidence have indicated that the pili of Geobacter sulfurreducens have a metal-like conductivity, independent of the presence of c-type cytochromes, this claim is still controversial. In order to further investigate this phenomenon, a strain of G. sulfurreducens, designated strain PA, was constructed in which the gene for the native PilA, the structural pilin protein, was replaced with the PilA gene of Pseudomonas aeruginosa PAO1. Strain PA expressed and properly assembled P. aeruginosa PilA subunits into pili and exhibited a profile of outer surface c-type cytochromes similar to that of a control strain expressing the G. sulfurreducens PilA. Surprisingly, the strain PA pili were decorated with the c-type cytochrome OmcS in a manner similar to the control strain. However, the strain PA pili were 14-fold less conductive than the pili of the control strain, and strain PA was severely impaired in Fe(III) oxide reduction and current production. These results demonstrate that the presence of OmcS on pili is not sufficient to confer conductivity to pili and suggest that there are unique structural features of the G. sulfurreducens PilA that are necessary for conductivity.  相似文献   

6.

Background  

Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III) and manganese(IV) oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM). Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35) in the use of anaerobic electron acceptors was explored.  相似文献   

7.
The electrically conductive pili (e-pili) of Geobacter species enable extracellular electron transfer to insoluble metallic minerals, electrodes and other microbial species, which confers biogeochemical significance and global prevalence on Geobacter in diverse anaerobic environments. E-pili are constructed by truncated PilA which is considered to have evolved from full-length pilin by gene fission under positive evolutionary selection. However, this hypothesis is based on phylogenetic analysis and has not yet been experimentally confirmed. Here, we reconstructed an ancestral strain of G. sulfurreducens (designated COMB) carrying full-length PilA by combining genes GSU1496 and GSU1497. The results demonstrated that strain COMB expressed and assembled the full-length fused PilA and exhibited an outer membrane c-type cytochrome profile similar to the wild-type strain. Surprisingly, the generated COMB-pili were also conductive, indicating the evolution of truncated PilA did not occur for conductivity. Moreover, strain COMB minimally reduced Fe(III) oxides but maintained its ability to respire electrodes, demonstrating the truncation of pilin enables iron respiration. This study provides the first experimental evidence that the truncation of pilin in Geobacter species confers adaption to Fe(III)-mineral-mediated selective pressures, and suggests an evolutionary event during which the separation of the GSU1497 gene helped Geobacter survive and thrive in natural environments.  相似文献   

8.
9.
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g. 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologues might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase.  相似文献   

10.
11.
Several species of δ proteobacteria are capable of reducing insoluble metal oxides as well as other extracellular electron acceptors. These bacteria play a critical role in the cycling of minerals in subsurface environments, sediments, and groundwater. In some species of bacteria such as Geobacter sulfurreducens, the transport of electrons is proposed to be facilitated by filamentous fibers that are referred to as bacterial nanowires. These nanowires are polymeric assemblies of proteins belonging to the type IVa family of pilin proteins and are mainly comprised of one subunit protein, PilA. Here, we report the high resolution solution NMR structure of the PilA protein from G. sulfurreducens determined in detergent micelles. The protein is >85% α-helical and exhibits similar architecture to the N-terminal regions of other non-conductive type IVa pilins. The detergent micelle interacts with the first 21 amino acids of the protein, indicating that this region likely associates with the bacterial inner membrane prior to fiber formation. A model of the G. sulfurreducens pilus fiber is proposed based on docking of this structure into the fiber model of the type IVa pilin from Neisseria gonorrhoeae. This model provides insight into the organization of aromatic amino acids that are important for electrical conduction.  相似文献   

12.
Shewanella is a microbial genus that can oxidize lactate for the reduction of insoluble electron acceptors. This reduction is possible by either direct (cell-surface interaction, nanowires) or indirect (soluble redox mediators) mechanisms. However, the actual molecular identification of a nanowire has not been determined. Through mutational studies, Shewanella oneidensis MR-1 was analyzed for its ability to transfer electrons to an electrode after deletion of the structural pilin genes (ΔmshA-D) or the entire biosynthetic expression system (ΔmshH-Q) of one of its pilin complexes (Msh type IV pilus gene locus). The complete removal of the Msh complex (ΔmshH-Q) significantly decreased the current generated from a fuel cell compared to MR-1. However, the mutant with only extracellular Msh structural proteins removed (ΔmshA-D) was able to generate 80% of the current compared to MR-1. Thus, the intracellular and membrane bound Msh biogenesis complex is a pathway for extracellular electron transfer in S. oneidensis MR-1.  相似文献   

13.
Previous studies have suggested that the conductive pili of Geobacter sulfurreducens are essential for extracellular electron transfer to Fe(III) oxides and for optimal long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene encoding PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, low rates of Fe(III) reduction were detected after extended incubation (>30 days) in the presence of Fe(III) oxide. After seven consecutive transfers, the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, whole-genome resequencing, proteomic, and gene deletion studies indicated that this adaptation was associated with the production of larger amounts of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every 3 days, the wild-type strain outcompeted the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA being continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron shuttle-producing Fe(III) reducers in many anaerobic soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current, consistent with the concept that long-range electron transport through G. sulfurreducens biofilms is more effective via pili.  相似文献   

14.
15.
Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR‐1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.  相似文献   

