首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Based on the meteorological data over a period of 4 years (1980–3), the macro-environment of BenCat Farm situated in the southern part of Vietnam (27 m above mean sea-level, 11° N and 106° E) was categorized as a “monsoon tropical climate”, due to heavy rainfall (annual mean 2028.96 mm) and about 32% wet days (annual mean 116.52 days) together with high air temperature (annual mean daily temperature 28.58, max. 32.33 and min 24.85° C). April was the hottest (monthly mean >35°C) and January the coldest month (monthly mean <22° C) of the year. The maximum number of wet days were during September and October (mean 18 days.month), whereas the minimum number of wet days were during January and February (mean <1 day/month). The months of December and January at Ben-Cat buffalo farm were categorized as the “comfortable (moderate-Dry) period” as the mean daily temperature was <27° C, while the remaining 10 months of the Calender year (February–November) were categorized as the “hot period” (mean daily temperature >27° C). On the basis of rainfall and the number of wet days, the hot period was further subdivided into a “hot-dry period” (February–April, mean of 1.67 wet days/month and mean rainfall 19.43 mm/month) and a “hot-humid period” (May–November, mean of 15.57 wet days/month and mean rainfall 276.28 mm/month).  相似文献   

2.
Transpiration from the Amazon rainforest generates an essential water source at a global and local scale. However, changes in rainforest function with climate change can disrupt this process, causing significant reductions in precipitation across Amazonia, and potentially at a global scale. We report the only study of forest transpiration following a long‐term (>10 year) experimental drought treatment in Amazonian forest. After 15 years of receiving half the normal rainfall, drought‐related tree mortality caused total forest transpiration to decrease by 30%. However, the surviving droughted trees maintained or increased transpiration because of reduced competition for water and increased light availability, which is consistent with increased growth rates. Consequently, the amount of water supplied as rainfall reaching the soil and directly recycled as transpiration increased to 100%. This value was 25% greater than for adjacent nondroughted forest. If these drought conditions were accompanied by a modest increase in temperature (e.g., 1.5°C), water demand would exceed supply, making the forest more prone to increased tree mortality.  相似文献   

3.
Understanding how species cope with variations in climatic conditions, forest types and habitat amount is a fundamental challenge for ecologists and conservation biologists. We used data from 18 communities of Mesoamerican spider monkeys (Ateles geoffroyi) throughout their range to determine whether their activity patterns are affected by climatic variables (temperature and rainfall), forest types (seasonal and nonseasonal forests), and forest condition (continuous and fragmented). Data were derived from 15 published and unpublished studies carried out in four countries (Mexico, El Salvador, Costa Rica, and Panama), cumulatively representing more than 18 years (221 months, >3,645 hr) of behavioral observations. Overall, A. geoffroyi spent most of their time feeding (38.4 ± 14.0%, mean ± SD) and resting (36.6 ± 12.8%) and less time traveling (19.8 ± 11.3%). Resting and feeding were mainly affected by rainfall: resting time increased with decreasing rainfall, whereas feeding time increased with rainfall. Traveling time was negatively related to both rainfall and maximum temperature. In addition, both resting and traveling time were higher in seasonal forests (tropical dry forest and tropical moist forest) than in nonseasonal forests (tropical wet forest), but feeding time followed the opposite pattern. Furthermore, spider monkeys spent more time feeding and less time resting (i.e., higher feeding effort) in forest fragments than in continuous forest. These findings suggest that global climate changes and habitat deforestation and fragmentation in Mesoamerica will threaten the survival of spider monkeys and reduce the distributional range of the species in the coming decades. Am. J. Primatol. 73:1189–1198, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
Variation in climatic and habitat conditions can affect populations through a variety of mechanisms, and these relationships can act at different temporal and spatial scales. Using post‐mortem badger body weight records from 15 878 individuals captured across the Republic of Ireland (7224 setts across ca. 15 000 km2; 2009–2012), we employed a hierarchical multilevel mixed model to evaluate the effects of climate (rainfall and temperature) and habitat quality (landscape suitability), while controlling for local abundance (unique badgers caught/sett/year). Body weight was affected strongly by temperature across a number of temporal scales (preceding month or season), with badgers being heavier if preceding temperatures (particularly during winter/spring) were warmer than the long‐term seasonal mean. There was less support for rainfall across different temporal scales, although badgers did exhibit heavier weights when greater rainfall occurred one or 2 months prior to capture. Badgers were also heavier in areas with higher landscape habitat quality, modulated by the number of individuals captured per sett, consistent with density‐dependent effects reducing weights. Overall, the mean badger body weight of culled individuals rose during the study period (2009–2012), more so for males than for females. With predicted increases in temperature, and rainfall, augmented by ongoing agricultural land conversion in this region, we project heavier individual badger body weights in the future. Increased body weight has been associated with higher fecundity, recruitment and survival rates in badgers, due to improved food availability and energetic budgets. We thus predict that climate change could increase the badger population across the Republic of Ireland. Nevertheless, we emphasize that, locally, populations could still be vulnerable to extreme weather variability coupled with detrimental agricultural practice, including population management.  相似文献   

