共查询到20条相似文献,搜索用时 0 毫秒
1.
Induction of oxidative stress plays a key role in serum deprivation-induced apoptosis. CYP2E1 plays an important role in toxicity of many chemicals and ethanol and produces oxidant stress. We investigated whether CYP2E1 expression can sensitize HepG2 cells to toxicity as a consequence of serum deprivation. The models used were HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells which do not express CYP2E1. E47 cells showed greater growth inhibition and enhanced cell death after serum deprivation, as compared to the C34 cells. DNA ladder and flow cytometry assays indicated that apoptosis occurred at earlier times after serum deprivation in E47 than C34 cells. Serum withdrawal-induced E47 cell death could be rescued by antioxidants, the mitochondrial permeability transition inhibitor cyclosporine A, z-DEVD-fmk, and a CYP2E1 inhibitor 4-methylpyrazole. Increased production of reactive oxygen species (ROS) and lipid peroxidation occurred in E47 cells after serum deprivation, and there was a corresponding decline in the E47 cell mitochondrial membrane potential and reduced glutathione (GSH) levels. We propose that the mechanism of this serum withdrawal plus CYP2E1 toxicity involves increased production of intracellular ROS, lipid peroxidation, and decline of GSH levels, which results in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of serum deprivation-induced cell death by CYP2E1 may contribute to the sensitivity of the liver to alcohol-induced ischemia and growth factor deprivation. 相似文献
2.
3.
Overexpression of CYP2E1 in mitochondria sensitizes HepG2 cells to the toxicity caused by depletion of glutathione 总被引:5,自引:0,他引:5
Induction of CYP2E1 by ethanol is one mechanism by which ethanol causes oxidative stress and alcohol liver disease. Although CYP2E1 is predominantly found in the endoplasmic reticulum, it is also located in rat hepatic mitochondria. In the current study, chronic alcohol consumption induced rat hepatic mitochondrial CYP2E1. To study the role of mitochondrial targeted CYP2E1 in generating oxidative stress and causing damage to mitochondria, HepG2 lines overexpressing CYP2E1 in mitochondria (mE10 and mE27 cells) were established by transfecting a plasmid containing human CYP2E1 cDNA lacking the hydrophobic endoplasmic reticulum targeting signal sequence into HepG2 cells followed by G418 selection. A 40-kDa catalytically active NH2-terminally truncated form of CYP2E1 (mtCYP2E1) was detected in the mitochondrial compartment in these cells by Western blot analysis. Cell death caused by depletion of GSH by buthionine sulfoximine (BSO) was increased in mE10 and mE27 cells as compared with cells transfected with empty vector (pCI-neo). Antioxidants were able to abolish the loss of cell viability. Increased levels of reactive oxygen species and mitochondrial 3-nitrotyrosine and 4-hydroxynonenal protein adducts and decreased mitochondrial aconitase activity and mitochondrial membrane potential were observed in mE10 and mE27 cells treated with BSO. The mitochondrial membrane stabilizer, cyclosporine A, was also able to protect these cells from BSO toxicity. These results revealed that CYP2E1 in the mitochondrial compartment could induce oxidative stress in the mitochondria, damage mitochondria membrane potential, and cause a loss of cell viability. The accumulation of CYP2E1 in hepatic mitochondria induced by ethanol consumption might play an important role in alcohol liver disease. 相似文献
4.
CYP2E1-dependent toxicity and oxidative stress in HepG2 cells 总被引:11,自引:0,他引:11
Arthur I. Cederbaum Defeng Wu Montserrat Mari Jingxiang Bai 《Free radical biology & medicine》2001,31(12):80-1543
5.
To test the hypothesis that ethanol-induced hepatic apoptosis is secondary to the oxidative stress generated by cytochrome P4502E1 (CYP2E1), we assessed the effects of the carotenoid lycopene, a potent antioxidant extracted from tomatoes, on oxidative stress and apoptosis in HepG2 cells overexpressing CYP2E1 (2E1 cells). These were exposed for 5 days to 100mM ethanol and 10 microM lycopene or an equal volume of placebo (vehicle). Ethanol significantly increased apoptosis measured by flow cytometry and by TUNEL assay. This was accompanied by an ethanol-induced oxidative stress: hydrogen peroxide production was significantly increased and mitochondrial GSH was strikingly decreased. Both were restored by lycopene, with a significant decrease in apoptosis. The placebo had no protective effect. In conclusion, Lycopene opposes the ethanol-induced oxidative stress and apoptosis in 2E1 cells. The parallelism between these effects suggests a causal link. Furthermore, these beneficial effects and the innocuity of lycopene now justify an in vivo trial. 相似文献
6.
