首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies to four rat liver forms of cytochrome P-450, two phenobarbital-inducible (PB1 and PB2) and two 3-methylcholanthrene-inducible (MC1 and MC2) proteins, have been used to make a structural and functional comparison of rat and human cytochromes P-450. Proteins from both species were identified on Western blots by their reaction with these antibodies. In the human liver preparations, structurally related proteins to PB1 and to PB2 were identified in all the samples tested with apparent Mr values of 51 800 and 54 800 for PB1 and 53 600 and 57 200 for PB2. Considerable variation in the content of the lower-Mr proteins was measured between samples and, as with the rat enzymes, samples which reacted well with anti-PB1 also reacted with anti-PB2, indicating that these proteins are regulated at least to some degree, co-ordinately. The apparent Mr values of the major human proteins identified with anti-MC1 and anti-MC2 were 54 400 and 57 000 respectively. Only six (of 31) human samples contained significant amounts of these proteins. The same six samples which reacted with anti-MC1 also reacted with anti-MC2, again indicating co-ordinate regulation of these two proteins. Antibody inhibition of microsomal 7-ethoxycoumarin and 7-ethoxyresorufin metabolism demonstrated a degree of conservation of substrate specificity related to specific P-450 isoenzymes between the species. However, the contributions of the different P-450 isoenzymes to the human microsomal activity were not always related to the rat enzyme with the highest activity towards these substrates.  相似文献   

2.
Three alicyclic compounds (D-camphor, adamantanone, adamantane) were found to be hydroxylated by the cytochrome P-450 isoenzymes P-450cam and P-450LM2. With P-450cam as the catalyst only one product was formed from each of the substrates: 5-exohydroxycamphor, 5-hydroxyadamantanone, and 1-adamantanol. With P-450LM2 as the catalyst, two or more isomeric products were formed from each substrate: 3-endo-, 5-exo-, and 5-endo-hydroxycamphor; 4-anti- and 5-hydroxyadamantanone; and 1- and 2- adamantanol. The products from P-450cam hydroxylations were found to be isosteric with one another, suggesting that each of them was attacked at a topologically congruent position within a rigid enzyme-substrate complex. The distribution of products from P-450LM2 hydroxylations, on the other hand, were similar to the distributions expected during solution-phase hydroxylations. Thus, it would appear that the complex which P-450LM2 forms with its substrate allows considerable movement of the substrate molecule, such that most of the hydrogens in the substrate are exposed to the enzymatic hydrogen abstractor. Under these conditions, the distribution of products more nearly reflects the rank order of chemical reactivities of the various hydroxylatable positions, with only a moderate protein-based steric constraint being expressed. These suggestions were also evident in the tightness of binding of the substrates to the two enzymes and in the magnitude of coupling between the substrate binding and the spin-state equilibria. Thus, the product from P-450cam-catalyzed hydroxylation may be predicted by a consideration of the relation of the topology of the prospective substrate to that of D-camphor. The products from P-450LM2-catalyzed hydroxylations, on the other hand, may be approximately predicted from the chemical reactivities of the various abstractable hydrogens in the prospective substrate.  相似文献   

3.
The influence of age, sex, and hormonal status on the expression of eight rat hepatic cytochrome P-450 (P-450) isoenzymes was evaluated by both catalytic and immunochemical methods. The male specificity of P-450 2c(male)/UT-A, the major microsomal steroid 16 alpha-hydroxylase of uninduced rat liver [Waxman, D.J. (1984) J. Biol. Chem. 259, 15481-15490], was shown to reflect its greater than or equal to 30-fold induction at puberty in male but not in female rats. The female specificity of P-450 2d(female)/UT-I was shown to reflect its developmental induction in females. P-450 PB-2a/PCN-E was shown to mediate greater than or equal to 85% of microsomal steroid 6 beta-hydroxylase activity; the male specificity of this P-450 largely reflects its developmental suppression in female rats. Neonatal gonadectomy and hormonal replacement experiments established that neonatal androgen "imprints" or programs the male rat for developmental induction of P-450 2c(male)/UT-A, for maintenance of P-450 PB-2a/PCN-E, and for suppression of P-450 2d(female)/UT-I, all of which occur in male rats at puberty. By contrast, the expressed levels of P-450 isoenzymes PB-1/PB-C, 3/UT-F, PB-4/PB-B, ISF-G, and beta NF-B were mostly unaffected by the rats' age, sex, and hormonal status. Studies on the sex specificity of P-450 induction established that the response of these latter five isoenzymes to the P-450 inducers phenobarbital, beta-naphthoflavone, pregnenolone-16 alpha-carbonitrile, and isosafrole is qualitatively and quantitatively equivalent in females as in males.  相似文献   

