首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of transporters in multidrug resistance of bacteria is an increasingly challenging problem, and most of the pumps identified so far use the protonmotive gradient as the energy source. A new member of the ATP-binding cassette (ABC) family, known in Bacillus subtilis as YvcC and homologous to each half of mammalian P-glycoprotein and to LmrA of Lactococcus lactis, has been studied here. The yvcC gene was constitutively expressed in B. subtilis throughout its growth, and a knockout mutant showed a lower rate of ethidium efflux than the wild-type strain. Overexpression of yvcC in Escherichia coli allowed the preparation of highly enriched inverted-membrane vesicles that exhibited high transport activities of three fluorescent drugs, namely, Hoechst 33342, doxorubicin, and 7-aminoactinomycin D. After solubilization with n-dodecyl beta-D-maltoside, the hexahistidine-tagged YvcC was purified by a one-step affinity chromatography, and its ability to bind many P-glycoprotein effectors was evidenced by fluorescence spectroscopy experiments. Collectively, these results showed that YvcC is a multidrug ABC transporter functionally active in wild-type B. subtilis, and YvcC was therefore renamed BmrA for Bacillus multidrug resistance ATP. Besides, reconstitution of YvcC into liposomes led to the highest, vanadate-sensitive, ATPase activity reported so far for an ABC transporter. Interestingly, such a high ATP hydrolysis proceeds with a positive cooperativity mechanism, a property only found so far with ABC importers.  相似文献   

2.
Guo X  Li J  Wang T  Liu Z  Chen X  Li Y  Gu Z  Mao X  Guan W  Li Y 《PloS one》2012,7(1):e29520
Multidrug resistance protein Pdr5p is a yeast ATP-binding cassette (ABC) transporter in the plasma membrane. It confers multidrug resistance by active efflux of intracellular drugs. However, the highly polymorphic Pdr5p from clinical strain YJM789 loses its ability to expel azole and cyclohexmide. To investigate the role of amino acid changes in this functional change, PDR5 chimeras were constructed by segmental replacement of homologous BY4741 PDR5 fragments. Functions of PDR5 chimeras were evaluated by fluconazole and cycloheximide resistance assays. Their expression, ATPase activity, and efflux efficiency for other substrates were also analyzed. Using multiple lines of evidence, we show that an alanine-to-methionine mutation at position 1352 located in the predicted short intracellular loop 4 significantly contributes to the observed transport deficiency. The degree of impairment is likely correlated to the size of the mutant residue.  相似文献   

3.
4.
ATP-binding cassette (ABC) transporters are involved in the transport of a wide variety of substrates, and ATP-driven dimerization of their nucleotide binding domains (NBDs) has been suggested to be one of the most energetic steps of their catalytic cycle. Taking advantage of the propensity of BmrA, a bacterial multidrug resistance ABC transporter, to form stable, highly ordered ring-shaped structures [Chami et al. (2002) J. Mol. Biol. 315, 1075-1085], we show here that addition of ATP in the presence of Mg2+ prevented ring formation or destroyed the previously formed rings. To pinpoint the catalytic step responsible for such an effect, two classes of hydrolysis-deficient mutants were further studied. In contrast to hydrolytically inactive glutamate mutants that behaved essentially as the wild-type, lysine Walker A mutants formed ring-shaped structures even in the presence of ATP-Mg. Although the latter mutants still bound ATP-Mg, and even slowly hydrolyzed it for the K380R mutant, they were most likely unable to undergo a proper NBD dimerization upon ATP-Mg addition. The ATP-driven dimerization step, which was still permitted in glutamate mutants and led to a stable conformation suitable to monitor the growth of 2D crystals, appeared therefore responsible for destabilization of the BmrA ring structures. Our results provide direct visual evidence that the ATP-induced NBD dimerization triggers a conformational change large enough in BmrA to destabilize the rings, which is consistent with the assumption that this step might constitute the "power stroke" for ABC transporters.  相似文献   