16.
《BBA》2020,1861(11):148271
The bacterium Geobacter metallireducens is highly efficient in long-range extracellular electron transfer, a process that relies on an efficient bridging between the cytoplasmic electron donors and the extracellular acceptors. The periplasmic triheme cytochromes are crucial players in these processes and thus the understanding of their functional mechanism is crucial to elucidate the extracellular electron transfer processes in this microorganism. The triheme cytochrome PpcF from G. metallireducens has the lowest amino acid sequence identity with the remaining cytochromes from the PpcA-family of G. sulfurreducens and G. metallireducens, making it an interesting target for structural and functional studies. In this work, we performed a detailed functional and thermodynamic characterization of cytochrome PpcF by the complementary usage of NMR and visible spectroscopic techniques. The results obtained show that the heme reduction potentials are negative, different from each other and are also modulated by the redox and redox-Bohr interactions that assure unprecedented mechanistic features to the protein. The results showed that the order of oxidation of the hemes in cytochrome PpcF is maintained in the entire physiological pH range. The considerable separation of the hemes' redox potential values facilitates a sequential transfer within the chain of redox centers in PpcF, thus assuring electron transfer directionality to the electron acceptors.  相似文献   

17.
Nanofilament production by Shewanella oneidensis MR-1 was evaluated as a function of lifestyle (planktonic vs. sessile) under aerobic and anaerobic conditions using different sample preparation techniques prior to imaging with scanning electron microscopy. Nanofilaments could be imaged on MR-1 cells grown in biofilms or planktonically under both aerobic and anaerobic batch culture conditions after fixation, critical point drying and coating with a conductive metal. Critical point drying was a requirement for imaging nanofilaments attached to planktonically grown MR-1 cells, but not for cells grown in a biofilm. Techniques described in this paper cannot be used to differentiate nanowires from pili or flagella.  相似文献   

18.
Al-Sheboul S  Saffarini D 《Anaerobe》2011,17(6):501-505
Shewanella oneidenesis MR-1 is a facultative anaerobe that can use a large number of electron acceptors including metal oxides. During anaerobic respiration, S. oneidensis MR-1 synthesizes a large number of c cytochromes that give the organism its characteristic orange color. Using a modified mariner transposon, a number of S. oneidensis mutants deficient in anaerobic respiration were generated. One mutant, BG163, exhibited reduced pigmentation and was deficient in c cytochromes normally synthesized under anaerobic condition. The deficiencies in BG163 were due to insertional inactivation of hemN1, which exhibits a high degree of similarity to genes encoding anaerobic coproporphyrinogen III oxidases that are involved in heme biosynthesis. The ability of BG163 to synthesize c cytochromes under anaerobic conditions, and to grow anaerobically with different electron acceptors was restored by the introduction of hemN1 on a plasmid. Complementation of the mutant was also achieved by the addition of hemin to the growth medium. The genome sequence of S. oneidensis contains three putative anaerobic coproporphyrinogen III oxidase genes. The protein encoded by hemN1 appears to be the major enzyme that is involved in anaerobic heme synthesis of S. oneidensis. The other two putative anaerobic coproporphyrinogen III oxidase genes may play a minor role in this process.  相似文献   

19.
Anodophilic bacteria have the ability to generate electricity in microbial fuel cells (MFCs) by extracellular electron transfer to the anode. We investigated the anode‐specific responses of Shewanella oneidensis MR‐1, an exoelectroactive Gammaproteobacterium, using for the first time iTRAQ and 2D‐LC MS/MS driven membrane proteomics to compare protein abundances in S. oneidensis when generating power in MFCs, and growing in a continuous culture. The regulated dataset produced was enriched in membrane proteins. Proteins shown to be more abundant in anaerobic electroactive anodic cells included efflux pump TolC and an uncharacterised tetratricopeptide repeat (TPR) protein, whilst the TonB2 system and associated uncharacterised proteins such as TtpC2 and DUF3450 were more abundant in microaerobic planktonic cells. In order to validate the iTRAQ data, the functional role for TolC was examined using a δTolC knockout mutant of S. oneidensis. Possible roles for the uncharacterised proteins were identified using comparative bioinformatics. We demonstrate that employing an insoluble extracellular electron acceptor requires multiple proteins involved in cell surface properties. All MS and processed data are available via ProteomeXchange with identifier PXD004090.  相似文献   

20.
An extracellular electron carrier excreted into the growth medium by cells of Geobacter sulfurreducens was identified as a c-type cytochrome. The cytochrome was found to be distributed in about equal amounts in the membrane fraction, the periplasmic space, and the surrounding medium during all phases of growth with acetate plus fumarate. It was isolated from periplasmic preparations and purified to homogeneity by cation-exchange chromatography, gel filtration, and hydrophobic interaction chromatography. The electrophoretically homogeneous cytochrome had a molecular mass of 9.57 ± 0.02 kDa and exhibited in its reduced state absorption maxima at wavelengths of 552, 522, and 419 nm. The midpoint redox potential determined by redox titration was −0.167 V. With respect to molecular mass, redox properties, and molecular features, this cytochrome exhibited its highest similarity to the cytochromes c of Desulfovibrio salexigens and Desulfuromonas acetoxidans. The G. sulfurreducens cytochrome c reduced ferrihydrite (Fe(OH)3), Fe(III) nitrilotriacetic acid, Fe(III) citrate, and manganese dioxide at high rates. Elemental sulfur, anthraquinone disulfonate, and humic acids were reduced more slowly. G. sulfurreducens reduced the cytochrome with acetate as an electron donor and oxidized it with fumarate. Wolinella succinogenes was able to reduce externally provided cytochrome c of G. sulfurreducens with molecular hydrogen or formate as an electron donor and oxidized it with fumarate or nitrate as an electron acceptor. A coculture could be established in which G. sulfurreducens reduced the cytochrome with acetate, and the reduced cytochrome was reoxidized by W. succinogenes in the presence of nitrate. We conclude that this cytochrome can act as iron(III) reductase for electron transfer to insoluble iron hydroxides or to sulfur, manganese dioxide, or other oxidized compounds, and it can transfer electrons to partner bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号