首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phorbol ester tumor promoters induce epidermal transglutaminase activity   总被引:5,自引:0,他引:5  
Epidermal basal cells in culture have low levels of epidermal transglutaminase, the enzyme responsible for the formation of the cross-linked envelope in differentiated cells. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate and other active (but not inactive) phorbol ester skin tumor promoters induce transglutaminase activity. Sloughing of differentiated cells accompanies the rise in transglutaminase activity. Phorbol esters do not affect transglutaminase activity when added directly to cell lysates. Corticosteroids have little influence on transglutaminase induction by phorbol esters. Retinoic acid induces transglutaminase activity, but activity does not further increase when basal cells are treated with both retinoic acid and 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

2.
Measuring the balance between insulin synthesis and insulin release   总被引:4,自引:0,他引:4  
The absolute rates of hormone synthesis and release were determined in purified pancreatic B cells. Newly synthesized proteins were labeled with L-[3,5-3H]tyrosine or L-[2,5-3H]histidine. When medium glucose was less than or equal to 10 mM, the production of insulin exceeded or equaled its release. Raising the glucose levels above 10 mM did not further increase the rate of insulin synthesis (67 +/- 10 fmol/10(3) cells/2 hour) but elevated that of insulin release up to 3-fold the production rates (181 +/- 10 fmol/10(3) cells/2 hour). In the presence of glucagon or of the phorbol ester 12-O-tetradecanoylphorbol 13-acetate the cells also released 3-fold more hormone that they synthesized; release was however reduced to 25% of the rate of production in the presence of epinephrine. It is concluded that glucose as well as hormonal regulators of islet B cells can influence, bi-directionally, the balance between the rates of insulin synthesis and release.  相似文献   

3.
Rat pancreatic islet homogenates display protein kinase C activity. This phospholipid-dependent and calcium-sensitive enzyme is activated by diacylglycerol or the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). In the presence of TPA, the Ka for Ca2+ is close to 5 microM. TPA does not affect phosphoinositide turnover but stimulates [32P]- and [3H]choline-labelling of phosphatidylcholine in intact islets. Exogenous phospholipase C stimulates insulin release, in a sustained and glucose-independent fashion. The secretory response to phospholipase C persists in media deprived of CaCl2. It is proposed that protein kinase C participates in the coupling of stimulus recognition to insulin release evoked by TPA, phospholipase C and, possibly, those secretatogues causing phosphoinositide breakdown in pancreatic islets.  相似文献   

4.
Polymyxin B (0.01-1 mM), a polyamine antibiotic, inhibited both phorbol ester- and glucose-stimulated insulin secretion from isolated rat islets of Langerhans. This inhibition was rapidly reversible. Assay of the cytosolic protein kinase C by measurement of incorporation of labelled phosphate into a histone substrate demonstrated the presence of activity in islet extracts which could be stimulated by 12-O-tetradecanoylphorbol-13-acetate and inhibited by polymyxin B. These results suggest that protein kinase C plays a role in glucose-induced insulin secretion.  相似文献   

5.
Fibroblast growth factor (FGF) plus insulin induced DNA synthesis in and proliferation of NIH/3T3 cells. The protein kinase C-activating phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), inhibited both the DNA synthesis and cell proliferation induced by FGF plus insulin. The concentration of TPA required for 50% inhibition of the DNA synthesis was about 5 nM. Phorbol-12,13-dibutyrate, another protein kinase C-activating phorbol ester, also inhibited the DNA synthesis but 4 alpha-phorbol-12,13-didecanoate, known to be inactive for this enzyme, was ineffective. DNA synthesis started at about 12 h after the addition of FGF plus insulin. The inhibitory action of TPA on the DNA synthesis was observed when it was added within 12 h after the addition of FGF plus insulin. These results suggest that phorbol esters exhibit an antiproliferative action through protein kinase C activation in NIH/3T3 cells, and that this action of phorbol esters is due to inhibition of the progression from the late G1 to the S phase of the cell cycle.  相似文献   

