首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryopreservation of epididymal spermatozoa is a potentially valuable tool for preserving genetic material from individuals of endangered species that die accidentally. Improvement of sperm-freezing protocols would increase the efficacy of gene banking from endangered felids, and the domestic cat can be used as a model for the wild felids. Addition of the detergent Equex STM paste to semen freezing extenders has been found to improve post-thaw survival and longevity of spermatozoa from various species but has never been tested for cat spermatozoa. Spermatozoa from cats with a high percentage of morphologically abnormal spermatozoa are more susceptible for cold injury and osmotic stress than spermatozoa from normozoospermic cats. Therefore, the aims of this study were to investigate: (a) if addition of Equex STM paste to a semen freezing extender would improve post-thaw sperm survival, and (b) if there is a relation between the percentage of morphologically normal spermatozoa and cryopreservation induced damage in cat epididymal spermatozoa. Spermatozoa harvested from epididymides of 10 male cats were frozen in a Tris egg yolk extender with or without the addition of Equex STM paste (0.5%, v/v). Sperm motility, membrane integrity and acrosomal status were evaluated immediately after harvesting, and at 0, 2, 4 and 6 h post-thaw. Sperm membrane integrity and acrosomal status were also evaluated after cooling to 4 degrees C, just before freezing. Cooling did not cause significant damage to the spermatozoa, whereas freezing damaged sperm membranes and acrosomes. Addition of Equex to the freezing extender had a significant positive effect on the percentage of intact acrosomes immediately after thawing (P > 0.05), but had a negative effect on the longevity of the spermatozoa; the percentages of membrane intact and motile spermatozoa being significantly lower in the presence of Equex than in the controls at 6h after thawing. The percentage of morphologically normal spermatozoa was not found to be correlated with either cryopreservation induced acrosome or plasma membrane damage, or with post-thaw motility (P > 0.05). The results clearly show that addition of Equex STM paste in the freezing extender protects the acrosomes of cat epididymal spermatozoa during the freezing--thawing process, but reduces the sperm longevity during in vitro incubation at 38 degrees C. Our results also indicate that the percentage of morphologically normal epididymal spermatozoa is not correlated with cryopreservation induced sperm damage using the described freezing protocol.  相似文献   

2.
Genetic management of Mexican gray wolves includes semen banking, but due to the small number of animals in the population and handling restrictions, improvements in semen collection and cryopreservation rely on results from studies of domestic dogs. Semen collection from wolves requires anesthesia and electroejaculation, which introduce potentially important variables into species comparisons, as dog semen is typically collected manually from conscious animals. To investigate possible effects of collection method on semen quality, we compared semen collection by the traditional manual method and by electroejaculation (EE) in a group of dogs (n = 5) to collection by EE only in wolves (n = 7). Samples were divided into two aliquots: neat or diluted in Tris/egg yolk extender, with motility evaluated at intervals up to 24 h. There were no differences (P > 0.10) in sperm motility in either neat or extended samples at 24 h from EE dogs and wolves, although motility of the wolf neat samples declined more rapidly (P < 0.05). However, there were differences (P < 0.01) between EE and manually collected dog semen in motility at 24 h, in both the neat and extended samples. Therefore, general motility patterns of dog and wolf semen collected by EE were similar, especially when diluted with a Tris/egg yolk extender, but sperm collected from dogs by EE did not maintain motility as long as manually collected samples, perhaps related to the longer exposure of EE samples to more prostate fluid.  相似文献   

3.
The ultimate goal of the Mexican gray wolf Canis lupus baileyi captive management program is reintroduction of healthy individuals into wild habitats. To this end, zoo population managers work to provide not only for the physical well-being but also for the genetic health of these animals. However, the very limited genetic founder base, exacerbated by breeding within three distinct lineages, resulted in very high coefficients of inbreeding. Because support for measurable levels of inbreeding depression in the captive wolf population, as defined by reductions in common fitness measures such as juvenile survival or reproductive success, has been weak, we investigated the potential effects on male reproductive capacity. We analyzed semen samples from wolves from all three lineages and compared them with samples from subsequent lineage crosses and from generic gray wolves. We not only found a significant effect of inbreeding on sperm quality but we related both inbreeding and sperm quality to reproductive success. Samples from male offspring of lineage crosses, with inbreeding coefficients of zero were similar in quality to those from generic gray wolves. However, samples from a limited number of offspring from back-crosses were of extremely poor quality. Although it is reassuring that sperm quality was so much improved in male offspring of lineage crosses, the concomitant reduction in inbreeding coefficient does not eliminate the potentially deleterious alleles. Our results demonstrate that sperm quality is an important indicator of fertility and reproductive success in Mexican wolves. In addition, our data lend further support to the presence of inbreeding depression in this taxon.  相似文献   