4.
This study investigated whether the same cytochrome P-450 (P-450) isoenzymes were inducible in cultures of chick-embryo hepatocytes as in the liver of chicken embryos. We purified two isoenzymes of cytochrome P-450 from the livers of 17-day-old-chick embryos: one of molecular mass approx. 50 kDa induced in vivo by the phenobarbital-like inducer glutethimide, and the second of approx. 57 kDa induced by 3-methylcholanthrene. Rabbit antiserum against the 50 kDa protein inhibited benzphetamine demethylase activity in hepatic microsomes (microsomal fractions) from glutethimide-treated chick embryo. Antiserum to the 57 kDa protein inhibited ethoxyresorufin de-ethylase activity in hepatic microsomes from methylcholanthrene-treated chick embryo. Cultured chick hepatocytes were treated with chemicals known to induce isoenzymes of P-450 in rodent liver. The induced P-450s were quantified spectrophotometrically and characterized by immunoblotting and enzyme assays. From these studies, chemical inducers were classified into three groups: (i) chemicals that induced a P-450 isoenzyme of 50 kDa and increased benzphetamine demethylase activity: glutethimide, phenobarbital, metyrapone, mephenytoin, ethanol, isopentanol, isobutanol, lindane, lysodren; (ii) chemicals that induced a P-450 isoenzyme of 57 kDa and increased ethoxyresorufin de-ethylase activity: 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl; and (iii) the mono-alpha-substituted 2,3',4,4',5-pentabromobiphenyl, which induced both proteins and both activities. The immunochemical data showed that chick-embryo hepatocytes in culture retain the inducibility of glutethimide- and methylcholanthrene-induced isoenzymes of P-450 that are inducible in the liver of the chicken embryo.  相似文献   

5.
Oxygen inhibition of CCl4 metabolism by different isoenzymes of cytochrome P-450 was assessed by studying liver microsomes isolated from control rats and rats treated with phenobarbital or isoniazid. Rates of CCl4 metabolism were similar for all microsomes under a nitrogen atmosphere. An air atmosphere inhibited metabolism by microsomes from control rats to 12% of the value under nitrogen and metabolism by microsomes from rats treated with phenobarbital to 5%. It inhibited metabolism by microsomes from rats treated with isoniazid only to 32%. Rats treated with phenobarbital, which increases hepatic cytochrome P-450 content, or isoniazid, which does not increase hepatic cytochrome P-450 content, both metabolized more CCl4 than control rats as indicated by exhalation of greater quantities of CCl4 metabolites and by an increase in CCl4 toxicity. These results indicate that some isoenzymes of cytochrome P-450 are more effective than others in metabolizing CCl4 when oxygen is present.  相似文献   

6.
The secondary structure prediction of 19 microsomal cytochrome P-450s from two different families was made based on their amino acid sequences. It was shown that there is a structural similarity between the heme-binding sites of these enzymes and the bacterial P-450cam. An average predicted secondary structure of cytochrome P-450 proteins with 70% accuracy contains about 46% alpha-helices, 12% beta-strands, 9% beta-turns and 33% random coil. In the region of the 35-120 residues in microsomal P-450s two adjacent beta alpha beta-units (the Rossmann domain) were recognized, which may interact with the NADPH-cytochrome P-450 reductase. Using the procedure of identification of hydrophobic and membrane-associated alpha-helical segments of 23 cytochromes, only one N-terminal transmembrane anchor was predicted. Also the heme-binding site perhaps includes surface-bound helix. A model of vertebrate microsomal P-450s is proposed. That is an amphypathic membrane protein located on the cytoplasmic face of the endoplasmic reticulum, their active center lies out/on the bilayer border.  相似文献   

