首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Littoral chironomid communities in an arctic Alaskan lake   总被引:6,自引:0,他引:6  
The soft-sediment littoral zone of arctic Toolik Lake (68°N) is composed of patches of macrophytes and bare sediments, which support distinct communities of chironomid larvae. Macrophytes were typically dominated by Stictochironomus rosenschoeldi (Zett.) but also had persistent populations of Heterotrissocladius maeaeri Brund., Paratanytarsus spp., Ablabesmyia sp., as well as several other less common taxa. Bare sediments were dominated by H. maeaeri, Parakiefferiella sp., and Zalutschia zalutschicola Lip. S. rosenschoeldi was common in bare sediments hut far less so than in macrophytes. Few taxa were restricted to either habitat. Life cycle lengths, estimated for some species, ranged from 1 to 4 yr. Analysis of indicator species suggested that Toolik is oligotrophic to ultra-oligotrophic, which is consistent with the available primary production estimate for Toolik Lake. Littoral chironomid communities, in addition to profundal communities, may be useful in lake typology.  相似文献   

2.
Aim Recent papers have used large palaeolimnological datasets to reveal the biodiversity patterns of aquatic microorganisms. However, scant attention has been paid to the influence of time on these patterns. Where lake surficial sediment samples are used as integrals of diversity, the time interval of each sample varies according to differences in sediment accumulation rates. This paper aims to test the reliability of using lake surface sediments to measure and to compare microbial diversity when the potential influences of the species–time relationships are taken into account. Location Alpine lakes in Europe. Methods We analysed microorganism (siliceous microalgae) assemblages in three European Alpine lakes using short sediment cores (210Pb‐dated) and annual sediment trap samples from 12 UK lakes. The same number of individuals was pooled for each sample 500 times to avoid sampling effort effects and to standardize species diversity estimation. The influence of time on the diversity score was assessed by simulating an increase of time span for surface sediment samples by cumulatively adding in successive sediment core samples (from the most recent to the oldest). We used species richness (S) and the exponential of the bias‐corrected Shannon entropy index (exp(Hb‐c)) to estimate diversity. Results Increasing the time interval represented by a surficial sediment sample did not affect the diversity results. The estimation of diversity was similar for cumulative and non‐cumulative samples. Diversity estimation was only altered in lakes experiencing high community turnover due to strong environmental forcing during the time period spanned by the cumulative sample. Main conclusions The use of surface lake sediments is suitable for estimating the average site diversity of free‐living microorganisms. Diversity is integrated in a single sample and species assemblage composition is derived from microbial communities living in distinct lake microhabitats. Species remains, accumulated in a single sample over several years of environmental variability, represent a diversity integral that captures a spatio‐temporal component equivalent to the γ‐diversity measure.  相似文献   

3.
Seasonal microbial activity in Antarctic freshwater lake sediments   总被引:2,自引:1,他引:2  
Summary Seasonal fluctuations in population numbers and activity were monitored in bottom sediments of oligotrophic Moss Lake, mesotrophic Heywood Lake and eutrophic Amos Lake on Signy Island, South Orkney Islands, during 1976–78. Heywood and Amos Lakes became anoxic under winter ice cover (8–10 months) and significant populations of facultatively anaerobic heterotrophs and sulphate-reducing bacteria developed. In contrast, Moss Lake surface sediments never became anoxic and anaerobic bacteria were virtually absent. Direct microscopic counts and viable plate counts fluctuated relatively little in Moss Lake throughout the study period, whereas distinct seasonality was observed in the more enriched lake systems. Similarly, measurements of oxygen consumption and dark 14CO2 uptake by mud cores indicated no obvious seasonal fluctuations in Moss Lake data, in contrast to the marked seasonal pattern observed in data from the other lakes. In these latter systems, oxygen uptake rates were highest in summer (c. 400 mg O2 m-2 d-1) and virtually undetectable in winter. Comparison of oxygen uptake with oxygen concentration and temperature revealed differences, between lakes, in uptake response to oxygen concentration, whereas uptake response to temperature did not differ significantly between lakes. Chemosynthetic production in the Signy Island lake sediments was in the range 1.6–35.3 g C m-2 (mud surface) d-1 with highest values recorded in Amos Lake under winter ice cover and anoxic conditions. The findings from this and earlier studies of the three lakes have been assembled to indicate the relative importance of green plants and bacteria to the carbon cycle in these permanently cold systems.  相似文献   