5.

Aim

To evaluate the extent to which ant species richness in Neotropical savannas varies with macrogeographic variables, and to identify the potential climatic drivers of such variation.

Location

The Cerrado savanna biome of central Brazil, in a region spanning ca. 20° of latitude and 18°of longitude.

Methods

Standardized sampling of the arboreal and ground‐dwelling faunas was performed in 29 well‐preserved savanna sites using pitfall traps. Species were classified according to their habitat affinities: open‐savanna specialists, forest‐associated species or habitat generalists. We used generalized linear models to evaluate the importance of geographic (latitude, longitude and elevation) and climatic (mean temperature and three metrics of rainfall) variables as predictors of species richness.

Results

The total number of species recorded at each site varied more than twofold (from 59 to 144), and latitude was the best geographic correlate of overall species richness. However, contrary to the expected pattern, more species were found at higher than lower latitudes. This reversed latitudinal pattern of diversity occurred for both the arboreal and ground‐dwelling faunas, and for the habitat generalists and forest specialists. The savanna specialists showed a mid‐latitudinal peak in diversity. Overall, there was a significant positive association between rainfall and species richness, but the strength of this relationship varied with ant habitat affinity.

Main conclusions

The Cerrado ant fauna shows a reverse latitudinal gradient in species diversity, and this can be explained by increasing rainfall during the warmest months of the year (and therefore in plant productivity) with increasing latitude. The sensitivity of Cerrado ant diversity to declining rainfall contrasts with the high resilience to aridity of the Australian savanna ant fauna, and this reflects the contrasting evolutionary histories of these faunas. Our findings highlight the importance of historical processes as drivers of intercontinental contrasts in macroecological patterns.  相似文献   

6.
Adverse weather conditions during parental care may have direct consequences for offspring production, but longer‐term effects on juvenile and parental survival are less well known. We used long‐term data on reproductive output, recruitment, and parental survival in northern wheatears (Oenanthe oenanthe) to investigate the effects of rainfall during parental care on fledging success, recruitment success (juvenile survival), and parental survival, and how these effects related to nestling age, breeding time, habitat quality, and parental nest visitation rates. While accounting for effects of temperature, fledging success was negatively related to rainfall (days > 10 mm) in the second half of the nestling period, with the magnitude of this effect being greater for breeding attempts early in the season. Recruitment success was, however, more sensitive to the number of rain days in the first half of the nestling period. Rainfall effects on parental survival differed between the sexes; males were more sensitive to rain during the nestling period than females. We demonstrate a probable mechanism driving the rainfall effects on reproductive output: Parental nest visitation rates decline with increasing amounts of daily rainfall, with this effect becoming stronger after consecutive rain days. Our study shows that rain during the nestling stage not only relates to fledging success but also has longer‐term effects on recruitment and subsequent parental survival. Thus, if we want to understand or predict population responses to future climate change, we need to consider the potential impacts of changing rainfall patterns in addition to temperature, and how these will affect target species' vital rates.  相似文献   

7.
Savannah ecosystems in East Africa are rarely stable and can experience rapid local changes from dense woodlands to open plains. In this 3‐year study there was a reduction of 16.3% in a height‐stratified sample of nearly 1000 individually marked Acacia drepanolobium trees. The study was carried out in an enclosed fire‐free wooded grassland habitat in the Laikipia region of Kenya. The trees were monitored from 1998 to 2001, a period that included 12 months when rainfall was 60% below average. Elephants were responsible for the loss of 40% of the trees, black rhinos 33% and 27% died from the effects of the drought. Low rainfall was correlated with increased damage as elephants switched diet from grass to trees. Heavy browsing by giraffes reduced tree growth rates and increased their susceptibility to drought. Hence the combination of low rainfall and heavy browsing by elephants, black rhinos and giraffes led to the rapid tree loss. These findings have implications for research into the causes of instability in savannah ecosystems and the management of enclosed reserves.  相似文献   