Thioredoxin is an important reducing molecule in biological systems. Increasing CYP2E1 activity induces oxidative stress and cell toxicity. However, whether thioredoxin protects cells against CYP2E1-induced oxidative stress and toxicity is unknown. SiRNA were used to knockdown either cytosolic (TRX-1) or mitochondrial thioredoxin (TRX-2) in HepG2 cells expressing CYP2E1 (E47 cells) or without expressing CYP2E1 (C34 cells). Cell viability decreased 40-60% in E47 but not C34 cells with 80-90% knockdown of either TRX-1 or TRX-2. Depletion of either thioredoxin also potentiated the toxicity produced either by a glutathione synthesis inhibitor or by TNFα in E47 cells. Generation of reactive oxygen species and 4-HNE protein adducts increased in E47 but not C34 cells with either thioredoxin knockdown. GSH was decreased and adding GSH completely blocked E47 cell death induced by either thioredoxin knockdown. Lowering TRX-1 or TRX-2 in E47 cells caused an early activation of ASK-1, followed by phosphorylation of JNK1 after 48 h of siRNA treatment. A JNK inhibitor caused a partial recovery of E47 cell viability after thioredoxin knockdown. In conclusion, knockdown of TRX-1 or TRX-2 sensitizes cells to CYP2E1-induced oxidant stress partially via ASK-1 and JNK1 signaling pathways. Both TRX-1 and TRX-2 are important for defense against CYP2E1-induced oxidative stress. 相似文献
7.
Zhou Z Lu X Zhu P Zhu W Mu X Qu R Li M 《Biochemical and biophysical research communications》2012,420(2):336-342
Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy. 相似文献
8.
Wu D Wang X Zhou R Cederbaum A 《Biochemical and biophysical research communications》2010,402(1):116-122
The regulation and function of autophagy and lipid metabolism have recently been reported to be reciprocally related. Macroautophagy mediates the breakdown of lipids stored in lipid droplets. An inhibition of autophagy leads to the development of a fatty liver. We evaluated the ability of CYP2E1 to modulate the effects of ethanol on lipid accumulation and autophagy in vitro. The E47 HepG2 cell which expresses CYP2E1 was treated with ethanol at 50, 100 and 150 mM for 4 or 5 days. Ethanol-induced lipid accumulation and an increase of triglycerides (TG) in E47 cells to a greater extent than in control C34 cells which do not express CYP2E1. In contrast, autophagy (LC3 II/LC3 I ratio) was significantly induced by ethanol in C34 cells to a greater extent than in E47 cells. P62 was significantly increased in E47 cells after ethanol treatment. Thus, there is a reciprocal relationship between the effects of ethanol on lipid accumulation and autophagy in the CYP2E1-expressing cells. Inhibition of autophagy by 3-methyladenine (3MA), increased lipid accumulation and TG levels in C34 cells which display elevated autophagy, but enhanced lipid accumulation and TG level to a lesser extent in E47 cells which displayed lower autophagy. Ethanol induced CYP2E1 activity and oxidative stress in E47 cells compared with C34 cells. These experiments suggest that the expression of CYP2E1 may impair autophagy formation which contributes to lipid accumulation in the liver. We hypothesize that CYP2E1-induced oxidative stress promotes the accumulation of lipid droplets by ethanol and this may be responsible for the suppression of autophagy in the liver. 相似文献
9.
CYP1A1 induction by pyridine and its metabolites in HepG2 cells 总被引:3,自引:0,他引:3
10.
The effect of detergents on electron and proton transfer in bovine cytochrome c oxidase was studied using steady-state and transient-state methods. Cytochrome c oxidase in lauryl maltoside has high maximal turnover (TN(max)=400 s(-1)), whereas activity is low (TN(max)=10 s(-1)) in Triton X-100. Single turnover studies of intramolecular electron transfer show similar rates in either detergent. Transient proton uptake experiments show the oxidase in lauryl maltoside consumes 1.8+/-0.3 H(+)/aa(3) during either partial reduction of the oxidase or reaction of fully reduced enzyme with O(2). However, the oxidase in Triton X-100 consumes 2.6+/-0.4 H(+)/aa(3) during partial reduction and 1.0+/-0.2 H(+)/aa(3) in the O(2) reaction. Absorption spectra recorded during turnover show that the enzyme undergoes activation in lauryl maltoside, but does not activate in Triton X-100. We propose that cytochrome c oxidase in different detergents allows access to different sites of protonation, which in turn influences steady-state activity. 相似文献
11.