7.
Fifteen peptides corresponding in sequence to segments of the major phenobarbital-inducible forms of rat hepatic cytochrome P-450 (termed P-450 PB-4 and P-450 PB-5) were chemically synthesized, conjugated to carrier proteins, and used to prepare site-specific rabbit and/or mouse antipeptide antibodies. Four of the synthetic peptides were recognized by rabbit heterosera raised against purified P-450 PB-4. The titer of these heterosera measured against P-450 PB-4 was only partially reduced upon complete adsorption of antipeptide activity suggesting that these peptides represent minor antigenic determinants. Each of the antipeptide antibodies recognized purified P-450 PB-4 and the highly homologous P-450 PB-5 as demonstrated by a solid-phase enzyme-linked immunosorbent assay. Although each antipeptide immunoprecipitated both purified 125I-labeled P-450 PB-4 and also in vitro-synthesized apo-P-450 PB-4, the yields of immunoprecipitation were low relative to that obtained using anti-P-450 heterosera. Only one of the antipeptide antibodies gave a good signal in an immunoblot analysis of either microsomal or purified P-450s PB-4 and PB-5. Three antipeptide antibodies raised against hydrophilic segments located in the amino-terminal one-third of P-450 PB-4 markedly inhibited the P-450 PB-4-catalyzed O-deethylation of the model substrate 7-ethoxycoumarin. Four of the antipeptide antibodies were found to cross-react with P-450 beta NF-B, the major aromatic hydrocarbon-inducible rat hepatic P-450, suggesting that certain amino acid sequences or regions of secondary structure are conserved between the major phenobarbital-induced and polycyclic-induced rat liver P-450 isoenzymes. These studies demonstrate the utility of antipeptide antibodies for evaluation of antigenic sites exposed in native P-450 PB-4, for identification of specific amino acid sequences important for the interaction of P-450 PB-4 with its substrate and/or with cytochrome P-450 reductase in a reconstituted system and for elucidation of structural and immunochemical homologies between P-450 PB-4 and other P-450 isoenzymes present in rat liver endoplasmic reticulum.  相似文献   

8.
A procedure incorporating the salient features of ion-exchange column chromatography with ion-exchange h.p.l.c. is described for the fractionation and purification to homogeneity of several membrane-bound rat hepatic phenobarbital (PB)-inducible cytochrome P-450 isoenzymes, including the major PB-inducible species. The resolving power of this technique makes it a highly promising tool for the isolation and purification of closely related cytochrome P-450 isoenzymes. In addition, it may also be used for screening of individual isoenzymes either selectively induced or repressed by a variety of endobiotics or xenobiotics. Accordingly, we have exploited this particular feature to identify not only the PB-inducible cytochrome P-450 isoenzymes destroyed in vivo by allylisopropylacetamide, a suicide inactivator of cytochrome P-450, but also to distinguish those that are reparable by exogenous haemin from those that are irreparably damaged.  相似文献   

9.
Rat hepatic cytochrome P-450 isoenzyme 2c, purified to homogeneity from uninduced, adult rat liver (Waxman, D.J., Ko, A., and Walsh, C. (1983) J. Biol. Chem. 258, 11937-11947), was shown to exhibit a unique NH2-terminal amino acid sequence as well as distinctive peptide maps and immunochemical properties when compared to seven other purified rat liver P-450 isoenzymes. P-450 2c was an efficient monooxygenase catalyst with several xenobiotic substrates; P-450 2c also catalyzed 16 alpha- and 2 alpha-hydroxylations of testosterone, androst-4-ene-3,17-dione and progesterone (total turnover = 7-9 min-1 P-450(-1) at 25 microM steroid substrate) with the ratio of 2 alpha to 16 alpha hydroxylation varying from less than or equal to 0.02 to 1.6 depending on the steroid's C-17 substituent. Six different microsomal steroid hydroxylase activities characteristic of purified P-450 2c and sensitive to specific inhibition by anti-P-450 2c antibody were induced at puberty in male but not female rat liver. Microsomal steroid hydroxylations catalyzed by other P-450 isoenzymes exhibited age and sex dependencies distinct from those of the P-450 2c-mediated activities. Immunochemical analyses confirmed that this sex dependence and developmental induction reflected alterations in P-450 2c polypeptide levels. Attempts to chromatographically detect P-450 2c in either immature male or adult female microsomes were unsuccessful and led to purification of P-450 2d (female), a catalytically distinct and female-specific form. Peptide mapping and immunochemical analyses suggested significant structural homologies between the two sex-specific isoenzymes, P-450 2c and P-450 2d (female). A significant suppression of P-450 2c levels (up to 70-80%) was observed upon administration of several classical P-450 inducers. These studies establish that P-450 2c corresponds to the male-specific and developmentally-induced steroid 16 alpha-hydroxylase of rat liver and suggest that the expression of P-450 2c versus P-450 2d (female) may provide a biochemical basis for the sex differences characteristic of rat liver xenobiotic metabolism.  相似文献   