4.
Intense disturbance may locally destroy patches of habitat and shape the landscape into a mosaic of reassembling communities. The development of ecosystem properties during such community reassembly is poorly understood. In intertidal bare sediments, trophic relations between microphytobenthos or heterotrophic bacteria and macrofauna invertebrates may guarantee fundamental ecosystem properties such as carbon flow through the food web. We studied the dynamic relation between reassembling macrofauna communities and such microbial carbon flow during recovery after severe disturbance. We deliberately induced prolonged hypoxia in winter and early summer and allowed recolonisation for periods of two and five months. Carbon flow was quantified from basal resources (microphytobenthos and bacteria) to intermediate consumers using 13C as a tracer. Within the period of study (5 months), microbial carbon flow fully recovered, although macrofauna diversity was still very low compared to the natural communities (ranging from 6 to 17 species). More than 90% of microbial carbon flow to macrofauna was due to the consumers that recolonised within two months. Two of these species were dominant contributors to microphytobenthos carbon transfer to fauna. Furthermore, at an early stage of reassembly, this ecosystem property was remarkably similar when disturbance took place at different times of the year (winter or early summer), although there were differences in assemblage composition and functional diversity. We conclude that species assemblages and ecosystem function developed relatively independently in this benthic system. We discuss which ecological factors may have caused such non-parallel development of macrofaunal communities and carbon flow.  相似文献   

5.
In order to develop effective bioremediation strategies for radionuclide contaminants, the composition and metabolic potential of microbial communities need to be better understood, especially in highly contaminated subsurface sediments for which little cultivation-independent information is available. In this study, we characterized metabolically active and total microbial communities associated with uranium-contaminated subsurface sediments along geochemical gradients. DNA and RNA were extracted and amplified from four sediment-depth intervals representing moderately acidic (pH 3.7) to near-neutral (pH 6.7) conditions. Phylotypes related to Proteobacteria (Alpha-, Beta-, Delta- and Gammaproteobacteria), Bacteroidetes, Actinobacteria, Firmicutes and Planctomycetes were detected in DNA- and RNA-derived clone libraries. Diversity and numerical dominance of phylotypes were observed to correspond to changes in sediment geochemistry and rates of microbial activity, suggesting that geochemical conditions have selected for well-adapted taxa. Sequences closely related to nitrate-reducing bacteria represented 28% and 43% of clones from the total and metabolically active fractions of the microbial community, respectively. This study provides the first detailed analysis of total and metabolically active microbial communities in radionuclide-contaminated subsurface sediments. Our microbial community analysis, in conjunction with rates of microbial activity, points to several groups of nitrate-reducers that appear to be well adapted to environmental conditions common to radionuclide-contaminated sites.  相似文献   

6.
Recent advances in the degradation of polychlorinated biphenyls (PCBs) have focussed on the use of experimental enrichment cultures to obtain PCB-degrading communities, and the use of culture-independent approaches to characterize natural and experimental PCB-degrading communities and to identify the key members in this process. PCB-degrading communities can be surprisingly diverse. Novel types of composite bacteria-mineral biofilm communities have been described. Community metabolism of PCBs may lead to the formation of protoanemonin, a dead-end product in some instances but, in others, a seemingly productive intermediate. Analysis of isotope fractionation and preferred enantiomer degradation has provided new information on degradation of PCBs in anaerobic settings. The first defined community capable of dehalorespiration of PCBs has been described, and important community members identified. Here, we provide an overview of the current knowledge of aerobic and anaerobic degradation of PCBs in microbial consortia and in the environment, including novel approaches to determine in situ PCB degradation.  相似文献   