5.
The ABC transporter (ATP-binding-cassette transporter) OpuA is one of five membrane transport systems in Bacillus subtilis that mediate osmoprotection by importing compatible solutes. Just like all bacterial and archaeal ABC transporters that catalyse the import of substrates, OpuA (where Opu is osmoprotectant uptake) is composed of an ATPase subunit (OpuAA), a transmembrane subunit (OpuAB) and an extracellular substrate-binding protein (OpuAC). In contrast with many well-known ABC-ATPases, OpuAA is composed not only of a catalytic and a helical domain but also of an accessory domain located at its C-terminus. The paradigm of such an architecture is MalK, the ABC-ATPase of the maltose importer of Escherichia coli, for which detailed structural and functional information is available. In the present study, we have applied solution FRET (F?rster resonance energy transfer) techniques using two single cysteine mutants to obtain initial structural information on the architecture of the OpuAA dimer in solution. Analysing our results in detail and comparing them with the existing MalK structures revealed that the catalytic and helical domains adopted an arrangement similar to those of MalK, whereas profound differences in the three-dimensional orientation of the accessory domain, which contains two CBS (cystathionine beta-synthetase) domains, were observed. These results shed new light on the role of this accessory domain present in a certain subset of ABC-ATPase in the fine-tuning of three-dimensional structure and biological function.  相似文献   

6.
Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter.  相似文献   

7.
Members of the ATP-binding cassette (ABC) transporters share the same basic architecture, with a four-core domain made of two transmembrane plus two nucleotide-binding domains. However, a supramolecular organization has been detected in some ABC transporters, which might be relevant to physiological regulation of substrate transport. Here, the oligomerization status of a bacterial half-ABC multidrug transporter, BmrA, was investigated. Each BmrA monomer containing a single cysteine residue introduced close to either the Walker A or the ABC signature motifs was labeled using two probes, 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (fluorescence donor) or 4-dimethylaminophenylazophenyl-4'-maleimide (fluorescence acceptor). Reconstitution into proteoliposomes of BmrA monomers labeled separately with either the fluorescence donor or the fluorescence acceptor allowed measurement of time-resolved fluorescence resonance energy transfer between the two probes, showing that efficient reassociation of the singly labeled BmrA monomers occurred upon reconstitution. The efficiency of energy transfer studied as a function of increasing concentration of BmrA-labeled with the fluorescence acceptor argues for a dimeric association of BmrA instead of a tetrameric one. Furthermore, the efficiency of energy transfer allowed estimation of the distances between the two bound probes. Results suggest that, in the resting state, BmrA in a lipid bilayer environment preferentially adopts a closed conformation similar to that found in the BtuCD crystal structure and that the presence of different effectors does not substantially modify its global conformation.  相似文献   

8.
ABC (ATP-binding cassette) transporters form the largest family of membrane proteins in micro-organisms where they are able to transport a wide variety of substrates against a concentration gradient, in an ATP-dependent process. Two genes from the same putative Bacillus subtilis operon, yheI and yheH, encoding possibly two different ABC transporters, were overexpressed in Escherichia coli in high yield, either separately or jointly. Using membrane vesicles, it is shown here that both subunits were required to detect, (i) the transport of four structurally unrelated drugs, and (ii) a vanadate-sensitive ATPase activity. Mutation of the invariant Walker-A lysine to an alanine residue in both subunits led to an inactive transporter. Moreover, after membrane solubilization by detergent, both wild-type subunits co-purified on a Ni-Agarose affinity column while only the YheH subunit contained a hexa-histidine tag. This shows that YheI and YheH are indeed able to interact together to form a heterodimer. Importantly, expression of both yheI and yheH genes in B. subtilis could be strongly stimulated by addition of sub-inhibitory concentrations of various unrelated antibiotics. Therefore, B. subtilis YheI/YheH forms a new heterodimeric multidrug ABC transporter possibly involved in multiple antibiotic resistance in vivo.  相似文献   