8.
We investigated the relationship between daily and seasonal temperature variation and dark respiratory CO2 release by leaves of snow gum (Eucalyptus pauciflora Sieb. ex Spreng) that were grown in their natural habitat or under controlled‐environment conditions. The open grassland field site in SE Australia was characterized by large seasonal and diurnal changes in air temperature. On each measurement day, leaf respiration rates in darkness were measured in situ at 2–3 h intervals over a 24 h period, with measurements being conducted at the ambient leaf temperature. The rate of respiration at a set measuring temperature (i.e. apparent ‘respiratory capacity’) was greater in seedlings grown under low average daily temperatures (i.e. acclimation occurred), both in the field and under controlled‐environment conditions. The sensitivity of leaf respiration to diurnal changes in temperature (i.e. the Q10 of leaf respiration) exhibited little seasonal variation over much of the year. However, Q10 values were significantly greater on cold winter days (i.e. when daily average and minimum air temperatures were below 6° and –1 °C, respectively). These differences in Q10 values were not due to bias arizing from the contrasting daily temperature amplitudes in winter and summer, as the Q10 of leaf respiration was constant over a wide temperature range in short‐term experiments. Due to the higher Q10 values in winter, there was less difference between winter and summer leaf respiration rates measured at 5 °C than at 25 °C. The net result of these changes was that there was relatively little difference in total daily leaf respiratory CO2 release per unit leaf dry mass in winter and summer. Under controlled‐environment conditions, acclimation of respiration to growth temperature occurred in as little as 1–3 d. Acclimation was associated with a change in the concentration of soluble sugars under controlled conditions, but not in the field. Our data suggest that acclimation in the field may be associated with the onset of cold‐induced photo‐inhibition. We conclude that cold‐acclimation of dark respiration in snow gum leaves is characterized by changes in both the temperature sensitivity and apparent ‘capacity’ of the respiratory apparatus, and that such changes will have an important impact on the carbon economy of snow gum plants.  相似文献   

9.
Smolt traits (length, age) and timing of smolt migration of wild Atlantic salmon, Salmo salar L., were investigated in the Simojoki River, northern Baltic Sea. The aim was to determine whether they responded to changes in parr length, parr density and temperature from 2000 to 2014. Annual electrofishing surveys and smolt numbers determined parr densities by springtime trapping in the river mouth. During the smolt trapping period captured parr and smolts were aged from scales. Water temperature was measured daily. Mean length decreased from 137 mm (TL) to 129 mm among 2‐year‐old smolts, and from 150 mm to 139 mm among 3‐year‐olds. Median date of the smolt migration was 10 days earlier, from early June to late May during the study period, linked to the rise in air temperature in May at the nearby Kemi‐Tornio airport. However, the median day temperature and the mean daily water temperatures during the second (Q2) and third (Q3) migration quartiles did not change. This implied that migration began when a suitable water temperature was reached, independent of the date.  相似文献   

10.
黄土塬区麦田蒸散特征   总被引:8,自引:0,他引:8  
利用大型称重式蒸渗仪研究了黄土塬区冬小麦不同时段单元(生育期、月、日、时)的蒸散特征,并分析了叶面积指数、土壤含水量和气温、降水等因子对蒸散的影响.结果表明,在试验年份,各生育期内冬小麦的日蒸散量:孕穗 抽穗期﹥开花期﹥起身期﹥拔节期﹥灌浆期﹥返青期﹥成熟期﹥越冬期;生长前期蒸散受温度影响较大,中期受叶面积指数影响较大,后期土壤水分成为蒸散的限制因子,灌浆期内冬小麦日均蒸散量因受土壤水分亏缺影响而显著下降,日均蒸散量从孕穗 抽穗期的625 mm·d-1 减小到灌浆期的2.66 mm·d-1;月蒸散以4~6月最高,3个月蒸散量占试验期间总蒸散量的80%以上;麦田逐日蒸散变化曲线上的波动峰值反映了受降水作用土壤水分状况改善条件下的蒸散特征;时蒸散过程在总体遵循周期性的前提下表现出随天气而改变的现象.  相似文献   