4.
An optimal protocol for cat semen cryopreservation has not yet been defined. Addition of Equex STM Paste has been tested for epididymal cat spermatozoa but not for ejaculated cat spermatozoa. Furthermore, the effect of Equex STM Paste on fertilizing ability of cryopreserved semen has never been evaluated in that species. Therefore, the aims of the current study were to investigate if addition of Equex STM Paste to a freezing extender for electroejaculated cat (Felis catus) semen would improve postthaw sperm quality and if sperm fertilizing ability after cryopreservation with or without Equex STM Paste was preserved. Semen was collected by electroejaculation and frozen in a Tris-glucose-citrate egg yolk extender supplemented with (0.5% vol/vol) or without Equex STM Paste. In Experiment 1, sperm motility, membrane integrity, and acrosomal status were determined immediately after collection and at 0, 3, and 6 h postthaw. In Experiment 2, frozen semen from the two groups was used for in vitro fertilization (IVF) of in vitro-matured cat oocytes. Cleavage rate was recorded 30 h after IVF, and embryo development was evaluated on Days 6 and 7 of culture. In Experiment 1, the rate of motile spermatozoa after freezing-thawing was higher when Equex STM Paste was added to the freezing extender, but progressive motility score was not influenced (P > 0.05). Sperm membrane integrity was positively affected (P < 0.05) by the addition of the detergent. Intact acrosomes after thawing were similar (P > 0.05) between groups. Even if the decreasing rates of motility and membrane integrity were more rapid in presence of Equex than those in controls, total motility and sperm viability were similar at 3 and 6 h after thawing (P > 0.05). In Experiment 2, there was no difference in fertilizing ability and embryo development between the two groups (P > 0.05). The results of this study demonstrate that the addition of Equex STM Paste in the freezing extender avoids the loss of motile spermatozoa and maintains fertilizing ability of frozen-thawed spermatozoa.  相似文献   

5.
This study was carried out to investigate the cryoprotective efficacy of Equex STM Paste on the quality of canine post-thaw epididymal spermatozoa. Following castration, spermatozoa were flushed from the cauda epididymides. Epididymal spermatozoa from 13 of 16 dogs with a sperm motility of >70% were frozen in an egg yolk-Tris extender, supplemented with Equex STM Paste (0.5%, v/v); the extender free of Equex STM Paste served as a control cryoprotective diluent. The quality of spermatozoa, judged by its motility, plasma membrane integrity and acrosome integrity, was evaluated on four occasions, immediately after collection, after equilibration and at 0 and 2h post-thaw. Reducing the temperature to 4 degrees C for 2h prior to freezing decreased sperm motility (P=0.001), but had no effects on membrane integrity or acrosome integrity. Immediately after thawing, the percentage of acrosome-intact spermatozoa significantly decreased in samples frozen without Equex STM Paste compared to freshly collected or Equex-treated samples. After incubation at 37 degrees C for 2h post-thaw, a greater percentage of motile spermatozoa (P=0.018) and spermatozoa with intact acrosomes (P=0.001) were observed in Equex-treated samples compared with the control. The percentage of membrane-intact spermatozoa did not differ significantly between Equex-treated and control samples at any time. Supplementation with Equex STM Paste in the semen extender was effective for freezing canine epididymal spermatozoa because it protected acrosome integrity against damage induced by cryopreservation and it prolonged post-thaw sperm motility during in vitro incubation at 37 degrees C.  相似文献   