9.
Dawson RJ  Locher KP 《FEBS letters》2007,581(5):935-938
Staphylococcus aureus Sav1866 is a bacterial homolog of the human ABC transporter Mdr1 that causes multidrug resistance in cancer cells. We report the crystal structure of Sav1866 in complex with adenosine-5'-(beta,gamma-imido)triphosphate (AMP-PNP) at 3.4A resolution and compare it with the previously determined structure of Sav1866 with bound ADP. Besides differences in the ATP-binding sites, no significant conformational changes were observed. The results confirm that the ATP-bound state of multidrug ABC transporters is coupled to an outward-facing conformation of the transmembrane domains.  相似文献   

10.
11.
ATP-binding cassette (ABC) systems translocate a wide range of solutes across cellular membranes. The thermophilic gram-negative eubacterium Thermus thermophilus, a model organism for structural genomics and systems biology, discloses ~46 ABC proteins, which are largely uncharacterized. Here, we functionally analyzed the first two and only ABC half-transporters of the hyperthermophilic bacterium, TmrA and TmrB. The ABC system mediates uptake of the drug Hoechst 33342 in inside-out oriented vesicles that is inhibited by verapamil. TmrA and TmrB form a stable heterodimeric complex hydrolyzing ATP with a K(m) of 0.9 mm and k(cat) of 9 s(-1) at 68 °C. Two nucleotides can be trapped in the heterodimeric ABC complex either by vanadate or by mutation inhibiting ATP hydrolysis. Nucleotide trapping requires permissive temperatures, at which a conformational ATP switch is possible. We further demonstrate that the canonic glutamate 523 of TmrA is essential for rapid conversion of the ATP/ATP-bound complex into its ADP/ATP state, whereas the corresponding aspartate in TmrB (Asp-500) has only a regulatory role. Notably, exchange of this single noncanonic residue into a catalytic glutamate cannot rescue the function of the E523Q/D500E complex, implicating a built-in asymmetry of the complex. However, slow ATP hydrolysis in the newly generated canonic site (D500E) strictly depends on the formation of a posthydrolysis state in the consensus site, indicating an allosteric coupling of both active sites.  相似文献   

12.
13.
ATP-binding cassette (ABC) proteins constitute one of the widest families in all organisms, whose P-glycoprotein involved in resistance of cancer cells to chemotherapy is an archetype member. Although three-dimensional structures of several nucleotide-binding domains of ABC proteins are now available, the catalytic mechanism triggering the functioning of these proteins still remains elusive. In particular, it has been postulated that ATP hydrolysis proceeds via an acid-base mechanism catalyzed by the Glu residue adjacent to the Walker-B motif (Geourjon, C., Orelle, C., Steinfels, E., Blanchet, C., Deléage, G., Di Pietro, A., and Jault, J. M. (2001) Trends Biochem. Sci. 26, 539-544), but the involvement of such residue as the catalytic base in ABC transporters was recently questioned (Sauna, Z. E., Muller, M., Peng, X. H., and Ambudkar, S. V. (2002) Biochemistry, 41, 13989-14000). The equivalent glutamate residue (Glu504) of a half-ABC transporter involved in multidrug resistance in Bacillus subtilis, BmrA (formerly known as YvcC), was therefore mutated to Asp, Ala, Gln, Ser, and Cys residues. All these mutants were fully devoid of ATPase activity, yet they showed a high level of vanadate-independent trapping of 8-N3-alpha-32P-labeled nucleotide(s), following preincubation with 8-N3-[alpha-32P]ATP. However, and in contrast to the wild-type enzyme, the use of 8-N3-[gamma-32P]ATP unequivocally showed that all the mutants trapped exclusively the triphosphate form of the analogue, suggesting that they were not able to perform even a single hydrolytic turnover. These results demonstrate that Glu504 is the catalytic base for ATP hydrolysis in BmrA, and it is proposed that equivalent glutamate residues in other ABC transporters play the same role.  相似文献   