10.
At least four hepatic isoenzymes of cytochrome P-450 were purified and characterized from rats treated with 3-methylcholanthrene. A monoclonal antibody developed against one of the forms (designated cytochrome P-450 MC-B) and polyclonal antibodies against others were used to demonstrate that form MC-B is immunologically distinct from other methylcholanthrene-inducible forms. Limited N-terminal amino acid sequencing showed that cytochrome P-450 MC-B has a primary structure that differs from the N-terminal sequences of other established rat isoenzymes. Cytochrome P-450 MC-B has a minimum Mr of 53,000, a CO-reduced spectral maximum at 448 nm, a Soret maximum of 417 nm in the absolute oxidized spectrum and a pattern of substrate preferences that differs from those of the other methylcholanthrene-induced forms. The other forms (MC-A, MC-C and MC-D) share characteristics with isoenzymes previously reported by other investigators.  相似文献   

11.
The "major" phenobarbital (PB)-induced cytochrome P-450 species present in livers of male Sprague-Dawley rats was resolved into two catalytically active heme-protein fractions on diethylaminoethyl cellulose. The two species, P-450 PB-4 (Mr = 49,000) and P-450 PB-5 (Mr = 51,000), were purified to homogeneity, and their chromatographic, spectral, catalytic, and structural properties were compared. P-450 BP-5 eluted earlier on hydroxylapatite and exhibited a more significant cholate-induced Type I spectral shift than P-450 BP-4. Very similar substrate specificity profiles were evident when the two isozymes were reconstituted with lipid, cytochrome P-450 reductase, and cytochrome b5 for oxidative metabolism of several xenobiotics, although P-450 PB-4 exhibited a higher specific catalytic activity (greater than or equal to 5-fold) with all substrates tested. Marked differences were also observed in the sensitivities of both isozymes to several P-450 inhibitors. In addition, P-450 PB-4 was greater than or equal to 10-fold more susceptible than P-450 PB-5 to suicide inactivation by two allyl-containing compounds, allylisopropylacetamide and secobarbital, providing a possible explanation of the previously observed partial inactivation by such compounds of phenobarbital-induced P-450 activity in liver microsomes. One-dimensional peptide maps of the two isoenzymes were highly similar. Antibody raised against purified Long Evans rat liver P-450b (Thomas, P. E., Korzeniowski, D., Ryan, D., and Levin, W. (1979) Arch. Biochem. Biophys. 192, 524-532) cross-reacted with P-450 PB-4 and P-450 PB-5. NH2-terminal sequence analysis demonstrated that the first 31 residues of both PB-4 and PB-5 were identical. These sequences indicated that a highly hydrophobic terminal segment, observed previously for other P-450s as well, is followed by a cluster of basic residues, suggesting that the NH2-terminal portion of these P-450s might be involved in membrane anchoring. Although it is unclear whether P-450 PB-4 and P-450 PB-5 are separate gene products or are related by post-translational modifications, this present demonstration of closely related isozymic forms suggests the possible added complexity of microheterogeneity for this family of microsomal monooxygenases.  相似文献   

12.
We have studied the extent to which mouse renal cytochrome P-450 isoenzymes are sexually differentiated, and the factor(s) regulating this dimorphism. Intriguingly, sex differences were not seen in the expression of a single cytochrome P-450 enzyme, but were observed in the expression of all P-450 isoenzymes detectable, encoded by six gene families or sub-families. This effect was mediated by testosterone, which had the capacity to both induce and repress P-450 gene expression, and which was independent of growth hormone. The changes in protein content were mirrored in all but one case by changes in the levels of mRNA, indicating that these genes contain hormone-responsive elements. These findings are consistent with numerous reports of sex differences in the susceptibility of the mouse kidney to the toxic and carcinogenic effects of drugs and environmental chemicals, many of which are metabolized to cytotoxic products by the cytochrome P-450-dependent mono-oxygenases. These data imply that circulating androgen levels will be an important factor in susceptibility of the kidney to toxic or carcinogenic compounds which require metabolic activation.  相似文献   