6.
A multifactorial study analyzed the effects of freezing method, cryoprotective diluent, semen to diluent ratio, and thawing velocity on post-thaw motility, progressive status, and acrosomal integrity of ram spermatozoa. Although semen to diluent ratio (1:3 vs 1:6, v/v) had no effect (P greater than 0.05), overall post-thaw spermatozoal viability was highly dependent on freezing method and cryoprotectant. Improved results were obtained by freezing semen in 0.5-ml French straws compared to dry ice pelleting. Manually freezing straws 5 cm above liquid nitrogen (LN2) was comparable to cooling straws in an automated, programmable LN2 unit. Of the two cryoprotective diluents tested, BF5F (containing the surfactant component sodium and triethanolamine lauryl sulfate) yielded approximately 50% fewer (P less than 0.05) spermatozoa with loose acrosomal caps compared to TEST. Thawing straws in a water bath at a higher velocity (60 degrees C for 8 sec) had no effect (P greater than 0.05) on spermatozoal motility, progressive status ratings, or acrosomal integrity when compared to a lower rate (37 degrees C for 20 sec). For the TEST group, thawing pellets in a dry, glass culture tube promoted (P less than 0.05) percentage sperm motility at 3 and 6 hr post-thawing, but for BF5F diluted semen this approach decreased the % of spermatozoa with normal apical ridges. The results suggest that the poor fertility rates often experienced using thawed ram semen likely result not only from reduced sperm motility, but also from compromised ultrastructural integrity. This damage is expressed by an increased loosening of the acrosomal cap, a factor which appears insensitive to freezing method but markedly influenced by the cryoprotective properties of the diluents tested.  相似文献   

7.
In the past years a series of functional assays has been developed to determine the structural, morphological and functional integrity of the plasma membrane and sperm acrosomal membrane. Cell volume regulation is an important physiological function crucial for the success of cryopreservation. In this study, the effects induced by freezing-thawing were judged by evaluating the functional characteristics of frozen-thawed semen samples submitted to secondary stress such as osmotic challenge or incubation under capacitating conditions, following cryopreservation. Prior to freezing, dog semen samples were diluted in the presence or absence of Equex STM Paste, which contains sodium dodecyl sulphate (SDS) as the active ingredient. Cell volume regulation and capacitation and calcium ionophore-induced membrane dynamics were assessed in freshly diluted and frozen-thawed semen samples by electronic volume measurement and flow cytometry. Cryopreservation led to a disturbance of the volume regulatory function and to a rapid decrease in the proportion of acrosome-reacted live spermaotozoa. Extender containing Equex STM Paste had a protective effect on isotonic cell volume, on regulatory function under hypertonic conditions, and on the proportion of live acrosome-reacted cells. The evaluation of the functional state of sperm submitted to secondary stress after freezing-thawing leads to a more subtle characterization of sperm function and helps improve the cryoprotective efficiency of the extender.  相似文献   

8.
Conservation management of endangered African wild dogs (AWD; Lycaon pictus) can benefit greatly from development of sperm freezing and artificial insemination. Previous freezing attempts yielded nearly 0% motile sperm within 2 h of thawing. In this study, two canine freezing protocols were tested: Protocol 1: a one-step dilution in TRIS-20% egg yolk containing 8% glycerol; and Protocol 2: a two-step dilution in TRIS-20% egg yolk containing a final extender concentration of 5% glycerol and 0.5% Equex STM, coupled with a TRIS-citrate-fructose thawing solution. Semen was collected by electroejaculation from n = 24 AWDs, of which eight ejaculates of sufficient quality (four good quality with initial sperm motility of 75.0 ± 4.4% and four poor quality; showing rapid decrease in sperm motility to 3.3 ± 3.3% prior to freezing) were frozen. For good quality samples, motility and sperm motility index persisted for up to 8 h for Protocol 2, and was higher between 2 and 6 h after thawing with a decrease from 4 h of incubation. Motility dropped to nearly 0% after 2 h incubation for Protocol 1. Viability was higher for Protocol 2 throughout the 8 h of incubation, with a decrease after 6 h, compared to 4 h for Protocol 1. Acrosome integrity was higher for Protocol 2 throughout post-thaw incubation, with a decrease after 2 h for both protocols. Protocols did not differ in normal sperm morphology or DNA integrity. Poor quality samples yielded similar results, except for acrosome integrity, which declined for Protocol 2. In conclusion, a two-step dilution in TRIS-egg yolk-glycerol extender containing Equex STM yields significantly improved post-thaw quality and longevity of AWD spermatozoa, making it suitable for sperm banking and artificial insemination initiatives.  相似文献   