7.
8.
The permafrost on the North Slope of Alaska is densely populated by shallow lakes that result from thermokarst erosion. These lakes release methane (CH4) derived from a combination of ancient thermogenic pools and contemporary biogenic production. Despite the potential importance of CH4 as a greenhouse gas, the contribution of biogenic CH4 production in arctic thermokarst lakes in Alaska is not currently well understood. To further advance our knowledge of CH4 dynamics in these lakes, we focused our study on (i) the potential for microbial CH4 production in lake sediments, (ii) the role of sediment geochemistry in controlling biogenic CH4 production, and (iii) the temperature dependence of this process. Sediment cores were collected from one site in Siqlukaq Lake and two sites in Sukok Lake in late October to early November. Analyses of pore water geochemistry, sedimentary organic matter and lipid biomarkers, stable carbon isotopes, results from CH4 production experiments, and copy number of a methanogenic pathway‐specific gene (mcrA) indicated the existence of different sources of CH4 in each of the lakes chosen for the study. Analysis of this integrated data set revealed that there is biological CH4 production in Siqlukaq at moderate levels, while the very low levels of CH4 detected in Sukok had a mixed origin, with little to no biological CH4 production. Furthermore, methanogenic archaea exhibited temperature‐dependent use of in situ substrates for methanogenesis, and the amount of CH4 produced was directly related to the amount of labile organic matter in the sediments. This study constitutes an important first step in better understanding the actual contribution of biogenic CH4 from thermokarst lakes on the coastal plain of Alaska to the current CH4 budgets.  相似文献   

9.
Five vessels, connected in series, were used for a continuous flow system to model carbon flow in anaerobic microbial communities. Two such 5-vessel systems were constructed, the inflows containing 10 mM sulfate and either 10 mM glucose or benzoate. Dilution was slow (D=0.0018 h?1 for the whole system). Analyses of dissolved organic and inorganic carbon, and of CO2 and CH4, showed that the systems attained steady states in which biomass was constant, although there was net biosynthesis in the early vessels and net mineralization in succeeding vessels. Examination of the distributions of sulfate reduction, methanogenesis, and of H2+CO2-utilizing fatty acid-forming bacteria revealed spatial separation of these functional groups of bacteria in different vessels of the array, resembling the vertical spatial separation found in many natural sediments. Such model systems should, therefore, prove valuable in investigating the many microbial activities that contribute to the flow of carbon in anaerobic microbial communities.  相似文献   

10.
Arsenic (As) cycling within soils and sediments of the Mekong Delta of Cambodia is affected by drastic redox fluctuations caused by seasonal monsoons. Extensive flooding during monsoon seasons creates anoxic soil conditions that favor anaerobic microbial processes, including arsenate [As(V)] respiration—a process contributing to the mobilization of As. Repeated oxidation and reduction in near‐surface sediments, which contain 10–40 mg kg?1 As, lead to the eventual downward movement of As to the underlying aquifer. Amplification of a highly conserved functional gene encoding dissimilatory As(V) reductase, arrA, can be used as a molecular marker to detect the genetic potential for As(V) respiration in environmental samples. However, few studies have successfully amplified arrA from sediments without prior enrichment, which can drastically shift community structure. In the present study, we examine the distribution and diversity of arrA genes amplified from multiple sites within the Cambodian Mekong Delta as a function of near‐surface depth (10, 50, 100, 200, and 400 cm), where sediments undergo seasonal redox fluctuations. We report successful amplification of 302 arrA gene sequences (72 OTUs) from near‐surface Cambodian soils (without prior enrichment or stimulation with carbon amendments), where a large majority (>70%) formed a well‐supported clade that is phylogenetically distinct from previously reported sequences from Cambodia and other South and Southeast Asian sediments, with highest sequence similarity to known Geobacter species capable of As(V) respiration, further supporting the potentially important role of Geobacter sp. in arsenic mobilization in these regions.  相似文献   