11.
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non‐breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species’ distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land‐use. The effects of global change on the non‐breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri‐urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri‐urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri‐urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non‐breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non‐breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non‐breeding grounds, suggesting that management opportunities currently exist to mitigate near‐term non‐breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change.  相似文献   

12.
Weather conditions, and how they in turn define and characterize regional climatic conditions, are a primary limit on global species diversity and distribution, and increasing variability in global and regional climates have significant implications for species and habitat conservation. A Capture–Mark–Recapture study revealed that badger (Meles meles) life history parameters interact in complicated ways with annual variability in the seasonality of temperature and rainfall, both in absolute and in phenological terms. A strong predictive relationship was observed between survival and both temperature and late‐summer rainfall. This link at the population dynamics level was related to individual body‐weight increases observed between summer and autumn. In addition, fecundity was correlated with spring rainfall and temperature. We investigated and confirmed that relationships were consistent with observed variation in the intensity of a parasitic infection. Finally, fecundity during any given year correlated with conditions in the preceding autumn. Badger survival also correlated with late winter weather conditions. This period is critical for badgers insofar as it coincides with their peak involvement in road traffic accidents (RTAs). RTA rate during this period was linked strongly to temperature, underlining the intricate ways in which a changing climate might interact with anthropogenic agents to influence species' population processes. Equinoctial conditions produced significant population driver effects. That is, while summers will always be relatively warm compared with winters, spring and autumn weather can be more variable and functionally delimit the ‘productive’ vs. nonproductive period of the year in terms of badger behavioural and physiological cycles. This study highlights how appropriately informed conservation strategies, mindful of trends in climatic conditions, will become ever‐more essential to ensure the survival of many species globally.  相似文献   

13.
In this study, animal‐borne telemetry with temperature sensors was coupled with extensive habitat temperature monitoring in a dimictic reservoir, to test the following hypotheses: behavioural thermoregulation occurs throughout the year and temperature selection varies on a diel and seasonal basis, in a winter‐specialist diel‐migrating fish. Burbot Lota lota demonstrated nightly behavioural thermoregulation throughout the year, with a large seasonal shift between selection for very cold temperatures (<2° C) optimal for reproduction during the spawning period and selection for warmer temperatures (12–14° C) optimal for hunting and feeding during non‐reproductive periods. During daylight hours, while L. lota avoided habitats warmer than optimal for reproduction and feeding during the spawning and non‐reproductive periods, respectively, active selection was limited to selection for 4–6° C habitat during the prespawning period. Although behavioural thermoregulation explained the night‐time migration, behavioural thermoregulation only partially explained daytime behaviour, indicating that diel migration is best explained by a combination of factors. Thus, thermal‐habitat selection was a good predictor of night‐time habitat occupancy in a diel‐migrating species. Together, these results show that thermal‐habitat selection by fishes may be important throughout the year and a more seasonally plastic behaviour than previously recognized.  相似文献   

14.
云南西双版纳桔小实蝇种群动态   总被引:26,自引:1,他引:26  
叶辉  刘建宏 《应用生态学报》2005,16(7):1330-1334
于1997年、2000年和2003年在云南西双版纳通过性诱剂诱捕对桔小实蝇种群动态进行了全年监测,并就气候因子及寄主种类对该种群变动的影响进行了系统分析.结果表明,桔小实蝇在西双版纳常年发生.当年11月至次年2月,桔小实蝇种群处于较低水平,3月以后种群数量逐渐上升,至6~7月形成一个种群增长高峰,此后至10月种群数量迅速下降.分析表明,影响桔小实蝇种群变化的重要因子是温度、降雨量和寄主种类.西双版纳各月均温位于桔小实蝇适温范围内,但12~2月的月平均最低温度低于桔小实蝇的适温范围,对桔小实蝇种群数量有一定抑制作用.降雨量是影响桔小实蝇种群数量变动的另一重要因子.月降雨量低于50 mm以下对桔小实蝇种群不利,而100~200 mm的月降雨量有助于桔小实蝇种群的增长.月降雨量大于250 mm以上将导致桔小实蝇种群数量下降.6~7月强降雨过程被认为是桔小实蝇在该时期种群数量下降的主要原因.芒果、番石榴、桃、梨、柑桔、龙眼和荔枝是桔小实蝇在该地区的主要寄主水果.其中,芒果和龙眼是当地桔小实蝇最喜好的寄主水果,其种植面积、挂果期和产量对桔小实蝇种群数量变动影响较大,被认为是影响该地区桔小实蝇种群变动的又一主要因素.  相似文献   