9.
Electroejaculates from free-ranging, African elephants were frozen to test various seminal diluents, freezing methods and thawing media on post-thaw sperm viability and structural integrity. In Study I, each ejaculate was tested with each of 7 cryoprotective diluents. After cooling to 5 degrees C and equilibration on ice (4 degrees C) for 120 min, each aliquant was pellet frozen on solid CO2, stored in liquid nitrogen and thawed (37 degrees C) in saline or tissue culture solution. Amongst all diluents, post-thaw sperm motility, motility duration in vitro (37 degrees C) and acrosomal integrity were greatest (P less than 0.05) when diluent BF5F was used. Thawing medium had no effect on results. In Study II, the optimal diluent from Study I (BF5F) was compared with the diluent SGI. Results were not affected by a 90- or a 150-min cooling-equilibration interval in an electronic cooler (5 degrees C); however, post-thaw sperm motility rating and duration of motility in vitro were greater (P less than 0.01) with the pellet than the straw container freezing method. When the pelleting method was used, diluents BF5F and SGI provided comparable cryoprotection. Duration of post-thaw motility was enhanced 2-fold and up to 12 h by maintaining thawed semen at 21 rather than 37 degrees C (P less than 0.05). All diluents provided some protection on acrosomal integrity, but the overall proportion of intact acrosomes after thawing was markedly less in Study II, apparently as a result of the slower initial cooling rate (approximately 1.5 degrees C/min) compared to that of Study I (approximately 6.5 degrees C/min). This study demonstrates the feasibility of cryopreserving semen from free-ranging African elephants and indicates that spermatozoa must effectively survive freezing when the BF5F or SGI diluent is used in conjunction with the pelleting method.  相似文献   

10.
Although captive populations of endangered species such as the Mexican gray wolf (Canis lupus baileyi) can benefit from artificial insemination to accomplish genetic exchange, reliable techniques for timing insemination are lacking. We used the generic gray wolf (C. lupus) to test the efficacy of a short-acting GnRH-agonist implant, deslorelin, for inducing estrus. Of five females receiving implants on 17 or 18 January 2003, two mated naturally 10-17 days later, and the others were artificially inseminated using fresh semen, one on day 7 and all three on day 11. Relaxin tests revealed that one artificially inseminated female and both naturally mated females were pregnant on 1 March, and all three gave birth to healthy puppies on 4-6 April. Of the artificially inseminated females, only the one who subsequently conceived and gave birth was judged to be in cytologic estrus at the time of insemination. Two females were treated again with deslorelin on 12 January 2004, followed by collection of fecal samples for hormone analysis. One female, who was housed with a male, copulated on day 17 but did not conceive; the other was not with an adult male. Fecal progestin and estrogen profiles suggested that estrus, but not ovulation, was induced. These results indicated that deslorelin could induce fertile estrus in the gray wolf, although individual response varied. Further investigation is needed to better define and control the interval between implant insertion and ovulation for optimal timing of insemination.  相似文献   

11.
The fertilising capacity of a semen sample can be predicted by evaluation of spermatozoa with in vitro tests. The zona pellucida binding assay (ZBA) accounts for several parameters and interprets the interaction between the spermatozoa and the oocyte. The present study was made in two parts. The aim of the first experiment was to evaluate whether the sperm binding capacity of oocytes varies between different oocyte pools. Each zona binding was made with oocytes from different bitches, using pooled frozen-thawed semen from the same two dogs. The sperm-oocyte complexes were incubated for 1h. There was a significant difference between the six replicates in the number of sperm bound to the zona pellucida (ZP), which indicates that the sperm binding capacity of the ZP differs between oocyte pools. The aims of the second experiment were to evaluate the effects of five different treatments of the spermatozoa on the ZBA, and to evaluate two different incubation times of the sperm-oocyte complexes. ZBAs were made with: fresh semen; semen kept chilled for 1 or 2 days prior to the ZBA; and with semen that had been frozen with or without Equex. The oocytes and spermatozoa were incubated for 1 or 4h. For fresh semen and for semen frozen without Equex, incubation for 1h resulted in a higher number of bound spermatozoa per oocyte than incubation for 4h (P<0.0001). When the effect of the different sperm treatments on the number of spermatozoa bound to the ZP was evaluated, it was found that this number was higher for fresh spermatozoa than for chilled or frozen-thawed spermatozoa both after 1 and 4h of co-incubation (P<0.0001). After 1-h incubation of the sperm-oocyte complexes, spermatozoa chilled for 1 day showed better zona binding capacity than spermatozoa chilled for 2 days, and spermatozoa frozen without Equex had a better zona binding capacity than spermatozoa frozen with Equex. Sperm motility and sperm plasma membrane integrity were higher in fresh than in chilled and frozen-thawed semen. The acrosome integrity was high in all groups of treated semen. In conclusion, 1-h incubation of the sperm-oocyte complexes seems to be sufficient for fresh and chilled semen. Further studies are required to establish the optimal incubation time for sperm-oocyte complexes when frozen-thawed semen is evaluated, as a comparison between semen frozen with Equex and semen frozen without Equex gave different results depending on whether the incubation time was 1 or 4h (in the present study), or 6h [Str?m Holst B, Larsson B, Linde-Forsberg C, Rodriguez-Martinez H. Evaluating chilled and frozen-thawed dog spermatozoa using a zona pellucida binding assay.  相似文献   