6.
Okadaic acid is a potent non-phorbol ester mouse skin tumor promoter. Unlike the phorbol ester tumor promoters, okadaic acid is unable to promote the induction of morphological transformation in Syrian hamster embryo cell colonies. On the contrary, okadaic acid seems to counteract the effect of phorbol esters on transformation. Also unlike phorbol ester tumor promoters, okadaic acid does not inhibit intercellular communication, neither in primary hamster embryo cells, nor in the phorbol ester sensitive cell line BPNi. Furthermore, okadaic acid has no effect on the reoccurrence of communication following removal of 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

7.
Like many cell types in culture, both undifferentiated and differentiated BALB/c 3T3 preadipose cells respond to glucose deprivation with an increased uptake of 2-deoxy-D-glucose (deoxyglucose) and 3-O-methyl-D-glucose (methylglucose). Glucose readdition to glucose-deprived cultures resulted in a prompt fall in uptake activity; in undifferentiated cells, a half-maximally effective concentration of glucose was approximately 0.5 mM, while 0.1 mM was ineffective. Several hexoses differed in their efficacy of "deactivating" methylglucose transport in glucose-deprived cells; it appeared that a particular hexose must be metabolized beyond the 6-phosphate form to deactivate the transport system. Previous studies have shown that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulates hexose transport in undifferentiated and differentiated BALB/c 3T3 cells. In this study, it was found that TPA (and insulin in differentiated cells) prevented the glucose-induced deactivation of transport activity. Glucose-induced deactivation of transport activity was also prevented by cycloheximide or actinomycin D addition concomitantly with glucose. In glucose-starved cells, agents such as TPA and insulin appear to override a cellular control mechanism sensitive to the external concentration of glucose, so that elevated levels of transport activity are maintained under environmental conditions (i.e., a return to physiological glucose concentrations) that normally induce a fall in transport activity.  相似文献   

8.
9.
In neonatal rat islet cells prelabelled with [14C-methyl] choline, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate rapidly activated a phospholipase D-like mechanism as suggested by the accumulation in cells and medium of choline (but not of phosphorylcholine or glycerophosphorylcholine, markers for phospholipase C and phospholipase A2 action on phosphatidylcholine). This finding was confirmed by a rise in phosphatidic acid (but not diglyceride or arachidonic acid) in fatty acid-labelled cells. Phospholipase D was also activated by ionomycin or sodium fluoride; however, this was accompanied by parallel increases in diglyceride, monoacylglycerol and arachidonic acid in the absence of phosphorylcholine generation, suggesting that these agents also activated a phospholipase C-diglyceride lipase pathway acting on non-choline-containing phosphoglycerides (presumably phosphoinositides). In conjunction with our recent demonstration of insulinotropic effects of phosphatidic acid (M. Dunlop and R. Larkins, Diabetes, in press), our findings suggest for the first time a possible role for phospholipase D activation in the stimulation of insulin release and may imply a novel site of action for phorbol esters in the regulation of exocytosis.  相似文献   

10.
Protein kinase C (PKC), a critical component in the regulation of cell growth, is thought to participate in transmitting the signals of certain cell surface receptor activation events to the nucleus. We have previously shown that stable expression of the PKC gamma isoenzyme in NIH 3T3 cells causes altered growth and enhanced tumorigenicity. In this report, we show that transient expression of the PKC gamma isoenzyme can trans-activate a murine VL30 enhancer element in a pattern similar to that of the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate. In contrast, ras activation of this element is distinct both quantitatively and qualitatively from PKC gamma and 12-O-tetradecanoylphorbol-13-acetate activation. These results provide direct evidence that PKC is the cellular mediator in the activation of phorbol ester-responsive genes and suggest a mechanism by which abnormal PKC expression might lead to altered growth control by changing the pattern of cellular gene expression.  相似文献   