11.
【目的】探究湖泊沉积物中有机碳组分构成及其对湖泊微生物群落结构的影响。【方法】本研究采集了青藏高原29个湖泊共81个沉积物样品,通过硫酸水解法分析样品中易降解和难降解有机碳含量及其与环境变量之间的相关性;同时使用高通量测序技术分析样品中原核微生物和真菌群落的多样性和组成及其与易降解和难降解有机碳含量的相关关系。【结果】本研究的青藏高原湖泊沉积物中易降解有机碳Ⅰ(labile organic carbon Ⅰ, LOCⅠ)、易降解有机碳Ⅱ(labile organic carbon Ⅱ, LOCⅡ)和难降解有机碳(recalcitrant organic carbon, ROC)的含量分别为0.03–29.62 mg/g、0.02–23.38 mg/g和0.64–75.72 mg/g,ROC是沉积物有机碳的主要组分(占比为54.97%±19.50%)。LOCⅠ含量与海拔、总氮、总磷、钙离子、活性钙和活性铁含量显著相关(P<0.05);LOCⅡ含量与总氮、钙离子和活性钙含量显著相关;而ROC含量与海拔、总氮、总磷、钙离子和活性钙含量显著相关。其中,钙离子和活性钙的浓度与3种有机碳组分...  相似文献   

12.
Mangrove soils are anaerobic environments rich in sulphate and organic matter. Although the sulphur cycle is one of the major actors in this ecosystem, little is known regarding the sulphur bacteria communities in mangrove soils. We investigated the abundance, composition and diversity of sulphur‐oxidizing (SOB) and sulphate‐reducing (SRB) bacteria in sediments from three Brazilian mangrove communities: two contaminated, one with oil (OilMgv) and one with urban waste and sludge (AntMgv), and one pristine (PrsMgv). The community structures were assessed using quantitative real‐time polymerase chain reaction (qPCR), polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and clone libraries, using genes for the enzymes adenosine‐5′‐phosphosulphate reductase (aprA) and sulphite reductase (Dsr) (dsrB). The abundance for qPCR showed the ratio dsrB/aprA to be variable among mangroves and higher according to the gradient observed for oil contamination in the OilMgv. The PCR‐DGGE patterns analysed by Nonmetric Multidimensional Scaling revealed differences among the structures of the three mangrove communities. The clone libraries showed that Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria were the most abundant groups associated with sulphur cycling in mangrove sediments. We conclude that the microbial SOB and SRB communities in mangrove soils are different in each mangrove forest and that such microbial communities could possibly be used as a proxy for contamination in mangrove forests.  相似文献   

13.
While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant–pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.  相似文献   

14.
Lake sediments are globally important carbon sinks. Although the fate of organic carbon in lake sediments depends significantly on microorganisms, only few studies have investigated controls on lake sedimentary microbial communities. Here we investigate the impact of anthropogenic eutrophication, which affects redox chemistry and organic matter (OM) sources in sediments, on microbial communities across five lakes in central Switzerland. Lipid biomarkers and distributions of microbial respiration reactions indicate strong increases in aquatic OM contributions and microbial activity with increasing trophic state. Across all lakes, 16S rRNA genes analyses indicate similar depth-dependent zonations at the phylum- and class-level that follow vertical distributions of OM sources and respiration reactions. Yet, there are notable differences, such as higher abundances of nitrifying Bacteria and Archaea in an oligotrophic lake. Furthermore, analyses at the order-level and below suggest that changes in OM sources due to eutrophication cause permanent changes in bacterial community structure. By contrast, archaeal communities are differentiated according to trophic state in recently deposited layers, but converge in older sediments deposited under different trophic regimes. Our study indicates an important role for trophic state in driving lacustrine sediment microbial communities and reveals fundamental differences in the temporal responses of sediment Bacteria and Archaea to eutrophication.  相似文献   

15.
The effect of sulfate on methane production in Lake Mendota sediments was investigated to clarify the mechanism of sulfate inhibition of methanogenesis. Methanogenesis was shown to be inhibited by the addition of as little as 0.2 mM sulfate. Sulfate inhibition was reversed by the addition of either H2 or acetate. Methane evolved when inhibition was reversed by H2 additions was derived from 14CO2. Conversely, when acetate was added to overcome sulfate inhibition, the evolved methane was derived from [2-14C]acetate. A competition for available H2 and acetate was proposed as the mechanism by which sulfate inhibited methanogenesis. Acetate was shown to be metabolized even in the absence of methanogenic activity. In the presence of sulfate, the methyl position of acetate was converted to CO2. The addition of sulfate to sediments did not result in the accumulation of significant amounts of sulfide in the pore water. Sulfate additions did not inhibit methanogenesis unless greater than 100 mug of free sulfide per ml was present in the pore water. These results indicate that carbon and electron flow are altered when sulfate is added to sediments. Sulfate-reducing organisms appear to assume the role of methanogenic bacteria in sulfate-containing sediments by utilizing methanogenic precursors.  相似文献   

