首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Due to projected increases in winter air temperatures in the northeastern USA over the next 100 years, the snowpack is expected to decrease in depth and duration, thereby increasing soil exposure to freezing air temperatures. To evaluate the potential physiological responses of sugar maple (Acer saccharum Marsh.) to a reduced snowpack, we measured root injury, foliar cation and carbohydrate concentrations, woody shoot carbohydrate levels, and terminal woody shoot lengths of trees in a snow manipulation experiment in New Hampshire, USA. Snow was removed from treatment plots for the first 6 weeks of winter for two consecutive years, resulting in lower soil temperatures to a depth of 50 cm for both winters compared to reference plots with an undisturbed snowpack. Visibly uninjured roots from trees in the snow removal plots had significantly higher (but sub-lethal) levels of relative electrolyte leakage than trees in the reference plots. Foliar calcium: aluminum (Al) molar ratios were significantly lower, and Al concentrations were significantly higher, in trees from snow removal plots than trees from reference plots. Snow removal also reduced terminal shoot growth and increased foliar starch concentrations. Our results are consistent with previous research implicating soil freezing as a cause of soil acidification that leads to soil cation imbalances, but are the first to show that this translates into altered foliar cation pools, and changes in soluble and structural carbon pools in trees. Increased soil freezing due to a reduced snowpack could exacerbate soil cation imbalances already caused by acidic deposition, and have widespread implications for forest health in the northeastern USA.  相似文献   

2.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

3.
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O, methane (CH4) and carbon dioxide (CO2) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2O fluxes from northern hardwood forests.  相似文献   

4.
Apart from a general increase of mean annual air temperature, climate models predict a regional increase of the frequency and intensity of soil frost with possibly strong effects on C cycling of soils. In this study, we induced mild soil frost (up to −5 °C in a depth of 5 cm below surface) in a Norway spruce forest soil by removing the natural snow cover in the winter of 2005/2006. Soil frost lasted from January to April 2006 and was detected down to 15 cm depth. Soil frost effectively reduced soil respiration in the snow removal plots in comparison to undisturbed control plots. On an annual basis 6.2 t C ha−1 a−1 were emitted in the control plots compared with 5.1 t C ha−1 a−1 in the snow removal plots. Only 14% of this difference was attributed to reduced soil respiration during the soil frost period itself, whereas 63% of this difference originated from differences during the summer of 2006. Radiocarbon (Δ14C) signature of CO2 revealed a considerable reduction of heterotrophic respiration on the snow removal plots, only partly compensated for by a slight increase of rhizosphere respiration. Similar CO2 concentrations in the uppermost mineral horizons of both treatments indicate that differences between the treatments originated from the organic horizons. Extremely low water contents between June and October of 2006 may have inhibited the recovery of the heterotrophic organisms from the frost period, thereby enhancing the differences between the control and snow removal plots. We conclude that soil frost triggered a change in the composition of the microbial community, leading to an increased sensitivity of heterotrophic respiration to summer drought. A CO2 pulse during thawing, such as described for arable soils several times throughout the literature, with the potential to partly compensate for reduced soil respiration during soil frost, appears to be lacking for this soil. Our results from this experiment indicate that soil frost reduces C emission from forest soils, whereas mild winters may enhance C losses from forest soils.  相似文献   