11.
Vanadium compounds were found to promote the induction of morphological transformation of hamster embryo cells. Exposure of the cells to Na−O-vanadate, vanadin (V) oxide or vanadin (IV) oxide sulfate following pre-exposure to a low concentration of benzo[a]pyrene, potentiated the induction of transformed colonies similar to 12-O-tetradecanoylphorbol-13-acetate. Unlike this phorbol ester, vanadium compounds did not inhibit intercellular communication, or activate protein kinase C. Nor did vanadate influence the reoccurrence of communication after removal of a communication blocking phorbol ester. On the other hand, vanadate showed strong synergism with the phorbol ester on induction of transformed morphology in the phorbol ester sensitive cell line BPNi. This suggests that vanadium and tumor promoting phorbol esters mediate their effect on the induction of morphological transformation of hamster embryo cells through different mechanisms.  相似文献   

12.
In a Triton X100-extract from the particulate fraction of mouse epidermis but also of other murine tissues, the phosphorylation of a protein with the relative molecular mass of 82,000 (p82) is found to be dependent on phosphatidyl serine and the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Unlike protein kinase C-catalyzed phosphorylation, p82 phosphorylation is neither observed in the presence of high concentrations of Ca2+ and phosphatidyl serine alone nor after addition of exogenous protein kinase C. Dioctanoylglycerol and the "incomplete" promoter 12-0-retinoylphorbol-13-acetate are also capable of stimulating p82 phosphorylation, whereas the non-promoting phorbol ester 4-0-methyl-TPA is at least 100-fold less active in this respect.  相似文献   

13.
We have demonstrated previously that cultured rat ovarian granulosa cells synthesize and secrete apoE, and this production of apoE is increased by agents that stimulate protein kinase A (cyclic AMP-dependent enzyme) (for example, cholera toxin) and protein kinase C (Ca2+/phospholipid-dependent enzyme) (for example, 12-O-tetradecanoylphorbol-13-acetate, a phorbol ester). In the studies presented in this report, we have examined the effect of changes in cell cholesterol synthesis on the production of apoE by rat ovarian granulosa cells. Mevinolin, an inhibitor of hydroxymethylglutaryl (HMG)-CoA reductase (the rate-limiting enzyme in cholesterol synthesis), and 4,4,10 beta-trimethyl-trans-decal-3 beta-ol, an inhibitor of squalene cyclization, both attenuate the cholera toxin or 12-O-tetradecanoylphorbol-13-acetate stimulation of granulosa cell apoE secretion and apoE mRNA content in a dose-responsive manner. The inhibitory effect of mevinolin is reversed by the concomitant administration of mevalolactone, which provides the cells with the product of the reaction catalyzed by HMG-CoA reductase. Steroidogenesis per se has no effect on apoE production. Aminoglutethimide, which blocks the rate-limiting step in steroidogenesis, has no effect on apoE or apoE mRNA. The data indicate that products of HMG-CoA reductase (isoprenes, cholesterol and/or cholesterol metabolites) are required along with stimulators of protein kinases A and C, to regulate ovarian granulosa cell apoE production.  相似文献   

14.
We demonstrate that purified HTLV-I Tax1 protein can be taken up by 70Z/3 lymphoid cells and localized in both the nuclear and cytoplasmic compartments. Introduction of the Tax1 protein into the growth medium of 70Z/3 cells resulted in the rapid and transient induction of NF-kappa B binding activity in the nuclear fraction. Tax1 activation of NF-kappa B was not sensitive to either staurosporin or prolonged stimulation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, suggesting that Tax1-dependent NF-kappa B activation did not require the protein kinase C pathway. Purified Tax1 did not directly increase NF-kappa B binding activity in 70Z/3 cytoplasmic extracts, suggesting that NF-kappa B induction may require cellular factors. Western blot and competitive radioimmunoassays demonstrated that Tax1 protein was present in the tissue culture media of HTLV-I-transformed cell lines. These results show that extracellular Tax1 may regulate cellular gene expression in noninfected cells.  相似文献   

