共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mutational analysis of the DNA binding domain A of chromosomal protein HMG1. 总被引:7,自引:1,他引:7 下载免费PDF全文
We have mutated several residues of the first of the two HMG-boxes of mammalian HMG1. Some mutants cannot be produced in Escherichia coli, suggesting that the peptide fold is grossly disrupted. A few others can be produced efficiently and have normal DNA binding affinity and specificity; however, they are more sensitive towards heating and chaotropic agents than the wild type polypeptide. Significantly, the mutation of the single most conserved residue in the rather diverged HMG-box family falls in this 'in vitro temperature-sensitive' category, rather than in the non-folded category. Finally, two other mutants have reduced DNA binding affinity but unchanged binding specificity. Overall, it appears that whenever the HMG-box can fold, it will interact specifically with kinked DNA. 相似文献
3.
4.
5.
6.
7.
DNA looping by the HMG-box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. 总被引:11,自引:4,他引:11 下载免费PDF全文
We have compared HMG1 with the product of tryptic removal of its acidic C-terminal domain termed HMG3, which contains two 'HMG-box' DNA-binding domains. (i) HMG3 has a higher affinity for DNA than HMG1. (ii) Both HMG1 and HMG3 supercoil circular DNA in the presence of topoisomerase I. Supercoiling by HMG3 is the same at approximately 50 mM and approximately 150 mM ionic strength, as is its affinity for DNA, whereas supercoiling by HMG1 is less at 150 mM than at 50 mM ionic strength although its affinity for DNA is unchanged, showing that the acidic C-terminal tail represses supercoiling at the higher ionic strength. (iii) Electron microscopy shows that HMG3 at a low protein:DNA input ratio (1:1 w/w; r = 1), and HMG1 at a 6-fold higher ratio, cause looping of relaxed circular DNA at 150 mM ionic strength. Oligomeric protein 'beads' are apparent at the bases of the loops and at cross-overs of DNA duplexes. (iv) HMG3 at high input ratios (r = 6), but not HMG1, causes DNA compaction without distortion of the B-form. The two HMG-box domains of HMG1 are thus capable of manipulating DNA by looping, compaction and changes in topology. The acidic C-tail down-regulates these effects by modulation of the DNA-binding properties. 相似文献
8.
9.
10.
We have investigated the nature of the "structure-specific" binding of the tandem A and B HMG boxes of high mobility group protein 1 (HMG1) to four-way junction DNA. AB didomain binding favours the open, planar form of the junction, as shown by reaction with potassium permanganate. Site-directed cleavage of the DNA by a 1, 10-phenanthroline-copper moiety attached to unique natural or engineered cysteine residues in the A or B domain shows that the two linked HMG boxes are not functionally equivalent in four-way junction binding. The A domain of the didomain binds to the centre of the junction, mediating structure-specific binding; the concave surface of the domain interacts with the widened minor groove at the centre, contacting one of the four strands of the junction, and the short arm comprising helices I and II and the connecting loop protrudes into the central hole. The B domain makes contacts along one of the arms, presumably stabilising the binding of the didomain through additional non-sequence-specific interactions. The isolated B domain can, however, bind to the centre of the junction. The preferential binding of the A domain of the AB didomain to the centre correlates with our previous finding of a higher preference of the isolated A domain than of the B domain for this structurally distinct DNA ligand. It is probably at least partly due to the higher positive surface potential in the DNA-binding region of the A domain (in particular to an array of positively charged side-chains suitably positioned to interact with the negatively charged phosphates surrounding the central hole of the junction) and partly to differences in residues corresponding to those that intercalate between bases in other HMG box/DNA complexes. 相似文献
11.
Protein p6 of the Bacillus subtilis phage phi 29 binds with low sequence specificity to DNA through the minor groove, forming a multimeric nucleoprotein complex that activates the initiation of phi 29 DNA replication. Deletion analysis suggested that the N-terminal part of protein p6, predicted to form an amphipathic alpha-helix, is involved in DNA binding. We have constructed site-directed mutants at the polar side of the putative alpha-helix. DNA binding and activation of initiation of phi 29 DNA replication were impaired in most of the mutant proteins obtained. A 19 amino acid peptide comprising the N-terminus of protein p6 interacted with a DNA fragment containing high-affinity signals for protein p6 binding with approximately 50-fold higher affinity than the peptide corresponding to an inactive mutant. Both wild-type peptide and protein p6 recognized the same sequences in this DNA fragment. This result, together with distamycin competition experiments, suggested that the wild-type peptide also binds to DNA through the minor groove. In addition, CD spectra of the wild-type peptide showed an increase in the alpha-helical content when bound to DNA. All these results indicate that an alpha-helical structure located in the N-terminal region of protein p6 is involved in DNA binding through the minor groove. 相似文献
12.
13.
14.