5.
Soil freezing alters fine root dynamics in a northern hardwood forest   总被引:12,自引:1,他引:11  
The retention of nutrients within an ecosystem depends on temporal andspatial synchrony between nutrient availability and nutrient uptake, anddisruption of fine root processes can have dramatic impacts on nutrientretention within forest ecosystems. There is increasing evidence thatoverwinter climate can influence biogeochemical cycling belowground,perhaps by disrupting this synchrony. In this study, we experimentallyreduced snow accumulation in northern hardwood forest plots to examinethe effects of soil freezing on the dynamics of fine roots (< 1 mm diameter)measured using minirhizotrons. Snow removal treatment during therelatively mild winters of 1997–1998 and 1998–1999 induced mild freezingtemperatures (to –4 °C) lasting approximately three months atshallow soil depths (to –30 cm) in sugar maple and yellow birch stands.This treatment resulted in elevated overwinter fine root mortality in treatedcompared to reference plots of both species, and led to an earlier peak infine root production during the subsequent growing season. These shiftsin fine root dynamics increased fine root turnover but were not largeenough to significantly alter fine root biomass. No differences inmorality response were found between species. Laboratory tests on pottedtree seedlings exposed to controlled freezing regimes confirmed that mildfreezing temperatures (to –5 °C) were insufficient to directlyinjure winter-hardened fine roots of these species, suggesting that themarked response recorded in our forest plots was caused indirectly bymechanical damage to roots in frozen soil. Elevated fine root necromass intreated plots decomposed quickly, and may have contributed an excess fluxof about 0.5 g N/m2·yr, which is substantial relative tomeasurements of N fluxes from these plots. Our results suggest elevatedoverwinter mortality temporarily reduced fine root length in treatmentplots and reduced plant uptake, thereby disrupting the temporalsynchrony between nutrient availability and uptake and enhancing ratesof nitrification. Increased frequency of soil freezing events, as may occurwith global change, could alter fine root dynamics within the northernhardwood forest disrupting the normally tight coupling between nutrientmineralization and uptake.  相似文献   

6.
We exploited the natural climate gradient in the northern hardwood forest at the Hubbard Brook Experimental Forest (HBEF) to evaluate the effects of climate variation similar to what is predicted to occur with global warming over the next 50–100 years for northeastern North America on soil carbon (C) and nitrogen (N) cycle processes. Our objectives were to (1) characterize differences in soil temperature, moisture and frost associated with elevation at the HBEF and (2) evaluate variation in total soil (TSR) and microbial respiration, N mineralization, nitrification, denitrification, nitrous oxide (N2O) flux, and methane (CH4) uptake along this gradient. Low elevation sites were consistently warmer (1.5–2.5°C) and drier than high elevation sites. Despite higher temperatures, low elevation plots had less snow and more soil frost than high elevation plots. Net N mineralization and nitrification were slower in warmer, low elevation plots, in both summer and winter. In summer, this pattern was driven by lower soil moisture in warmer soils and in winter the pattern was linked to less snow and more soil freezing in warmer soils. These data suggest that N cycling and supply to plants in northern hardwood ecosystems will be reduced in a warmer climate due to changes in both winter and summer conditions. TSR was consistently faster in the warmer, low elevation plots. N cycling processes appeared to be more sensitive to variation in soil moisture induced by climate variation, whereas C cycling processes appeared to be more strongly influenced by temperature.  相似文献   

7.
气候变化引发的季节性雪被改变可能对高寒森林土壤氮循环产生深刻影响.以遮雪棚去除雪被,研究了雪被去除样方和对照样方在不同关键时期(雪被初期、深雪被期和雪被融化期)土壤氮库和矿化速率的变化.结果表明: 季节性雪被对土壤具有良好的保温作用,雪被去除使得5 cm深度土壤平均温度和最低温度分别降低0.33和1.17 ℃,并明显增加了土壤冻结深度和冻融循环.土壤活性氮在不同雪被时期存在显著差异.雪被去除使得冬季土壤铵态氮、硝态氮和可溶性有机氮增加38.6%、23.5%和57.3%.此外,雪被去除也促进了融化期土壤硝化和矿化速率的增加.因此,未来气候变暖引起的雪被减少可能加快川西亚高山森林冬季土壤氮循环.  相似文献   

8.
融雪水土壤入渗量是干旱区沙漠重要的水平衡收入项.2012-2013、2013-2014年两个冬季对古尔班通古特沙漠南缘沙丘西坡、东坡和丘间地降雪前和融雪后的土壤含水率进行监测,根据水量平衡原理计算了沙丘西坡、东坡、丘间地和景观尺度上的融雪水土壤入渗量,并与采用筒测法的实测结果进行比较.结果表明: 降雪前土壤含水率较低,未冻层非饱和土壤水对地表冻结层土壤水分的补给可忽略不计;融雪入渗水是表层土壤获得补给的主要水源;冻结期潜水既没有蒸发,积雪融化后潜水也没有获得补给;研究区西坡、东坡、丘间地和景观尺度上的融雪水土壤入渗量分别为20~43、27~43、32~45和26~45 mm.
  相似文献   

