首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil–atmosphere fluxes of trace gases (especially nitrous oxide (N2O)) can be significant during winter and at snowmelt. We investigated the effects of decreases in snow cover on soil freezing and trace gas fluxes at the Hubbard Brook Experimental Forest, a northern hardwood forest in New Hampshire, USA. We manipulated snow depth by shoveling to induce soil freezing, and measured fluxes of N2O, methane (CH4) and carbon dioxide (CO2) in field chambers monthly (bi-weekly at snowmelt) in stands dominated by sugar maple or yellow birch. The snow manipulation and measurements were carried out in two winters (1997/1998 and 1998/1999) and measurements continued through 2000. Fluxes of CO2 and CH4 showed a strong seasonal pattern, with low rates in winter, but N2O fluxes did not show strong seasonal variation. The snow manipulation induced soil freezing, increased N2O flux and decreased CH4 uptake in both treatment years, especially during winter. Annual N2O fluxes in sugar maple treatment plots were 207 and 99 mg N m−2 yr−1 in 1998 and 1999 vs. 105 and 42 in reference plots. Tree species had no effect on N2O or CO2 fluxes, but CH4 uptake was higher in plots dominated by yellow birch than in plots dominated by sugar maple. Our results suggest that winter fluxes of N2O are important and that winter climate change that decreases snow cover will increase soil:atmosphere N2O fluxes from northern hardwood forests.  相似文献   

2.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

3.
The depth and duration of snow pack is declining in the northeastern United States as a result of warming air temperatures. Since snow insulates soil, a decreased snow pack can increase the frequency of soil freezing, which has been shown to have important biogeochemical implications. One of the most notable effects of soil freezing is increased inorganic nitrogen losses from soil during the following growing season. Decreased nitrogen retention is thought to be due to reduced root uptake, but has not yet been measured directly. We conducted a 2‐year snow‐removal experiment at Hubbard Brook Experimental Forest in New Hampshire, USA to determine the effects of soil freezing on root uptake and leaching of inorganic nitrogen simultaneously. Snow removal significantly increased the depth of maximal soil frost by 37.2 and 39.5 cm in the first and second winters, respectively (< 0.001 in 2008/2009 and 2009/2010). As a consequence of soil freezing, root uptake of ammonium declined significantly during the first and second growing seasons after snow removal (= 0.023 for 2009 and = 0.005 for 2010). These observed reductions in root nitrogen uptake coincided with significant increases in soil solution concentrations of ammonium in the Oa horizon (= 0.001 for 2009 and 2010) and nitrate in the B horizon (< 0.001 and = 0.003 for 2009 and 2010, respectively). The excess flux of dissolved inorganic nitrogen from the Oa horizon that was attributable to soil freezing was 7.0 and 2.8 kg N ha?1 in 2009 and 2010, respectively. The excess flux of dissolved inorganic nitrogen from the B horizon was lower, amounting to 1.7 and 0.7 kg N ha?1 in 2009 and 2010, respectively. Results of this study provide direct evidence that soil freezing reduces root nitrogen uptake, demonstrating that the effects of winter climate change on root function has significant consequences for nitrogen retention and loss in forest ecosystems.  相似文献   

4.
Overwinter and snowmelt processes are thought to be critical to controllersof nitrogen (N) cycling and retention in northern forests. However, therehave been few measurements of basic N cycle processes (e.g.mineralization, nitrification, denitrification) during winter and littleanalysis of the influence of winter climate on growing season N dynamics.In this study, we manipulated snow cover to assess the effects of soilfreezing on in situ rates of N mineralization, nitrification and soilrespiration, denitrification (intact core, C2H2 – based method),microbial biomass C and N content and potential net N mineralization andnitrification in two sugar maple and two yellow birch stands with referenceand snow manipulation treatment plots over a two year period at theHubbard Brook Experimental Forest, New Hampshire, U.S.A. The snowmanipulation treatment, which simulated the late development of snowpackas may occur in a warmer climate, induced mild (temperatures >–5 °C) soil freezing that lasted until snowmelt. The treatmentcaused significant increases in soil nitrate (NO3 )concentrations in sugar maple stands, but did not affect mineralization,nitrification, denitrification or microbial biomass, and had no significanteffects in yellow birch stands. Annual N mineralization and nitrificationrates varied significantly from year to year. Net mineralization increasedfrom 12.0 g N m–2 y–1 in 1998 to 22 g N m–2 y–1 in 1999 and nitrification increased from 8 g N m–2 y–1 in 1998 to 13 g N m–2 y–1 in 1999.Denitrification rates ranged from 0 to 0.65 g N m–2 y–1. Ourresults suggest that mild soil freezing must increase soil NO3 levels by physical disruption of the soil ecosystem and not by direct stimulation of mineralization and nitrification. Physical disruption canincrease fine root mortality, reduce plant N uptake and reduce competitionfor inorganic N, allowing soil NO3 levels to increase evenwith no increase in net mineralization or nitrification.  相似文献   