12.
The objective of this study was to develop an ideal freezing extender and method for rat epididymal sperm cryopreservation. Epididymal sperm collected from 30 Wistar males was frozen, and experiments were conducted to study its post-thaw characteristics when freezing with raffinose-free buffer or various concentrations of raffinose and egg yolk dissolved in distilled and deionised water, PBS, or modified Krebs–Ringer bicarbonate (mKRB)-based extender. Different concentrations of glycerol, Equex STM, or sodium dodecyl sulfate (SDS) dissolved in either PBS or mKRB containing egg yolk were also tested. Based on the data from these experiments, further experiments tested how different sugars such as raffinose, trehalose, lactose, fructose, and glucose dissolved in mKRB with Equex STM, SDS and egg yolk supplementation affected the post-thaw characteristics of cryopreserved sperm. Cryosurvival of frozen-thawed sperm were judged by microscopic assessment of the sperm motility index (SMI), and acrosome integrity was measured using FITC-PNA staining. Thawed sperm were subjected to 3 h of a thermal resistance test. Beneficial effects on the post-thaw survival of sperm were obtained when 0.1 M raffinose in mKRB was used with 0.75% Equex STM, 0.05% SDS, and 20% egg yolk. Sperm cryopreserved with this treatment exhibited a higher motility index and maintained greater SMI and acrosome integrity throughout incubation when compared to sperm frozen in various concentrations of other cryoprotectants and trehalose, lactose, fructose, glucose. In conclusion, cryopreservation in an extender solution of raffinose dissolved in mKRB containing Equex STM, SDS and egg yolk greatly enhances the freezability of rat epididymal sperm.  相似文献   

13.
K.M. Morton  G. Evans 《Theriogenology》2010,74(2):311-1133
Two experiments were conducted to determine the effects of glycerol concentration and Equex STM® paste on the post-thaw motility and acrosome integrity of epididymal alpaca sperm. In Experiment 1, epididymal sperm were harvested from male alpacas, diluted, and cooled to 4 °C in a Lactose cooling extender, and pellet-frozen in a Lactose cryodiluent containing final glycerol concentrations of 2, 3, or 4%. In Experiment 2, epididymal sperm were diluted in Biladyl®, cooled to 4 °C, stored at that temperature for 18-24 h, and further diluted with Biladyl® without or with Equex STM® paste (final concentration 1% v:v) before pellet freezing. In Experiment 1, sperm motility was not affected by glycerol concentration immediately (2%: 16.1 ± 4.6%; 3%: 20.5 ± 5.9% and 4%: 18.5 ± 6.6%; P > 0.05) or 3h post thaw (< 5% for all groups; P > 0.05). Post-thaw acrosome integrity was similar for sperm frozen in 2% (83.6 ± 1.6%), 3% (81.3 ± 2.0%) and 4% glycerol (84.8 ± 2.0%; P > 0.05) but was higher 3h post-thaw for sperm frozen in 3% (75.7 ± 3.8%) and 4% (77.2 ± 4.1%) than 2% glycerol (66.9 ± 2.7%; P < 0.05). In Experiment 2, sperm motility was higher immediately after thawing for sperm frozen in the presence of Equex STM® (Equex®: 21.5 ± 3.5%; control: 14.4 ± 2.1%; P < 0.05) but was similar at 3h post-thaw (P > 0.05). Acrosome integrity was similar for sperm frozen with or without Equex STM® paste immediately (control: 89.6 ± 1.2%; Equex®: 91.1 ± 1.4%; P > 0.05) and 3 h post-thaw (control: 69.3 ± 3.7%; Equex®: 59.9 ± 5.8%; P > 0.05). Sperm cryopreserved in medium containing 3-4% glycerol and 1% Equex STM® retained the best motility and acrosome integrity, even after liquid storage for 18-24 h at 4 °C prior to cryopreservation.  相似文献   