13.
Administration of allylisopropylacetamide (AIA) to phenobarbital-pretreated rats results in the destruction of several phenobarbital-inducible cytochrome P-450 isoenzymes and a correspondingly marked loss of benzphetamine N-demethylase and ethylmorphine N-demethylase activities. Accordingly, the ion-exchange h.p.l.c. or DEAE-cellulose-chromatographic profile of solubilized microsomal preparations from such rats revealed a marked decrease in the cytochrome P-450 content of several eluted fractions compared with that of microsomes from corresponding non-AIA-treated controls. Incubation of liver homogenates from such rats with haemin restores not only cytochrome P-450 content from 35 to 62% of original values, but also benzphetamine N-demethylase and ethylmorphine N-demethylase activities, from 23 to 67%, and from 12 to 36% of original values respectively. Moreover, the chromatographic profiles of microsomes prepared from such homogenates indicated increases of cytochrome P-450 content only in some fractions. Reconstitution of mixed-function oxidase activity of cytochrome P-450 by addition of NADPH: cytochrome P-450 reductase to these fractions indicated that incubation with haemin restored benzphetamine N-demethylase activity predominantly, but ethylmorphine N-demethylase activity only minimally. After injection of [14C]AIA, a significant amount of radiolabel was found covalently bound to protein in chromatographic fraction III, and this binding was unaffected by incubation with haemin. Furthermore, the extent of this binding is apparently equimolar to the amount of cytochrome P-450 refractory to haemin reconstitution in that particular fraction. Whether such refractoriness reflects structural inactivation of the apo-cytochrome remains to be determined. Nevertheless, the evidence presented very strongly argues for AIA-mediated inactivation of multiple phenobarbital-induced isoenzymes, only a few of which are structurally and functionally reparable by haemin.  相似文献   

14.
Genetic polymorphism in oxidative drug metabolism is perhaps best exemplified in the case of debrisoquine 4-hydroxylase activity, where the incidence of deficient metabolism ranges from 1% to 30% in various populations and this defect is also linked to an impaired ability to metabolize a number of other drugs effectively. Sprague-Dawley (SD) rats possess this activity, but females of the DA strain do not, although total cytochrome P-450 (P-450) levels are similar. We have purified, by using debrisoquine 4-hydroxylase activity as an assay, a minor P-450 to electrophoretic homogeneity from male SD rats and designate this as P-450UT-H. P-450UT-H differs from eight other purified rat liver P-450s as judged by peptide mapping and immunochemical analysis and thus appears to be isozymic with these other P-450s. P-450UT-H exhibited considerably more debrisoquine 4-hydroxylase activity than any of the other purified P-450s and, on a total P-450 basis, more than total microsomal P-450. Antibodies raised against P-450UT-H specifically recognized P-450UT-H and inhibited more than 90% of the debrisoquine hydroxylase activity present in SD rat liver microsomes. The level of P-450UT-H in SD rat liver microsomes accounted for less than 10% of the total P-450, as judged by immunochemical quantitation. These assays also indicated that the level of P-450UT-H in female DA rat liver microsomes is only about 5% of that in male or female SD rat liver microsomes, consonant with the view that deficiency of this form of P-450 is responsible for the defective debrisoquine 4-hydroxylase activity in the former animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The mRNAs encoding the major polycyclic aromatic hydrocarbon-induced cytochromes P-450 from rat, P-450BNF/MC-B and P-450ISF/BNF-G, were characterized using three classes of recombinant plasmids: those complementary to (a) only P-450BNF/MC-B mRNA, (b) only P-450ISF/BNF-G mRNA, and (c) both mRNAs. These classes were identified by hybridization-selected translation and immunoprecipitation using six monoclonal and polyclonal antibodies and were later sequenced to confirm their identity and specificity. These findings indicated that the mRNAs encoding these two P-450s have regions that are unique, as well as regions that are homologous. Hybridization-selected translation also showed that the primary in vitro translation products of the P-450BNF/MC-B and P-450ISF/BNF-G mRNAs are 55 and 52 kDa, respectively, and have both unique and common structural characteristics that can be distinguished immunologically. By Northern hybridization, the P-450BNF/MC-B mRNA was found to be 2900 bases long, while the P-450ISF/BNF-G mRNA was 2100 bases long. Precursors of 3500 and 5200 bases were detected for P-450BNF/MC-B mRNA, while a 3100-base precursor was detected for P-450ISF/BNF-G mRNA. These two mRNAs were induced by beta-naphthoflavone, isosafrole, and 3-methylcholanthrene, but not by phenobarbital. In untreated rats, the P-450BNF/MC-B mRNA was consistently present at very low levels while the P-450ISF/BNF-G mRNA was present in variable amounts, suggesting that the latter mRNA can be induced by dietary or other environmental factors. The kinetics of induction of the P-450BNF/MC-B and P-450ISF/BNF-G mRNAs were measured by dot blot hybridization. P-450BNF/MC-B mRNA increased rapidly, reaching half-maximum by 4 h after treatment with 3-methylcholanthrene, while the P-450ISF/BNF-G mRNA increased more slowly, reaching half-maximum after 12 h. The levels of both mRNAs peaked at 24 h, but decreased thereafter at different rates; P-450BNF/MC-B mRNA dropped by about 20% during the next 24 h, while P-450ISF/BNF-G mRNA dropped by 50 to 70%. These differences in the kinetics of induction and the apparent stabilities of the P-450BNF/MC-B and P-450ISF/BNF-G mRNAs, in conjunction with the observed differences in their levels in untreated rats, suggested that these two mRNAs were not coordinately regulated even though they were induced by the same compounds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