16.
Future considerations of carbon-energy flows within pelagic food webs should include internal, biotic feedback controls, in addition to abiotic forcing functions, in the regulation of these flows. Over the past two decades, research on microbial communities of pelagic ecosystems has yielded data suggestive of cybernetic-like regulation operating within these communities. As presently conceived, phagotrophic protozoa have a pivotal role in such regulation as a consequence of their rapid growth, grazing, and nutrient regenerative capabilities. Feedback controls within microbial food webs may have significant effects on distal portions of pelagic ecosystems, including the fate of organic detritus and metazoan production.  相似文献   

17.
Percent respiration was measured in over 1,100 arctic and subarctic marine water and sediment samples using14C-labeled glucose and glutamate. These measurements were made at different times of the year in 4 regions. Percent respiration values were typically lower in regions where the waters of large rivers mixed with seawater. They were also lower in sediments and in waters collected near the bottom than in surface waters. They were higher in winter arctic waters than water samples collected in the summer; however, a similar seasonal trend was not observed in subarctic waters. There were a number of studies in which there were significant positive rank correlations between percent respiration and salinity and between percent respiration and temperature. From what is known about the range of temperature and salinity encountered in samples collected during these studies and the results of temperature and salinity effects experiments, it was concluded that changes in these 2 variables did not explain the variation observed in percent respiration. Correlations between percent respiration and the inorganic nutrients PO4 –3, NH4 + and NO3 showed that of the 3 variables, only NO3 showed relatively high correlations with all the same sign. From this it was concluded that there may be situations in which NO3 levels may influence percent respiration in nearshore marine waters. It is also likely that qualitative characteristics of the available organic nutrients may also influence percent respiration levels. Although no organic nutrient data is available for statistical analysis, the patterns of percent respiration near river plumes and the relatively strong negative correlation often observed between uptake rates (heterotrophic activity) and percent respiration suggests that organic nutrients may be a factor in controlling percent respiration. It is suggested that there are situations in which percent respiration measurements may be used to document stress in natural microbial populations due to nutrient deficiencies.  相似文献   

18.
Plant and animal biodiversity can be studied by obtaining DNA directly from the environment. This new approach in combination with the use of generic barcoding primers (metabarcoding) has been suggested as complementary or alternative to traditional biodiversity monitoring in ancient soil sediments. However, the extent to which metabarcoding truly reflects plant composition remains unclear, as does its power to identify species with no pollen or macrofossil evidence. Here, we compared pollen‐based and metabarcoding approaches to explore the Holocene plant composition around two lakes in central Scandinavia. At one site, we also compared barcoding results with those obtained in earlier studies with species‐specific primers. The pollen analyses revealed a larger number of taxa (46), of which the majority (78%) was not identified by metabarcoding. The metabarcoding identified 14 taxa (MTUs), but allowed identification to a lower taxonomical level. The combined analyses identified 52 taxa. The barcoding primers may favour amplification of certain taxa, as they did not detect taxa previously identified with species‐specific primers. Taphonomy and selectiveness of the primers are likely the major factors influencing these results. We conclude that metabarcoding from lake sediments provides a complementary, but not an alternative, tool to pollen analysis for investigating past flora. In the absence of other fossil evidence, metabarcoding gives a local and important signal from the vegetation, but the resulting assemblages show limited capacity to detect all taxa, regardless of their abundance around the lake. We suggest that metabarcoding is followed by pollen analysis and the use of species‐specific primers to provide the most comprehensive signal from the environment.  相似文献   

19.
Methane (CH(4)) flux to the atmosphere is mitigated via microbial CH(4) oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH(4) emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH(4) oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH(4) oxidation potential of 37.5 μmol g(-1) day(-1) in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in (13)C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH(4) in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH(4), especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号