14.
In the Canadian Animal Genetic Resource Program, bull semen is donated in frozen or fresh (diluted) states. This study was designed to assess the cryopreservation of diluted bull semen shipped at 4°C overnight, and to determine the post-thaw quality of shipped semen using different straw volumes and freezing rates. Semen was collected from four breeding bulls (three ejaculates per bull). Semen was diluted in Tris-citric acid-egg yolk-glycerol (TEYG) extender, cooled to 4°C and frozen as per routine (control semen). After cooling to 4°C, a part of semen was removed and shipped overnight to the research laboratory via express courier (shipped semen). Semen was packaged in 0.25 or 0.5 ml straws and frozen in a programmable freezer using three freezing rates, i.e., -10, -25 or -40°C/min. Control semen was also shipped to the research laboratory. Post-thaw sperm motility characteristics were assessed using CASA, and post-thaw sperm plasma membrane, mitochondrial membrane potential and normal acrosomes were assessed using flow cytometry. Post-thaw sperm quality was greater in shipped semen as compared to control (P<0.001). The shipped semen packaged in 0.25 ml straws had better post-thaw sperm quality than in 0.5 ml straws (P<0.001). Freezing rate had no effect on post-thaw sperm quality. In conclusion, bull semen can be shipped overnight for subsequent cryopreservation and gene banking. Overnight shipping of semen was found advantageous for bull semen cryopreservation. Semen packaging in 0.25 ml straws yielded better post-thaw quality than 0.5 ml straws.  相似文献   

15.
The objectives of the present study were to evaluate the effects of adding Equex to a TRIS-extender, diluting the semen in 1 or 2 steps, freezing according to 2 methods, thawing at 2 rates, and the interactions between these treatments, on the post-thaw survival of dog spermatozoa at 38 degrees C. Ten ejaculates were obtained from 8 dogs. Each ejaculate was centrifuged, and the seminal plasma was discarded. Each sperm pellet was diluted with 2 mL of a TRIS-glucose-egg yolk extender containing 3% glycerol (Extender 1 [Ext-1]). Ejaculates were then pooled (9 x 10(9) spermatozoa), and Ext-1 was added to obtain 200 x 10(6) spermatozoa/mL. The semen pool was carefully mixed and divided into aliquots, and processed according to a 2 x 2 x 2 x 2 factorial design to evaluate the effects of 1) adding the same volume of a second TRIS-glucose-egg yolk extender with 7% glycerol that contained (Ext-2-E) or didn't contain (Ext-2) 1% of Equex STM Paste (final concentration of spermatozoa 100 x 10(6) spermatozoa/mL, glycerol 5%, Equex 0% [Ext-2] or 0.5% [Ext-2-E]); 2) diluting the semen in 1 step (adding Ext-2 or Ext-2-E before equilibration) or in 2 steps (adding Ext-2 or Ext-2-E after equilibration, just before the freezing operation); 3) freezing the straws horizontally in a styrofoam box 4 cm above liquid nitrogen (LN2) or by lowering them vertically into a LN2 tank in 3 steps; and 4) thawing at 70 degrees C for 8 sec or at 37 degrees C for 15 sec. A total of 16 treatment combinations were evaluated. Sperm motility was evaluated after thawing and at 1-h intervals during 7 h of incubation at 38 degrees C by subjective examination and by using a CASA-system. Plasma membrane integrity and acrosomal status were evaluated simultaneously at 1, 3 and 6 h post-thaw using a triple fluorescent staining procedure and flow cytometry. The best post-thaw survival and thermoresistance of spermatozoa was obtained when Equex was present in the extender (P<0.0001); the semen dilution was performed in 2 steps instead of 1 (P<0.0001); the freezing was carried out using the box instead of the tank (P<0.05); and the straws were thawed at 70 degrees C for 8 sec instead of at 37 degrees C for 15 sec (P<0.0001).  相似文献   