17.
The distribution of cytochromes P-450 that catalyze aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase were studied with monoclonal antibody (MAb) 1-7-1 which completely inhibits these activities of a purified 3-methylcholanthrene-induced rat liver cytochrome P-450. The degree of inhibition by MAb 1-7-1 quantitatively assesses the contribution of different cytochromes P-450 in the liver, lung, and kidney microsomes from untreated, 3-methylcholanthrene- and phenobarbital (PB)-treated rats, mice, guinea pigs, and hamsters. Enzyme sensitivity to MAb 1-7-1 inhibition defines two types of cytochrome P-450 contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The MAb 1-7-1-sensitive cytochrome P-450 is a major contributor to aryl hydrocarbon hydroxylase in rat liver, lung, and kidney of 3-methylcholanthrene-treated rats, C57BL/6 mice, guinea pigs, and hamsters; this type is also present in lesser amounts in the extrahepatic tissues of the control and PB-treated animals, and in the lungs of the relatively "noninducible" DBA/2 mice treated with 3-methylcholanthrene. This form however makes little or no contribution to liver aryl hydrocarbon hydroxylase of control or PB-treated animals. 7-Ethoxycoumarin O-deethylase is also a function of both the MAb 1-7-1-sensitive and insensitive classes of cytochrome P-450. The ratio of the classes contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase differs in the various tissues and species and after inducer treatment. All of the 7-ethoxycoumarin O-deethylase activity in guinea pigs and hamsters is a function of cytochromes P-450 different than the MAb 1-7-1-sensitive cytochrome P-450 responsible for aryl hydrocarbon hydroxylase activity. Thus, the MAb 1-7-1 antigenically defines the type of cytochromes P-450 contributing to each reaction. Cytochromes P-450 can be viewed as paradigmatic for enzyme systems in which the nature and amount of product is regulated by multiple isoenzymic forms. Analyses using monoclonal antibodies to specific isoenzymes may thus have broad application to a variety of other complex systems which are composed of multiple isoenzymes.  相似文献   