15.
Bush encroachment can have profound effects on the ability of savanna ecosystems to provide goods and services to society. It is therefore crucial to understand the key drivers of bush encroachment in savannas. In this study, we test whether decadal changes in mean annual rainfall significantly explain changes in the dominant patch size as well as the density of bush patches at six protected savanna sites located along a rainfall gradient in Zimbabwe. We first performed Maximal Overlap Discrete Wavelet transform within the intensity‐dominant scale theoretical framework on multi‐temporal aerial photographs and high spatial resolution satellite imagery to objectively detect changes in the dominant patch dimension as well as the intensity of bush cover over a 40‐year period at six test sites. We then pooled the data and performed regression analysis relating changes in dominant scale and intensity to decadal changes in mean annual rainfall in order to deduce a possible connection between dynamics of bush encroachment and rainfall variability. Our results indicate a significant nonlinear relationship between changes in the dominant scale and decadal changes in mean annual rainfall (R2 = 0.85, F13 = 35.96, P < 0.01). In contrast, the relationship between decadal changes in mean annual rainfall and changes in intensity was weak and not significant (R2 = 0.29, F13 = 2.69, P = 0.106). These results imply the importance of annual rainfall in explaining long‐term changes in the dominant scale of woody patches. However, mechanisms other than rainfall probably explain changes in the intensity of bush cover, and this needs further investigation.  相似文献   

16.
Understanding the interactive effects of global change drivers on vegetation is critical for ecosystem management and restoration, particularly in the Mediterranean‐climate biodiversity hotspots of the world. Climate change, habitat loss and nitrogen deposition have been identified as the key threats to biodiversity loss in these regions, yet their combined effects are poorly understood. We measured the interactive effects of rainfall manipulation (reduction, control, addition) and nitrogen deposition (N addition, N 1 P addition, and unfertilised) on the establishment of 19 Banksia‐woodland species planted at three sites in southwestern Australia. Seedling survival and aboveground biomass was increased with water addition but was not affected by rainfall reduction. N addition alone did not impact seedling survival and growth, but interacted with rainfall manipulation and site in unpredictable ways. Treatment effects were context dependent, which we attributed to historic nutrient enrichment and competitive exotic species that prevented seedling establishment. Plant species (n 5 6) varied greatly in their water‐use efficiency and nitrogen‐use efficiency responses to the imposed treatments, which underscores the difficulty of generalising results to larger numbers of species. Despite our finding that rainfall manipulation and nutrient addition have complex, and in some cases antagonistic effects on seedling survival and growth in Banksia woodlands, our results suggest that local context (i.e. invasive species, land‐use history) will have as much influence on seedling establishment as global changes in climate and nitrogen deposition. We call for more field experiments and predictive models to explore further the importance of ecological context in determining the interactive effects of multiple global change drivers on ecosystems. Finally, to realize effective biodiversity conservation, local management interventions that address invasive species and associated habitat degradation will be as critical in the future as they are now.  相似文献   

17.
《Ostrich》2013,84(3):119-136
Animal population dynamics can be driven by rainfall variability through its influence on habitat suitability, availability and nutritional sufficiency of forage. To understand how rainfall influences ostriches, we related changes in ostrich recruitment in the Mara–Serengeti ecosystem to rainfall. Over a 15-year period, monthly counts of ostriches were made and the number of hatchlings, chicks, hens, cocks, and the size of the groups in which they occurred were recorded. Breeding was bimodal with a major peak in February and a minor peak in October. Ostriches formed larger groups in the wet (4.41 ± 5.17 (mean ± SD), range 1–72, n = 672 groups) than in the dry (2.49 ± 2.70, range 1–29, n = 398) season. The number of hatchlings plus chicks per hen increased across the duration of the study period and with increasing annual and early wet-season rainfall, affecting forage availability and quality. Recruitment was highest at intermediate levels of the five-year average of the late wet-season rainfall, implying that a change in long-term rainfall and habitat suitability would move recruitment away from the optimum. Outstanding adaptations to life in arid environments could make ostriches more resilient than sympatric ungulates if food shortages and water stress became more frequent because of widening climatic variability.  相似文献   