16.
Understanding cryoinjury of dog spermatozoa is crucial to preserving fertilizing ability. This study examined flow cytometric indicators of sperm function to explore the reported benefits of Equex STM paste. The motility of cryopreserved spermatozoa immediately and 1h after thawing was higher in the extender containing 0.5% Equex; no significant differences between the two extenders were observed regarding viability, acrosomal integrity and intracellular Ca(2+) concentration. The proportion of spermatozoa having high membrane fluidity increased significantly post-thawing. The interaction between time after thawing and treatment was significant for plasma membrane fluidity. Dilution in a commercial diluent for transport before processing caused a significant increase in intracellular Ca(2+), which may affect functional survival. No significant difference with or without Equex was detected in plasma membrane fluidity. However, a significant interaction between Equex and dogs was detected. A significant decrease in intracellular Ca(2+) was detected in the live cell population both after dilution in Andersen's buffer and again after cooling and equilibration. One hour post-thaw, the proportion of live spermatozoa with high calcium concentration increased to a similar proportion as that seen in diluted semen; the interaction between diluent and dog was significant. The results suggest that Equex in the diluent benefited motility after cryopreservation. Live spermatozoa with high intracellular Ca(2+) after cryopreservation seem to have a favoured survival in the first hour after thawing. Nevertheless, survival after cryopreservation was severely compromised, explaining the relatively poor fertility of cryopreserved dog semen.  相似文献   

17.
Twenty-five bitches were artificially inseminated with semen that was frozen-thawed using an egg yolk-Tris-glucose-citrate extender containing 5% glycerol with, or without the addition of 0.5% Equex STM Paste. Semen was collected on 2 occasions from 11 dogs, pooled, and evaluated for sperm motility, morphology and plasma membrane integrity. Each pool was then divided in 2 parts, diluted with 1 of the 2 extenders, and frozen in 0.5-mL straws. In the bitches, plasma progesterone was assayed daily during late proestrus and estrus. Artificial insemination (AI) was performed twice on Days 3 and 5 after the estimated LH peak. For each insemination, 200x10(6) spermatozoa were used. Ten bitches were inseminated with semen frozen without Equex: In 5 females, semen was deposited transcervically into the uterus with the aid of a fiberoptic endoscope and a urethral catheter, while the remaining 5 bitches were inseminated in the cranial vagina using a Norwegian catheter. Fifteen bitches were inseminated with semen frozen-thawed with Equex: Two groups of 5 bitches were inseminated according to the techniques described above, while 5 bitches were inseminated vaginally using the Osiris catheter. Pregnancy was diagnosed and the number of fetuses counted by ultrasound examination. Post-thaw, spermatozoa frozen with Equex tended to have higher total and progressive motility and to survive longer in vitro than when the extender without Equex was used. Spermatozoal concentration, age of the bitches, duration of heat and estrus, and progesterone concentration at LH peak and at the first and second AI did not differ among the 5 groups. The overall pregnancy rate of 84% (21/25) was close to what can be expected from well controlled natural matings. For both freezing extenders tested, 5/5 bitches were pregnant after uterine deposition of semen and 4/5 were pregnant when semen was deposited in the anterior vagina using the Norwegian catheter. With the Osiris catheter, 3/5 inseminations resulted in a pregnancy. No significant differences in pregnancy rate or number of fetuses were found between groups, site of deposition or freezing extender.  相似文献   