Previous studies suggested a role for calcium in CYP2E1-dependent toxicity. The possible role of phospholipase A2 (PLA2) activation in this toxicity was investigated. HepG2 cells that overexpress CYP2E1 (E47 cells) exposed to arachidonic acid (AA) +Fe-NTA showed higher toxicity than control HepG2 cells not expressing CYP2E1 (C34 cells). This toxicity was inhibited by the PLA2 inhibitors aristolochic acid, quinacrine, and PTK. PLA2 activity assessed by release of preloaded [3H]AA after treatment with AA+Fe was higher in the CYP2E1 expressing HepG2 cells. This [3H]AA release was inhibited by PLA2 inhibitors, alpha-tocopherol, and by depleting Ca2+ from the cells (intracellular + extracellular sources), but not by removal of extracellular calcium alone. Toxicity was preceded by an increase in intracellular calcium caused by influx from the extracellular space, and this was prevented by PLA2 inhibitors. PLA2 inhibitors also blocked mitochondrial damage in the CYP2E1-expressing HepG2 cells exposed to AA+Fe. Ca2+ depletion and removal of extracellular calcium inhibited toxicity at early time periods, although a delayed toxicity was evident at later times in Ca2+-free medium. This later toxicity was also inhibited by PLA2 inhibitors. Analogous to PLA2 activity, Ca2+ depletion but not removal of extracellular calcium alone prevented the activation of calpain activity by AA+Fe. These results suggest that release of stored calcium by AA+Fe, induced by lipid peroxidation, can initially activate calpain and PLA2 activity, that PLA2 activation is critical for a subsequent increased influx of extracellular Ca2+, and that the combination of increased PLA2 and calpain activity, increased calcium and oxidative stress cause mitochondrial damage, that ultimately produces the rapid toxicity of AA+Fe in CYP2E1-expressing HepG2 cells. 相似文献
12.
Hypoxia-induced cell death of HepG2 cells involves a necrotic cell death mediated by calpain 总被引:2,自引:0,他引:2
Kim MJ Oh SJ Park SH Kang HJ Won MH Kang TC Hwang IK Park JB Kim JI Kim J Lee JY 《Apoptosis : an international journal on programmed cell death》2007,12(4):707-718
To elucidate mechanism of cell death in response to hypoxia, we attempted to compare hypoxia-induced cell death of HepG2 cells
with cisplatin-induced cell death, which has been well characterized as a typical apoptosis. Cell death induced by hypoxia
turned out to be different from cisplatin-mediated apoptosis in cell viability and cleavage patterns of caspases. Hypoxia-induced
cell death was not associated with the activation of p53 while cisplatin-induced apoptosis is p53 dependent. In order to explain
these differences, we tested involvement of μ-calpain and m-calpain in hypoxia-induced cell death. Calpains, especially μ-calpain,
were initially cleaved by hypoxia, but not by cisplatin. Interestingly, the treatment of a calpain inhibitor restored PARP
cleavage that was absent during hypoxia, indicating the recovery of activated caspase-3. The inhibition of calpains prevented
proteolysis induced by hypoxia. In addition, hypoxia resulted in a necrosis-like morphology while cisplatin induced an apoptotic
morphology. The calpain inhibitor prevented necrotic morphology induced by hypoxia and converted partially to apoptotic morphology
with nuclear segmentation. Our result suggests that calpains are involved in hypoxia-induced cell death that is likely to
be necrotic in nature and the inhibition of calpain switches hypoxia-induced cell death to apoptotic cell death without affecting
cell viability. 相似文献
13.
Gao Z Sarsour EH Kalen AL Li L Kumar MG Goswami PC 《Free radical biology & medicine》2008,45(11):1501-1509
This study investigates the hypothesis that CuZn superoxide dismutase (SOD1) overexpression confers radioresistance to human glioma cells by regulating the late accumulation of reactive oxygen species (ROS) and the G(2)/M-checkpoint pathway. U118-9 human glioma cells (wild type, neo vector control, and stably overexpressing SOD1) were irradiated (0-10 Gy) and assayed for cell survival, cellular ROS levels, cell-cycle-phase distributions, and cyclin B1 expression. SOD1-overexpressing cells were radioresistant compared to wild-type (wt) and neo vector control (neo) cells. Irradiated wt and neo cells showed a significant increase (approximately twofold) in DHE fluorescence beginning at 2 days postirradiation, which remained elevated at 8 days postirradiation. Interestingly, the late accumulation of ROS was suppressed in irradiated SOD1-overexpressing cells. The increase in ROS levels was followed by a decrease in cell growth and viability and an increase in the percentage of cells with sub-G(1) DNA content. SOD1 overexpression enhanced radiation-induced G(2) accumulation within 24 h postirradiation, which was accompanied by a decrease in cyclin B1 mRNA and protein levels. These results support the hypothesis that long after radiation exposure a "metabolic redox response" regulates radiosensitivity of human glioma cells. 相似文献
14.
15.
Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion 总被引:1,自引:0,他引:1
Gallic acid (GA) is generally distributed in a variety of plants and foods, and its various biological effects have been reported. Here, we investigated the effects of GA and/or caspase inhibitors on Calu-6 and A549 lung cancer cells in relation to cell death and reactive oxygen species (ROS). The growths of Calu-6 and A549 cells were diminished with an IC(50) of approximately 30 and 150 μM GA at 24 h, respectively. GA also inhibited the growth of primary human pulmonary fibroblast (HPF) cells with an IC(50) of about 300 μM. GA induced apoptosis and/or necrosis in lung cancer cells, which was accompanied by the loss of mitochondrial membrane potential (MMP, ΔΨ(m)). The percents of MMP (ΔΨ(m)) loss and death cells by GA were lower in A549 cells than in Calu-6 cells. Caspase inhibitors did not significantly rescued lung cancer cells from GA-induced cell death. GA increased ROS levels including O(2) (?-) and induced GSH depletion in both lung cancer cells. Z-VAD (pan-caspase inhibitor) did not decrease ROS levels and GSH depleted cell number in GA-treated lung cancer cells. In conclusion, GA inhibited the growth of lung cancer and normal cells. GA-induced lung cancer cell death was accompanied by ROS increase and GSH depletion. 相似文献
16.
Green tea polyphenol epigallocatechin-3-gallate protects HepG2 cells against CYP2E1-dependent toxicity 总被引:3,自引:0,他引:3
Chronic ethanol consumption causes oxidative damage in the liver, and induction of cytochrome P450 2E1 (CYP2E1) is one pathway involved in oxidative stress produced by ethanol. The hepatic accumulation of iron and polyunsaturated fatty acids significantly contributes to ethanol hepatotoxicity in the intragastric infusion model of ethanol treatment. The objective of this study was to analyze the effect of the green tea flavanol epigallocatechin-3-gallate (EGCG), which has been shown to prevent alcohol-induced liver damage, on CYP2E1-mediated toxicity in HepG2 cells overexpressing CYP2E1 (E47 cells). Treatment of E47 cells with arachidonic acid plus iron (AA + Fe) was previously reported to produce synergistic toxicity in E47 cells by a mechanism dependent on CYP2E1 activity and involving oxidative stress and lipid peroxidation. EGCG protected E47 cells against toxicity and loss of viability induced by AA+Fe; EGCG had no effect on CYP2E1 activity. Prevention of this toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species, a decrease in lipid peroxidation, and maintenance of intracellular glutathione in cells challenged by AA+Fe in the presence of EGCG. AA+Fe treatment caused a decline in the mitochondrial membrane potential, which was also blocked by EGCG. In conclusion, EGCG exerts a protective action on CYP2E1-dependent oxidative stress and toxicity that may contribute to preventing alcohol-induced liver injury, and may be useful in preventing toxicity by various hepatotoxins activated by CYP2E1 to reactive intermediates. 相似文献
17.
DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis. 相似文献
18.
19.
Induction and modulation of cerebellar granule neuron death by E2F-1 总被引:12,自引:0,他引:12
O'Hare MJ Hou ST Morris EJ Cregan SP Xu Q Slack RS Park DS 《The Journal of biological chemistry》2000,275(33):25358-25364
20.
To study the biochemical and toxicological properties of cytochrome P450 2E1 (CYP2E1), an adenovirus containing human CYP2E1 cDNA (Ad-CYP2E1) was constructed and was shown to successfully mediate the overexpression of CYP2E1 in HepG2 cells. Acetaminophen (APAP) toxicity to HepG2 cells infected with Ad-CYP2E1 was characterized as a preliminary proof of principle experiment to validate the functionality of the CYP2E1 adenovirus. Compared with cells infected with Ad-LacZ, HepG2 cells infected with Ad-CYP2E1 were more sensitive to APAP induced necrosis and apoptosis when the cells were depleted of intracellular reduced glutathione (GSH). The APAP cytotoxicity was dependent on both the concentration of APAP and the multiplicity of infection of the Ad-CYP2E1 virus. Apoptosis induced by APAP in HepG2 cells overexpressing CYP2E1 was caspase dependent and could be inhibited by the pan-caspase inhibitor Z-VAD-fmk. After treatment with APAP, mitochondrial membrane potential was dramatically decreased in the CYP2E1-expressing cells. APAP protein adducts were elevated in HepG2 cells infected with Ad-CYP2E1 compared with that in cells infected with Ad-LacZ; two bands around 90 KD were found only in the CYP2E1-expressing cells. These results demonstrate that adenovirus-mediated overexpression of human CYP2E1 activates APAP to reactive metabolites which damage mitochondria, form protein adducts, and result in toxicity to HepG2 cells. The Ad-CYP2E1 may be useful for studies designed to investigate the role of CYP2E1 in APAP and alcoholic liver injury and to further characterize the actions and effects of CYP2E1. 相似文献