14.
Recent crystal structures of the multidrug ATP‐binding cassette (ABC) exporters Sav1866 from Staphylococcus aureus, MsbA from Escherichia coli, Vibrio cholera, and Salmonella typhimurium, and mouse ABCB1a suggest a common alternating access mechanism for export. However, the molecular framework underlying this mechanism is critically dependent on assumed conformational relationships between nonidentical crystal structures and therefore requires biochemical verification. The structures of homodimeric MsbA reveal a pair of glutamate residues (E208 and E208′) in the intracellular domains of its two half‐transporters, close to the nucleotide‐binding domains (NBDs), which are in close proximity of each other in the outward‐facing state but not in the inward‐facing state. Using intermolecular cysteine crosslinking between E208C and E208C′ in E. coli MsbA, we demonstrate that the NBDs dissociate in nucleotide‐free conditions and come close on ATP binding and ADP·vanadate trapping. Interestingly, ADP alone separates the half‐transporters like a nucleotide‐free state, presumably for the following catalytic cycle. Our data fill persistent gaps in current studies on the conformational dynamics of a variety of ABC exporters. Based on a single biochemical method, the findings describe a conformational cycle for a single ABC exporter at major checkpoints of the ATPase reaction under experimental conditions, where the exporter is transport active. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Glucose transporter isoform 4 (GLUT4), is the sole glucose transporter responsible for the effect of insulin on postprandial blood glucose clearance. However, the nature of the insulin sensitivity of GLUT4 remains unknown. In this study, we replaced the first luminal loop of cellugyrin, a 4-transmembrane protein that does not respond to insulin, with that of GLUT4. The chimera protein is targeted to the intracellular insulin-responsive vesicles and is translocated to the plasma membrane upon insulin stimulation. The faithful targeting of the chimera depends on the expression of the sorting receptor sortilin, which interacts with the unique amino acid residues in the first luminal loop of GLUT4. Thus the first luminal loop may confer insulin responsiveness to the GLUT4 molecule.  相似文献   

16.
The spread of multidrug resistance (MDR) is a world health crisis that presents a significant challenge to the treatment of cancer and infection. MDR can be caused by a group of ABC (MDR-ABC) transporters that move hydrophobic drug molecules and lipids across the cell membrane. To gain insight into the conformational changes these transporters undergo when flipping hydrophobic substrates across the lipid bilayer, we have determined the structure of the lipid flippase MsbA from Vibrio cholera (VC-MsbA) to 3.8A. Structural comparison of VC-MsbA to MsbA from Escherichia coli reveals that the transporters share a structurally conserved core of transmembrane alpha-helices, but differ in the relative orientations of their nucleotide-binding domains (NBD). The transmembrane domain of VC-MsbA is captured in a closed conformation and the structure supports a "power stroke" model of transporter dynamics where opposing NBDs associate upon ATP binding. The separation of the alpha and beta domains of the NBD suggests the possibility that their association could make them competent to bind ATP and gives further insight into the structural basis for catalytic regulation.  相似文献   

17.
The Lactococcus lactis multidrug resistance ABC transporter protein LmrA has been shown to confer resistance to structurally and functionally diverse antibiotics and anti-cancer drugs. Using a previously characterized photoreactive drug analogue of Rhodamine 123 (iodo-aryl azido-Rhodamine 123 or IAARh123), direct and specific photoaffinity labeling of LmrA in enriched membrane vesicles could be achieved under non-energized conditions. This photoaffinity labeling of LmrA occurs at a physiologically relevant site as it was inhibited by molar excess of ethidium bromide>Rhodamine 6G>vinblastine>doxorubicin>MK571 (a quinoline-based drug) while colchicine had no effect. The MDR-reversing agents PSC 833 and cyclosporin A were similarly effective in inhibiting IAARh123 photolabeling of LmrA and P-glycoprotein. In-gel digestion with Staphyloccocus aureus V8 protease of IAARh123-photolabeled LmrA revealed several IAARh123 labeled polypeptides, in addition to a 6.8kDa polypeptide that comprises the last two transmembrane domains of LmrA.  相似文献   