5.
The important role of soil carbon (C) in the global C cycle has stimulated interest in better understanding the mechanisms regulating soil C storage and its stabilization. Exotic earthworm invasion of northern forest soils in North America can affect soil C pools, and we examined their effects on these mechanisms by adding 13C labeled leaf litter to adjacent northern hardwood forests with and without earthworms. Two types of labeled litter were produced, one with the 13C more concentrated in structural (S) components and the other in non-structural (NS) components, to evaluate the role of biochemical differences in soil C stabilization. Earthworm invasions have reduced soil C storage in the upper 20 cm of the soil profile by 37 %, mostly by eliminating surface organic horizons. Despite rapid mixing of litter into mineral soil and its incorporation into aggregates, mineral soil C has not increased in the presence of earthworms. Incorporation of litter C into soil and microbial biomass was not affected by biochemical differences between S versus NS labeled litter although NS litter C was assimilated more readily into earthworm biomass and S litter C into fungal hyphae. Apparently, the net effect of earthworm mixing of litter and forest floor C into mineral soil, plus stabilization of that C in aggregates, is counterbalanced by earthworm bioturbation and possible priming effects. Our results support recent arguments that biochemical recalcitrance is not a major contributor to the stabilization of soil C.  相似文献   

6.
Apart from a general increase of mean annual air temperature, climate models predict a regional increase of the frequency and intensity of soil frost with possibly strong effects on C cycling of soils. In this study, we induced mild soil frost (up to −5 °C in a depth of 5 cm below surface) in a Norway spruce forest soil by removing the natural snow cover in the winter of 2005/2006. Soil frost lasted from January to April 2006 and was detected down to 15 cm depth. Soil frost effectively reduced soil respiration in the snow removal plots in comparison to undisturbed control plots. On an annual basis 6.2 t C ha−1 a−1 were emitted in the control plots compared with 5.1 t C ha−1 a−1 in the snow removal plots. Only 14% of this difference was attributed to reduced soil respiration during the soil frost period itself, whereas 63% of this difference originated from differences during the summer of 2006. Radiocarbon (Δ14C) signature of CO2 revealed a considerable reduction of heterotrophic respiration on the snow removal plots, only partly compensated for by a slight increase of rhizosphere respiration. Similar CO2 concentrations in the uppermost mineral horizons of both treatments indicate that differences between the treatments originated from the organic horizons. Extremely low water contents between June and October of 2006 may have inhibited the recovery of the heterotrophic organisms from the frost period, thereby enhancing the differences between the control and snow removal plots. We conclude that soil frost triggered a change in the composition of the microbial community, leading to an increased sensitivity of heterotrophic respiration to summer drought. A CO2 pulse during thawing, such as described for arable soils several times throughout the literature, with the potential to partly compensate for reduced soil respiration during soil frost, appears to be lacking for this soil. Our results from this experiment indicate that soil frost reduces C emission from forest soils, whereas mild winters may enhance C losses from forest soils.  相似文献   

7.
Environmental control of fine root dynamics in a northern hardwood forest   总被引:3,自引:0,他引:3  
Understanding how exogenous and endogenous factors control the distribution, production and mortality of fine roots is fundamental to assessing the implications of global change, yet our knowledge of control over fine root dynamics remains rudimentary. To improve understanding of these processes, the present study developed regression relationships between environmental variables and fine root dynamics within a northern hardwood forest in New Hampshire, USA, which was experimentally manipulated with a snow removal treatment. Fine roots (< 1 mm diameter) were observed using minirhizotrons for 2 years in sugar maple and yellow birch stands and analyzed in relation to temperature, water and nutrient availability. Fine root dynamics at this site fluctuated seasonally, with growth and mortality peaking during warmer months. Monthly fine root production was strongly associated with mean monthly air temperature and neither soil moisture nor nutrient availability added additional predictive power to this relationship. This relationship exhibited a seasonal temperature hysteresis, which was altered by snow removal treatment. These results suggest that both exogenous and endogenous cues may be important in controlling fine root growth in this system. Proportional fine root mortality was directly associated with mean monthly soil temperature, and proportional fine root mortality during the over‐winter interval was strongly related to whether the soil froze. The strong relationship between fine root production and air temperature reported herein contrasts with findings from some hardwood forest sites and indicates that controls on fine root dynamics vary geographically. Future research must more clearly distinguish between endogenous and exogenous control over fine root dynamics in various ecosystems.  相似文献   