18.
The objectives of this study were to evaluate the effects and interactions of freezing dog semen using 4 different sperm concentrations (50 x 10(6), 100 x 10(6), 200 x 10(6) and 400 x 10(6) spermatozoa/mL) in 0.5-mL straws and diluting the thawed semen at 4 different rates (1:0, 1:1, 1:2 and 1:4) on post-thaw survival and longevity of dog spermatozoa during incubation at 38 degrees C. Fifteen ejaculates were collected from 12 dogs and pooled. The semen pool was divided into 4 aliquots containing respectively 4,200 x 10(6), 2,100 x 10(6), 1,050 x 10(6) and 525 x 10(6) spermatozoa, which were centrifuged. Sperm pellets were rediluted with TRIS-glucose-egg yolk extender containing 5% glycerol and 0.5% of Equex STM Paste to obtain the designated sperm concentrations. The semen was frozen in 0.5-mL straws 4 cm above liquid nitrogen (LN2). The straws were thawed at 70 degrees C for 8 sec and the contents of each straw were divided into 4 aliquots and diluted with TRIS buffer at 38 degrees C at rates of 1:0, 1:1, 1:2 and 1:4 (semen:buffer), respectively, making a total of 16 treatments. Sperm motility was subjectively evaluated after thawing and at 1-h intervals during 8 h of incubation at 38 degrees C. Plasma membrane integrity and acrosomal status were evaluated at 1, 3, 6, 12 and 18 h post-thaw using a triple-staining procedure and flow cytometry. For data pooled across the post-thaw dilution rate, motility was higher (P< 0.001) in samples frozen with 200 x 10(6) spermatozoa/mu. The integrity of sperm plasma membranes after 18 h incubation was higher (P<0.05) in samples frozen with 200 x 10(6) and 400 x 10(6) spermatozoa/mL. For data pooled across sperm concentration, samples diluted at a rate of 1:2 or 1:4 had better (P<0.001) motilities after 8 h of incubation than undiluted samples or those diluted at 1:1. The integrity of the sperm plasma membranes was higher (P<0.001) at increasing dilution rates. When the 16 treatments were compared, the best longevity was obtained when semen packaged at a concentration of 200 x 10(6) spermatozoa/mL was diluted immediately after thawing at 1:4 dilution rate.  相似文献   

19.
The aim of this study was to improve the freezing protocol of bull sperm, by investigating the influence on sperm viability after freeze/thawing of different freezing medium components, as well as the effect of cooling rates in the different stages of the cooling protocol, in single factor experiments. The experimental variables were: (1) salt-based versus a sugar-based medium (Tris versus sucrose); (2) glycerol concentration; (3) detergent (Equex) concentration; (4) presence of bicarbonate; (5) rate of cooling from 22 degrees C to holding temperature (CR1); (6) holding temperature (HT); (7) rate of cooling from holding temperature to -6 degrees C (CR2); (8) rate of cooling from -10 to -100 degrees C (CR3). All experiments were performed using five bulls per experiment (three ejaculates per bull). Sperm motility after freezing and thawing was assessed by CASA system, and sperm membrane integrity was assessed by flow cytometry. Sucrose-based medium did not offer a clear significant benefit compared to Tris medium. The concentration of Equex that gave the best results in Tris-based media group and sucrose-based media group was in a range between 2-7 and 4-7 g/l, respectively. In both media groups, a glycerol concentration of 800 mM was the best in any post-thaw viability parameters. In the Tris media group, the presence of bicarbonate had a negative effect on sperm viability. CR1 and CR2 had no significant effect on any of the post-thaw sperm viability parameters, but a CR1=0.2 degrees C/min and CR2=4 degrees C/min appeared to give better results in both media. The holding temperature (HT) that gave the best results was found to be in the range of 5-9 degrees C. There was a significant disadvantage of using a low CR3 of 10 degrees C/min, while 150 degrees C/min appeared to be the best cooling rate for either medium.  相似文献   

20.
This experimental work was carried out to validate the use of a -152 degrees C ultra-low temperature freezer to freeze and store canine semen. The semen of three dogs was pooled and processed to obtain a final dilution with a concentration of 100 x 10(6) spermatozoa/mL, glycerol at 5% and Equex at 0.5%. Then, four freezing protocols were tested to evaluate the cryosurvival of sperm at 1, 7, 30, 60 and 120 days after freezing: (I) semen was frozen and stored in liquid nitrogen; (II) semen was frozen in liquid nitrogen and stored in the ultra-low freezer at -152 degrees C; (III) semen was frozen in the vapour of liquid nitrogen and stored in the ultra-low freezer at -152 degrees C; (IV) semen was frozen and stored in the ultra-low freezer at -152 degrees C. Data were statistically analyzed by repeated measures analysis of variance to determine the effect of the freezing protocol and time on the sperm characteristics assessed. The percentages of sperm motility and of dead/live spermatozoa were similar throughout the experimental period, with no significant differences (P < 0.05) to be observed between four different freezing techniques tested. At 120 days after freezing, the percentage of abnormal cells and the percentage of sperm cells with abnormal acrosome were not significantly different between the freezing techniques. Although the number of dogs used was slightly low, in vitro results of this preliminary study showed that the use of ultra-freezers at -152 degrees C to freeze and store canine semen could be a viable alternative to liquid nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号