18.
In migratory birds, environmental conditions during the stationary period of the non‐breeding season are crucial to consider because they ultimately affect the fitness of individuals by influencing their subsequent migration, breeding success and survival. Although a few studies have investigated the influence of non‐breeding habitat on the capacity of individuals to cope with long‐term seasonal rainfall fluctuations, it remains unknown how habitat quality and variations in rainfall abundance–at a monthly scale–interact to affect non‐breeding condition of migrating birds. In this study, we examined the influence of monthly changes in rainfall abundance on body condition of non‐breeding female redstarts Setophaga ruticilla living either in a high quality habitat (mangrove) or in a low quality habitat (scrub). Body condition of both mangrove and scrub redstarts showed important variations over the study period, demonstrating for the first time that body condition of non‐breeding female redstarts can change rapidly in response to short‐term fluctuations in rainfall. Importantly, we found that female redstarts living in mangrove were usually in better condition during periods of low rainfall compared to females living in scrub. However, body condition did not differ between mangrove females and scrub females during an episode of frequent, heavy precipitation. Importantly, our study also demonstrated that the duration of a perturbation is an important determinant of body condition in redstarts since a prolonged drought resulted in similar low body condition for birds from both habitats. Age was not correlated with body condition whatever the habitat and the rainfall conditions. Our results demonstrate that high quality habitat can temporarily reduce the deleterious effect of a short‐term drought on body condition, but also, that a habitat of low quality does not constrain individuals when climatic conditions are optimal.  相似文献   

19.
Understanding the reproductive parameters of endangered primate species is vital for evaluating the status of populations and developing adequate conservation measures. This study provides the first detailed analysis of the reproductive parameters of wild white‐headed langurs (Trachypithecus leucocephalus), based on demographic data collected over an 8‐year period in the Nongguan Karst Hills in Chongzuo County, Guangxi, China. From 1998 to 2002, a total of 133 live births were recorded in the population based on systematic censuses. Births occurred throughout the year, but the temporal pattern was highly correlated with seasonal variation in temperature and rainfall, with the birth peak coinciding with the dry and cold months of November–March. The average birthrate was 0.47±0.13 births per female per year and mortality for infants younger than 20 months was 15.8%. From 1998 to 2006, 14 females gave birth to 41 infants in four focal groups. The average age at first birth for female langurs was 5–6 years (n=5) and the interbirth interval (IBI) was 23.2±5.2 months (median=24.5 months, n=27). Infants are weaned at 19–21 months of age. The IBI for females with infant loss before weaning was significantly shorter than those for females whose infants survived. It appears that birth seasonality in the white‐headed langurs is influenced by seasonal changes in food availability. The timing of conceptions was found to coincide with peak food availability. The reproductive parameters for white‐headed langurs reported here are quite similar to those reported for other colobine species. One major difference is our observation of lower infant mortality in Trachypithecus. Am. J. Primatol. 71:558–566, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
This study presents an analysis of temperature and precipitation trends and their impact on grape harvests in the Penedès region (NE Spain). It includes analyses of maximum, minimum and mean daily temperatures (for both the growing and ripening seasons) and daily rainfall (for the hydrological year, the growing season and each phenological stage) for three observatories in the immediate area. We analysed a series of factors: beginning and end harvest dates; the day on which a given potential alcoholic degree was reached; and yield for several varieties of grape grown in the area in relation to climatic variables. Maximum temperatures increased at all the observatories, with greater values being recorded in recent years (1996–2009) than in previous decades (1960s–2000s): we observed increases in average growing season temperatures of 0.11°C per year for the period 1996–2009 vs 0.04°C per year for the period 1960–2009 at Vilafranca del Penedès. These temperature changes were due mainly to increases in maximum temperatures and an increase in the incidence of extreme heat (number of days with T > 30°C). Crop evapotranspiration also increased significantly during the same period. The Winkler index also increased, so the study area would correspond to region IV according to that climatic classification. There were no significant trends in annual rainfall but rainfall recorded between bloom and veraison decreased significantly at the three observatories, with the greatest decrease corresponding to the period 1996–2009. The dates on which harvests started and ended showed a continuous advance (of between −0.7 and −1.1 days per year, depending on the variety), which was significantly correlated with the average mean and maximum daily growing season temperatures (up to −7.68 days for 1°C increase). Winegrape yield was influenced by the estimated water deficit (crop evapotranspiration minus precipitation) in the bloom-veraison period; this value increased due to a reduction in precipitation and an increase in evapotranspiration. Yield may have been reduced by up to 30 kg/ha for each millimetre increase in the estimated water deficit. Under these conditions, new strategies need to be followed in this area in order to maintain grape quality and yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号