9.
The Arctic treeline is advancing in many areas and changes in carbon (C) cycling are anticipated. Differences in CO2 exchange between adjacent forest and tundra are not well known and contrasting conclusions have been drawn about the effects of forest advance on ecosystem C stocks. Measurements of CO2 exchange in tundra and adjacent forest showed the forest was a greater C sink during the growing season in northern Canada. There is, however, reason to expect that forests lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of belowground respiration and CO2 efflux. In this study, I tested the hypotheses that forests maintain a deeper snowpack, have warmer soils and lose more C during winter than adjacent tundra near the Arctic treeline in northwest Alaska. Measurements of snow depth, soil temperature and CO2 efflux were made at five forest and two treeline sites in late winter of three consecutive years. Snow depth and soil temperature were greater in forest than treeline sites, particularly in years with higher snowfall. There was a close exponential correlation between soil temperature and CO2 efflux across sites and years. The temperature-efflux model was driven using hourly soil temperatures from all the sites to provide a first approximation of the difference in winter C loss between treeline and forest sites. Results showed that greater wintertime C loss from forests could offset greater summertime C gain.  相似文献   

10.
Forests in northeastern North America are influenced by varying climatic and biotic factors; however, there is concern that rapid changes in these factors may lead to important changes in ecosystem processes such as decomposition. Climate change (especially warming) is predicted to increase rates of decomposition in northern latitudes. Warming in winter may result in complex effects including decreased levels of snow cover and an increased incidence of soil freezing that will effect decomposition. Along with these changes in climate, moose densities have also been increasing in this region, likely affecting nutrient dynamics. We measured decomposition and N release from 15N‐labeled sugar maple leaf litter and moose feces over 20 months in reference and snow removal treatment (to induce soil freezing) plots in two separate experiments at the Hubbard Brook Experimental Forest in New Hampshire, USA. Snow removal/soil freezing decreased decomposition of maple litter, but stimulated N transfer to soil and microbial biomass. Feces decomposed more rapidly than maple litter, and feces N moved into the mineral soil more than N derived from litter, likely due to the lower C : N ratio of feces. Feces decomposition was not affected by the snow removal treatment. Total microbial biomass (measured as microbial N and C) was not significantly affected by the treatments in either the litter or feces plots. These results suggest that increases in soil freezing and/or large herbivore populations, increase the transfer rate of N from plant detritus or digested plants into the mineral soil. Such changes suggest that altering the spatial and temporal patterns of soil freezing and moose density have important implications for ecosystem N cycling.  相似文献   

11.
Reduced precipitation treatments often are used in field experiments to explore the effects of drought on plant productivity and species composition. However, in seasonally snow-covered regions reduced precipitation also reduces snow cover, which can increase soil frost depth, decrease minimum soil temperatures and increase soil freeze–thaw cycles. Therefore, in addition to the effects of reduced precipitation on plants via drought, freezing damage to overwintering plant tissues at or below the soil surface could further affect plant productivity and relative species abundances during the growing season. We examined the effects of both reduced rainfall (via rain-out shelters) and reduced snow cover (via snow removal) at 13 sites globally (primarily grasslands) within the framework of the International Drought Experiment, a coordinated distributed experiment. Plant cover was estimated at the species level, and aboveground biomass was quantified at the functional group level. Among sites, we observed a negative correlation between the snow removal effect on minimum soil temperature and plant biomass production the next growing season. Three sites exhibited significant rain-out shelter effects on plant productivity, but there was no correlation among sites between the rain-out shelter effect on minimum soil moisture and plant biomass. There was no interaction between snow removal and rain-out shelters for plant biomass, although these two factors only exhibited significant effects simultaneously for a single site. Overall, our results reveal that reduced snowfall, when it decreases minimum soil temperatures, can be an important component of the total effect of reduced precipitation on plant productivity.  相似文献   