15.
Levels of epidermal growth factor (EGF) receptor expression vary widely among cell lines derived clonally from a chemically transformed population of rat liver epithelial cells. Retinoic acid (RA), a derivative of vitamin A that stimulates differentiation in a number of embryonal cell lines, increases the level of 125I-EGF binding in several clones of the transformed cell lines. One such cell line, GP6ac, which reverts to a less transformed phenotype when treated with RA, exhibited a 3-4-fold increase in surface EGF receptors with prolonged (2-5-day) RA exposure. The increase persisted as long as the cells were treated with RA. The increase in surface EGF receptors was due to induction of receptor biosynthesis, which occurred within 4 h at both the mRNA and protein levels and persisted until the RA was withdrawn. Paradoxically, the RA response was accompanied by an initial 40-50% decrease in 125I-EGF binding during the first 12 h of RA treatment. The decrease was due primarily to a reduction of receptor affinity. Since the phorbol ester 12-O-tetradecanoylphorbol-13-acetate also decreases 125I-EGF binding and increases EGF receptor biosynthesis in GP6ac cells, we tested the effect of RA in cells depleted of protein kinase C by prolonged treatment (18 h) with 10 microM 12-O-tetradecanoylphorbol-13-acetate. The absence of protein kinase C did not affect the induction of receptor mRNA and protein or the decrease in binding during the early period of RA exposure. This indicates that RA induction of EGF receptor synthesis in GP6ac cells involves signaling pathways distinct from those utilized by phorbol esters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
18.
Treatment of the myeloid cell lines, U-937 or HL-60, with 10 nM of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), for 24 h increased the rate of incorporation of [3H]glycerol into total chloroform extracts. A proportionally greater labeling of the non-polar lipid (NL) fraction compared to the polar, phospholipid (PL), fraction was observed. Chromatographic analysis showed a 6-fold increase in the labeling of triacylglycerols (TAG), a 2-fold increase in diacylglycerols, and no changes in monoacylglycerols. PL labeling showed a 3-fold increase in phosphatidylcholine (PC). The effect of TPA on TAG labeling was selectively observed in myeloid cell lines. No such a change was found in the lymphoid cell line. MOLT-3, which did respond to TPA with increased PC labeling. Incorporation of [3H]arachidonic acid (AA) into TAG by U-937 cells was selectively increased (2.5-fold) after treatment with TPA for 24 h. Treatment of U-937 cells with TPA in serum-free medium resulted in no increased labeling of TAG. These studies suggest that changes in TAG metabolism may be characteristic of myeloid differentiation and depend on the presence of serum factor(s).  相似文献   

19.
12-O-Tetradecanoylphorbol-13-acetate, a highly active tumor-promoting agent and lymphocyte comitogen, rapidly accelerates the transport of alpha-aminoisobutyric acid in cultured bovine lymphocytes. Structure-activity studies show that the ability of phorbol diesters to accelerate alpha-aminoisobutyric acid uptake runs parallel to their potency as lymphocyte comitogens and as tumor promoters in mouse skin. This phorbol ester-accelerated, amino acid transport is largely insensitive to the inhibition of RNA and protein synthesis by actinomycin D and cycloheximide, respectively, and is insensitive to the inhibition of membrane movement by cytochalasin B and colchicine. Retinoic acid, an antagonist of the tumor-promoting and comitogenic actions of phorbol esters also inhibits the acceleration of amino acid uptake by 12-O-tetradecanoylphorbol-13-acetate; however, the epoxy derivatives of retinoic acid and structurally related analogs, which are potent antagonists of the other aspects of phorbol ester activation of lymphocytes, are inactive in blocking amino acid uptake. Comparative studies in lymphocytes show that this phorbol ester elicits a number of metabolic responses which appear to originate at the cell membrane and that these are differentially antagonized by retinoic acid, the 5,6-epoxide of retinoic acid, and related retinoid analogs.  相似文献   

20.
The biosynthesis of phosphatidylcholine (PC) in platelets was followed by measuring the incorporation of 32Pi. Incorporation into PC was stimulated by treatment with Clostridium perfringens phospholipase C or with the synthetic diacylglycerol sn-1,2-dioctanoylglycerol. However, neither the phorbol ester tumour promoter 12-O-tetradecanoylphorbol-13-acetate or thrombin stimulated 32Pi incorporation into PC. We conclude that phorbol ester does not stimulate the hydrolysis of PC to diacylglycerol in platelets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号