The DNA binding mechanism of box B in HMG1, a member of the sequence non-specific DNA binding HMG1/2-box family of proteins, has been examined by both mutation analyses and molecular modeling techniques. Substitution of the residue 102F, which is characteristically exposed to solvent, with a small hydrophobic amino acid affected its DNA binding activity. However, no additional effect was observed by the further mutation of flanking 101F. Molecular dynamics simulation and modeling studies revealed that 102F intercalates into DNA base-pairs, being supported by the flanking 101F. The mutants with a small hydrophobic residue at position 102 tolerated the substitution for 101F because the side chain at position 102 is too short to intercalate. Thus the intercalation of 102F and the positive effect of the flanking 101F residue are important for the sequence non-specific DNA binding of the HMG1/2-box. The conserved basic residues of 95K, 96R and 109R were also examined for their roles in DNA binding. These residues interacted with DNA mainly by electrostatic interaction and maintained the location of the box on the DNA, which prescribed the intercalation of 102F. The DNA intercalation by HMG1 consists of an ingenious mechanism which brings DNA conformational changes necessary for biological functions. 相似文献
15.
The enzyme kinetic studies with endonucleases specific for single-stranded DNA and the thermal denaturation analyses of DNA showed that a high mobility group (HMG) nonhistone protein fraction HMG (1 + 2), composed of HMG1 and HMG2, has an activity to unwind DNA partially at low protein-to-DNA weight ratio. Isolated HMG1 and HMG2 have the same activity. Divalent cations such as Mg++ or Ca++ were necessary for the unwinding reaction. A peptide containing high glutamic and aspartic (HGA) region, isolated from the tryptic digest of HMG (1 + 2), unwound DNA depending on the presence of Mg++ or Ca++, suggesting that the HMA region in HMG protein is the active site for the DNA unwinding reaction. Poly-L-glutamic acid, employed as a model peptide of the HGA region, showed the activity. Finally, mechanisms of the DNA unwinding reaction by the HMG protein and possible role of the divalent cations are discussed. 相似文献
16.
17.
The binding of chromosomal proteins HMG1 and HMG2 to various DNA structures was examined by a nitrocellulose filter binding assay using a 32P labelled supercoiled plasmid. Binding assays and competition experiments indicated that HMG2 has a higher affinity than HMG1 for supercoiled DNA. Studies at various ionic strengths and pH values reveal differences in the interaction of the two proteins with DNA. The results suggest that HMG1 and HMG2 are involved in distinguishable cellular functions. 相似文献
18.
Y A Henry A Chambers J S Tsang A J Kingsman S M Kingsman 《Nucleic acids research》1990,18(9):2617-2623
The 827 amino acid yeast RAP1 protein interacts with DNA to regulate gene expression at numerous unrelated loci in the yeast genome. By a combination of amino, carboxy and internal deletions, we have defined an internal 235 amino acid fragment of the yeast RAP1 protein that can bind efficiently to the RAP1 binding site of the PGK Upstream Activation Sequence (UAS). This domain spans residues 361 to 596 of the full length protein and lacks any homology to the DNA binding 'zinc finger' or 'helix-turn-helix' structural motifs. All the RAP1 binding sites we have tested bind domain 361-596, arguing that RAP1 binds all its chromosomal sites via this domain. The domain could not be further reduced in size suggesting that it represents the minimal functional DNA binding domain. The relevance of potential regions of secondary structure within the minimal binding domain is discussed. 相似文献
19.
A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. 总被引:23,自引:4,他引:23 下载免费PDF全文
T Chittenden C Flemington A B Houghton R G Ebb G J Gallo B Elangovan G Chinnadurai R J Lutz 《The EMBO journal》1995,14(22):5589-5596
Regulation of the cell death program involves physical interactions between different members of the Bcl-2 family that either promote or suppress apoptosis. The Bcl-2 homolog, Bak, promotes apoptosis and binds anti-apoptotic family members including Bcl-2 and Bcl-xL. We have identified a domain in Bak that is both necessary and sufficient for cytotoxic activity and binding to Bcl-xL. Sequences similar to this domain were identified in Bax and Bip1, two other proteins that promote apoptosis and interact with Bcl-xL, and were likewise critical for their capacity to kill cells and bind Bcl-xL. Thus, the domain is of central importance in mediating the function of multiple cell death-regulatory proteins that interact with Bcl-2 family members. 相似文献
20.
The postsynthetic acetylation of HMG1 protein has been known for more than 20 years, but the effect of this modification on the properties of the protein has not been studied so far. Acetylated HMG1 was isolated from cells grown in the presence of sodium n-butyrate and identified as a monoacetylated protein, modified at lysine 2. Acetylated and parental forms of HMG1 were compared relative to their binding affinity to distorted DNA structures. By using mobility shift assay to determine the dissociation constants, we show that acetylation enhanced the ability of HMG1 to recognize UV light- or cisplatin-damaged DNA and four-way junctions. Since the modified lysine lies adjacent to the HMG1 DNA-binding domain, the results obtained were attributed to acetylation-induced conformational change in HMG1. The potential role of acetylation in modulating the interactions of HMG1 with both damaged DNA and other proteins is discussed. 相似文献