18.
The aim was to investigate the roles of transmembrane domain 2 and the adjacent region of the first intracellular loop in determining human noradrenaline transporter (hNET) function by pharmacological and substituted-cysteine accessibility method (SCAM) analyses. It was first necessary to establish a suitable background NET for SCAM. Alanine mutants of endogenous hNET cysteines, hC86A, hC131A and hC339A, were examined and showed no marked effects on expression or function. hNET and the mutants were also resistant to methanethiosulfonate (MTS), ethylammonium (MTSEA) and MTStrimethylammonium (MTSET). Hence, wild-type hNET is an appropriate background for production of cysteine mutants for SCAM. Pharmacological investigation showed that all mutants except hT99C and hL109C showed reduced cell-surface expression, while all except hM107C showed a reduction in functional activity. The mutations did not markedly affect the apparent affinities of substrates, but apparent affinities of cocaine were decreased 7-fold for hP97C and 10-fold for hF101C and increased 12-fold for hY98C. [3H]Nisoxetine binding affinities were decreased 13-fold for hP97C and 5-fold for hF101C. SCAM analysis revealed that only hL102C was sensitive to 1.25 mm MTSEA, and this sensitivity was protected by noradrenaline, nisoxetine and cocaine. The results suggest that this region of hNET is important for interactions with antidepressants and cocaine, but it is probably not involved in substrate translocation mechanisms.  相似文献   

19.
The ABC multidrug transporter LmrA of Lactococcus lactis consists of six putative transmembrane segments (TMS) and a nucleotide binding domain. LmrA functions as a homodimer in which the two membrane domains form the solute translocation path across the membrane. To obtain structural information of LmrA a cysteine scanning accessibility approach was used. Cysteines were introduced in the cysteine-less wild-type LmrA in each hydrophilic loop and in TMS 6, and each membrane-embedded aromatic residue was mutated to cysteine. Of the 41 constructed single cysteine mutants, only one mutant, L301C, was not expressed. Most single-cysteine mutants were capable of drug transport and only three mutants, F37C, M299C, and N300C, were inactive, indicating that none of the aromatic residues in the transmembrane regions of LmrA are crucial for substrate binding or transport. Modification of the active mutants with N-ethylmaleimide blocked the transport activity in five mutants (S132C, L174C, S206C, S234C, and L292C). All cysteine residues in external and internal loops were accessible to fluorescein maleimide. The labeling experiments also showed that this thiol reagent cannot cross the membrane under the conditions used and confirmed the presence of six TMSs in each monomeric half of the transporter. Surprisingly, several single cysteines in the predicted TMSs could also be labeled by the bulky fluorescein maleimide molecule, suggesting unrestricted accessibility via an aqueous pathway. The periodicity of fluorescein maleimide accessibility of residues 291 to 308 in TMS 6 showed that this membrane-spanning alpha-helix has one face of the helix exposed to an aqueous cavity along its full-length. This finding, together with the solvent accessibility of 11 of 15 membrane-embedded aromatic residues, indicates that the transmembrane domains of the LmrA transporter form, under nonenergized conditions, an aqueous chamber within the membrane, which is open to the intracellular milieu.  相似文献   

20.
The molecular dynamics of the 64 kDa ABC multidrug efflux pump LmrA from Lactococcus lactis within lipid membranes has been investigated by deuterium solid-state NMR. Deuteriomethyl-labeled alanine has been used to probe global protein backbone dynamics. A comparison of static deuterium NMR spectra of full-length LmrA in the resting state and its isolated transmembrane domain revealed a high mobility for the nucleotide binding domains. Their motional freedom is restricted upon ATP binding as seen for LmrA in complex with AMP-PNP, a nonhydrolyzable ATP analogue. LmrA returns to full motional flexibility in the posthydrolysis, vanadate-trapped state. These experiments provide insight into the molecular dynamics of a full-length ABC transporter during the catalytic cycle. Data are discussed in the context of known biochemical data and structural models of ABC transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号