12.
In this special section of Biogeochemistry, we present results from asnow manipulation experiment in the northernhardwood forest ecosystem at the Hubbard BrookExperimental Forest in the White Mountains ofNew Hampshire, U.S.A. Snow is important as aninsulator of forest soils. Later developmentof snowpacks, as may occur in a warmer climate,may result in increases in soil freezing (i.e.colder soils in a warmer world) and could causechanges in fine root and microbial mortality,hydrologic and gaseous losses of nitrogen (N),and the acid-base status of drainage water. Inour study, we kept soils snow free by shovelinguntil early February during the mild winters of1997/1998 and 1998/1999. The treatment producedmild, but persistent soil freezing and inducedsurprisingly significant effects on rootmortality, soil nitrate (NO3 ) levelsand hydrologic fluxes of C, N and P. In thisspecial section we present four papersaddressing, (1) soil temperature and moistureresponse to our snow manipulation treatment(Hardy et al.), (2) theresponse of fine root dynamics to treatment(Tierney et al.), (3) theresponse of soil inorganic N levels, insitu N mineralization and nitrification,denitrification and microbial biomass to thetreatment (Groffman et al.)and (4) soil solution concentrations and fluxesof C, N and P (Fitzhugh et al.). In this introductory paper we: (1)review the literature on snow effects on forestbiogeochemistry, (2) introduce our manipulationexperiment and (3) summarize the resultspresented in the other papers in this issue.  相似文献   

13.
天山北坡积雪消融对不同冻融阶段土壤温湿度的影响   总被引:2,自引:0,他引:2  
积雪作为一种特殊的覆被,直接影响着土壤温度、土壤水分分布及其冻结深度、冻结速率等,影响当地的生态水文过程。利用2017年11月1日至2018年3月31日天山北坡伊犁阿热都拜流域的土壤含水率资料,划分土壤不同冻融阶段,结合积雪不同阶段,进而分析积雪消融对季节性冻土温湿度的影响。结果表明:在整个土壤冻融期间,土壤温湿度的变化取决于积雪深度、大气温度和雪面温度的高低,且与其稳定性有关。土壤冻结阶段,土壤温湿度持续下降,表层土壤温湿度受气温影响较大,且波动明显,而深层土壤的温湿度变化平缓;土壤完全冻结时,有稳定积雪覆盖,由于积雪的高反射性、低导热性,影响着地气之间的热量传递,因此土壤的温湿度变化较为平稳,积雪有一定的保温作用;冻土消融阶段,气温回升,积雪消融,地表出露,各层土壤温度随气温变化而变化,且越靠近地表,土壤温度越高,变幅越大,与冻结期完全相反。由于融雪水的下渗,土壤湿度快速增加。进一步分析积雪与土壤温湿度的相关性得出,积雪对土壤温湿度的影响分不同时期,对土壤温度的影响主要在积雪覆盖时,对土壤湿度的影响主要是在积雪消融时期,这对于研究该地生态水文循环及后续融雪性洪水的模拟与预报具有一定...  相似文献   

14.
The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen losses from soil during the following growing season. Decreased nitrogen retention is thought to be due to reduced root uptake, but has not yet been measured directly. We conducted a 2‐year snow‐removal experiment at Hubbard Brook Experimental Forest in New Hampshire, USA to determine the effects of soil freezing on root uptake and leaching of inorganic nitrogen simultaneously. Snow removal significantly increased the depth of maximal soil frost by 37.2 and 39.5 cm in the first and second winters, respectively (< 0.001 in 2008/2009 and 2009/2010). As a consequence of soil freezing, root uptake of ammonium declined significantly during the first and second growing seasons after snow removal (= 0.023 for 2009 and = 0.005 for 2010). These observed reductions in root nitrogen uptake coincided with significant increases in soil solution concentrations of ammonium in the Oa horizon (= 0.001 for 2009 and 2010) and nitrate in the B horizon (< 0.001 and = 0.003 for 2009 and 2010, respectively). The excess flux of dissolved inorganic nitrogen from the Oa horizon that was attributable to soil freezing was 7.0 and 2.8 kg N ha?1 in 2009 and 2010, respectively. The excess flux of dissolved inorganic nitrogen from the B horizon was lower, amounting to 1.7 and 0.7 kg N ha?1 in 2009 and 2010, respectively. Results of this study provide direct evidence that soil freezing reduces root nitrogen uptake, demonstrating that the effects of winter climate change on root function has significant consequences for nitrogen retention and loss in forest ecosystems.  相似文献   