18.
The coding nucleotide sequence for rat liver microsomal, xenobiotic epoxide hydrolase was determined from two overlapping cDNA clones, which together contain 1750 nucleotides complementary to epoxide hydrolase mRNA. The single open reading frame of 1365 nucleotides codes for a 455 amino acid polypeptide with a molecular weight of 52,581. The deduced amino acid composition agrees well with those determined by direct amino acid analysis of the rat protein, and the amino acid sequence is 81% identical to that of rabbit epoxide hydrolase. Analysis of codon usage for epoxide hydrolase, and that of rabbit epoxide hydrolase. Analysis of codon usage for epoxide hydrolase, and comparison to codon usage for NADPH-cytochrome P-450 oxidoreductase and cytochromes P-450b, P-450d, and P-450PCN, suggest that epoxide hydrolase is more conserved than cytochromes P-450b and P-450PCN; comparison of the extent of sequence conservation for 12 homologous proteins between the rat and rabbit, including cytochrome P-450b, supports this hypothesis, and indicates that much of epoxide hydrolase is constrained to maintain its hydrophobic character, consistent with its intramembranous location. The predicted membrane topology of epoxide hydrolase delineates 6 membrane-spanning segments, less than the 8 or 10 predicted for two cytochrome P-450 isozymes; the lower number of membrane-spanning segments predicted for epoxide hydrolase correlates with its lesser dependence on the membrane for maintenance of its tertiary structure and catalytic activity.  相似文献   

19.
Rat hepatic cytochrome P-450 form 3 (testosterone 7 alpha-hydroxylase; P-450 gene IIA1) and P-450 form RLM2 (testosterone 15 alpha-hydroxylase; P-450 gene IIA2) are 88% identical in primary structure, yet they hydroxylate testosterone with distinct and apparently unrelated regioselectivities. In this study, androstenedione and progesterone were used to assess the regioselectivity and stereospecificity of these two P-450 enzymes towards other steroid substrates. Although P-450 RLM2 exhibited low 7 alpha-hydroxylase activity with testosterone or progesterone as substrate (turnover number less than or equal to 1-2 nmol of metabolite/min per nmol of P-450), it did catalyse androstenedione 7 alpha-hydroxylation at a high rate (21 min-1) which exceeded that of P-450 3 (7 min-1). However, whereas P-450 3 exhibited a high specificity for hydroxylation of these steroids at the 7 alpha position (95-97% of total activity), P-450 RLM2 actively metabolized these compounds at four or more major sites including the nearby C-15 position, which dominated in the case of testosterone and progesterone. The observation that androstenedione is actively 7 alpha-hydroxylated by purified P-450 RLM2 suggested that this P-450 enzyme might make significant contributions to microsomal androstenedione 7 alpha-hydroxylation, an activity that was previously reported to be associated with immunoreactive P-450 3. Antibody inhibition experiments were therefore carried out in liver microsomes using polyclonal anti-(P-450 3) antibodies which cross-react with P-450 RLM2, and using a monoclonal antibody that is reactive with and inhibitory towards P-450 3 but not P-450 RLM2. P-450 3 was thus shown to catalyse only around 35% of the total androstenedione 7 alpha-hydroxylase activity in uninduced adult male rat liver microsomes, with the balance attributed to P-450 RLM2. The P-450-3-dependent 7 alpha-hydroxylase activity was increased to approximately 65% of the total in phenobarbital-induced adult male microsomes, and to greater than 90% of the total in untreated adult female rat liver microsomes. These observations are consistent with the inducibility of P-450 3 by phenobarbital and with the absence of P-450 RLM2 from adult female rat liver respectively. These findings establish that P-450 RLM2 and P-450 3 can both contribute significantly to microsomal androstenedione 7 alpha-hydroxylation, thus demonstrating that the 7 alpha-hydroxylation of this androgen does not serve as a specific catalytic monitor for microsomal P-450 3.  相似文献   

20.
Ethanol induced small amounts of cytochrome P-450 in Saccharomyces cerevisiae NCYC 754 under conditions in which it is not normally detectable. Moreover, in non-growing yeast the existing cytochrome P-450 content was increased by 50% at a limited range of glucose concentrations (8-12% in 0.1 M-potassium phosphate buffer, pH 7.0), in which ethanol is produced by fermentation, possibly at an optimum concentration for induction of cytochrome P-450. Added alkanols, other than ethanol, caused rapid degradation of cytochrome P-450 in non-growing yeast; the rate of loss was directly related to the lipid solubility of the alkanol. Ethanol therefore favoured the accumulation of cytochrome P-450 in yeast; this may be related to an important putative role of one of the isoenzymes in ethanol-tolerance of the yeast, by the oxidative removal of ethanol from the endoplasmic reticulum of the cell. It is the accumulation of dissolved oxygen, rather than ethanol, that occurs on cessation of yeast growth that is likely to trigger the rapid disappearance of cytochrome P-450 observed at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号