15.
In mountain regions of Central Europe an increase of soil frost periods is predicted for this century due to reduced snow fall. To investigate the effects of freezing and thawing on soil N2O fluxes in a mature Norway spruce forest in the mountainous Fichtelgebirge, Germany, the natural snow cover on three experimental plots was removed to induce soil frost. Three plots with natural snow cover served as controls. Soil N2O fluxes were recorded in biweekly to monthly intervals during the frost and subsequent thawing period of the below-average cold winter in 2005/2006 and in the above-average warm winter in 2006/2007. In addition, N2O concentrations and isotope signatures in soil air were measured along soil profiles in six different depths (from 6 to 70 cm). The soil of the snow removal plots was frozen down to 15 cm depth from January to April 2006 while the soil of control plots remained unfrozen under snow cover. Both soil freezing and thawing resulted in almost tenfold enhanced N2O fluxes on snow removal plots contributing 84% to annual N2O emissions. In the subsequent winter without soil frost no effects were observed. Vertical gradients of N2O concentrations together with isotope abundance suggest that the subsoil of all plots was a probably weak, but continuous N2O source throughout the year. Isotope signatures and N2O concentration gradients in the soil profile indicate that microbial N2O production and reduction of N2O to N2 did not or just marginally occur in frozen soil layers of the snow removal plots. Consequently, elevated N2O fluxes in the late winter were attributed to the release of accumulated N2O originating from the subsoil. At unfrozen soil, however, N2O emissions were reduced due to a shift of the N2O production-consumption ratio towards more consumption in the topsoil of both the control and snow removal plots. These findings contradict the general assumption that N2O production in the organic layer is responsible for bursts of N2O due to soil frost.  相似文献   

16.
A snow manipulation experiment aimed to assess risks of direct freezing injury, freeze-induced dehydration and winter desiccation in the absence of snow cover on lingonberry (Vaccinium vitis-idaea). Frames with sheet-plastic sides and removable lids were used in this experiment for two purposes: to prevent accumulation of snow in mid-winter and to provide extra heat during early spring. Leaves were analyzed for frost hardiness, tissue water content and osmotic concentrations, and photoinhibition (Fv/Fm) during the period from the 10th of February to the 7th of April. The natural snow accumulation was low indicated by a minor difference in minimum temperatures between the frame treatment and naturally snow-covered plots. The heating effect of the frames started gradually at the end of February along with increasing solar elevation angles, and was highest at the beginning of April. Frost hardiness peaked in March as a consequence of cold periods, but it was practically lost by the beginning of April. Tissue water content decreased gradually at first, becoming greatly decreased later due to the extra heat. In accordance, the tissue osmotic concentrations increased first gradually, followed by a dramatic increase. Photoinhibition increased uniformly with increasing solar radiation, but at the end showed a sharp increment within a few days, obviously also indicating the effect of heating. It was concluded that neither lethal freezing stress nor significant freeze-induced dehydration occurred during the experiment. However, plants that overwintered without snow suffered from severe winter desiccation injuries due to the combination of solar heat and frozen soil. Although the desiccation stress was possibly a lethal factor, it was preceded by long-term and continued photoinhibition. It was concluded that during overwintering, chamaephyte species may suffer from both freezing and winter desiccation in the absence of protecting snow cover. However, during mild winters provided by climatic change scenarios, the risk of winter desiccation will be more probable. In relation to the future climate, it was concluded that winter desiccation and photoinhibition may develop gradually during a snowless winter and would, even if they did not reach a lethal level by themselves, possibly reduce frost hardiness.  相似文献   

17.
Freezing and thawing may alter element turnover and solute fluxes in soils by changing physical and biological soil properties. We simulated soil frost in replicated snow removal plots in a mountainous Norway spruce stand in the Fichtelgebirge area, Germany, and investigated N net mineralization, solute concentrations and fluxes of dissolved organic carbon (DOC) and of mineral ions (NH4+, NO3, Na+, K+, Ca2+, Mg2+). At the snow removal plots the minimum soil temperature was −5 °C at 5 cm depth, while the control plots were covered by snow and experienced no soil frost. The soil frost lasted for about 3 months and penetrated the soil to about 15 cm depth. In the 3 months after thawing, the in situ N net mineralization in the forest floor and upper mineral soil was not affected by soil frost. In late summer, NO3 concentrations increased in forest floor percolates and soil solutions at 20 cm soil depth in the snow removal plots relative to the control. The increase lasted for about 2–4 months at a time of low seepage water fluxes. Soil frost did not affect DOC concentrations and radiocarbon signatures of DOC. No specific frost effect was observed for K+, Ca2+ and Mg2+ in soil solutions, however, the Na+ concentrations in the upper mineral soil increased. In the 12 months following snowmelt, the solute fluxes of N, DOC, and mineral ions were not influenced by the previous soil frost at any depth. Our experiment did not support the hypothesis that moderate soil frost triggers solute losses of N, DOC, and mineral ions from temperate forest soils.  相似文献   

18.
Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow‐covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5‐year snow‐removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional‐scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow‐covered forests.  相似文献   

19.
Throughout most of the northern hemisphere, snow cover decreased in almost every winter month from 1967 to 2012. Because snow is an effective insulator, snow cover loss has likely enhanced soil freezing and the frequency of soil freeze–thaw cycles, which can disrupt soil nitrogen dynamics including the production of nitrous oxide (N2O). We used replicated automated gas flux chambers deployed in an annual cropping system in the upper Midwest US for three winters (December–March, 2011–2013) to examine the effects of snow removal and additions on N2O fluxes. Diminished snow cover resulted in increased N2O emissions each year; over the entire experiment, cumulative emissions in plots with snow removed were 69% higher than in ambient snow control plots and 95% higher than in plots that received additional snow (P < 0.001). Higher emissions coincided with a greater number of freeze–thaw cycles that broke up soil macroaggregates (250–8000 µm) and significantly increased soil inorganic nitrogen pools. We conclude that winters with less snow cover can be expected to accelerate N2O fluxes from agricultural soils subject to wintertime freezing.  相似文献   

20.
Snow accumulation can influence soil properties in arctic and alpine tundra, boreal and temperate forests, and temperate grasslands. However, snow may be even more influential in arid ecosystems, which by definition are water limited, such as the hyper-arid polar desert of the McMurdo Dry Valleys, Antarctica. Moreover, snow accumulation may be altered by climate change in the future. In order to investigate the impact of changes in snow accumulation on soils in the McMurdo Dry Valleys we experimentally manipulated the quantity of snow at two locations and monitored soil properties over 5 years in relation to a snow depth gradient created by snow fences. We predicted that increased snow depth would be associated with increased soil moisture and a shift in soil animal community structure. While we did not observe changes in soil biochemistry or community structure along the snow depth gradient at either site, increased snow accumulation caused by the snow fence altered soil properties across the entire length of the transects at one site (Fryxell), which collected substantially more snow than the other site. At Fryxell, the presence of the snow fence increased gravimetric soil moisture from 1 to 5–9%. This was associated with a decline in abundance of the dominant animal, Scottnema lindsayae, a nematode typically found in dry soil, and an increase in Eudorylaimus sp. a nematode associated with moist soil. We also observed changes in soil pH, salinity, and concentrations of inorganic nitrogen and chlorophyll a over the course of the experiment, but it was difficult to determine if these were caused by snow accumulation or simply represented temporal variation related to other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号