8.
Soil freezing alters fine root dynamics in a northern hardwood forest   总被引:12,自引:1,他引:11  
The retention of nutrients within an ecosystem depends on temporal andspatial synchrony between nutrient availability and nutrient uptake, anddisruption of fine root processes can have dramatic impacts on nutrientretention within forest ecosystems. There is increasing evidence thatoverwinter climate can influence biogeochemical cycling belowground,perhaps by disrupting this synchrony. In this study, we experimentallyreduced snow accumulation in northern hardwood forest plots to examinethe effects of soil freezing on the dynamics of fine roots (< 1 mm diameter)measured using minirhizotrons. Snow removal treatment during therelatively mild winters of 1997–1998 and 1998–1999 induced mild freezingtemperatures (to –4 °C) lasting approximately three months atshallow soil depths (to –30 cm) in sugar maple and yellow birch stands.This treatment resulted in elevated overwinter fine root mortality in treatedcompared to reference plots of both species, and led to an earlier peak infine root production during the subsequent growing season. These shiftsin fine root dynamics increased fine root turnover but were not largeenough to significantly alter fine root biomass. No differences inmorality response were found between species. Laboratory tests on pottedtree seedlings exposed to controlled freezing regimes confirmed that mildfreezing temperatures (to –5 °C) were insufficient to directlyinjure winter-hardened fine roots of these species, suggesting that themarked response recorded in our forest plots was caused indirectly bymechanical damage to roots in frozen soil. Elevated fine root necromass intreated plots decomposed quickly, and may have contributed an excess fluxof about 0.5 g N/m2·yr, which is substantial relative tomeasurements of N fluxes from these plots. Our results suggest elevatedoverwinter mortality temporarily reduced fine root length in treatmentplots and reduced plant uptake, thereby disrupting the temporalsynchrony between nutrient availability and uptake and enhancing ratesof nitrification. Increased frequency of soil freezing events, as may occurwith global change, could alter fine root dynamics within the northernhardwood forest disrupting the normally tight coupling between nutrientmineralization and uptake.  相似文献   

9.
天山北坡积雪消融对不同冻融阶段土壤温湿度的影响   总被引:2,自引:0,他引:2  
积雪作为一种特殊的覆被,直接影响着土壤温度、土壤水分分布及其冻结深度、冻结速率等,影响当地的生态水文过程。利用2017年11月1日至2018年3月31日天山北坡伊犁阿热都拜流域的土壤含水率资料,划分土壤不同冻融阶段,结合积雪不同阶段,进而分析积雪消融对季节性冻土温湿度的影响。结果表明:在整个土壤冻融期间,土壤温湿度的变化取决于积雪深度、大气温度和雪面温度的高低,且与其稳定性有关。土壤冻结阶段,土壤温湿度持续下降,表层土壤温湿度受气温影响较大,且波动明显,而深层土壤的温湿度变化平缓;土壤完全冻结时,有稳定积雪覆盖,由于积雪的高反射性、低导热性,影响着地气之间的热量传递,因此土壤的温湿度变化较为平稳,积雪有一定的保温作用;冻土消融阶段,气温回升,积雪消融,地表出露,各层土壤温度随气温变化而变化,且越靠近地表,土壤温度越高,变幅越大,与冻结期完全相反。由于融雪水的下渗,土壤湿度快速增加。进一步分析积雪与土壤温湿度的相关性得出,积雪对土壤温湿度的影响分不同时期,对土壤温度的影响主要在积雪覆盖时,对土壤湿度的影响主要是在积雪消融时期,这对于研究该地生态水文循环及后续融雪性洪水的模拟与预报具有一定...  相似文献   

10.
The impact of changes in winter soil frost regime on soil CO2 concentration and its atmospheric exchange in a boreal Norway spruce forest was investigated using a field‐scale soil frost manipulation experiment. The experiment comprised three treatments: deep soil frost, shallow soil frost and control plots (n= 3). Winter soil temperatures and soil frost distribution were significantly altered by the different treatments. The average soil CO2 concentrations during the growing season were significantly lower in plots with deep soil frost than in plots with shallow soil frost. The average CO2 soil–atmosphere exchange rate exhibited the same pattern, and differences in soil respiration rates among the treatments were statistically significant. Both the variation in soil CO2 concentration and the CO2 soil–atmosphere exchange rate could statistically be explained by the differences in the maximum soil frost depth during the previous winter. A response model for growing season soil respiration rates suggests that every 1 cm change in winter soil frost depth will change the emission rates by ca. 0.01 g CO2 m?2 day?1, corresponding to 0.2–0.5% of the estimated net ecosystem productivity (NEP). This suggests that the soil frost regime has a significant influence on the C balance of the system, because interannual variations in soil frost up to 60 cm have been recorded at the site. We conclude that winter climate conditions can be important in controlling C balances in northern terrestrial ecosystems, and also that indirect effects of the winter season must be taken into account, because these can affect the prevailing conditions during the growing season.  相似文献   

11.
Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow‐covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5‐year snow‐removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire, USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology of Acer saccharum (sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional‐scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under the RCP 4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow‐covered forests.  相似文献   

12.
At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short‐term (1–3 years) and long‐term (11 years) effects on CO2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m?2 s?1, corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m?2 s?1) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO2 fluxes, suggesting that winter climate change could considerably alter the growing season CO2 exchange in boreal peatlands through its effect on vegetation development.  相似文献   

13.
Stemflow nutrient inputs to soil in a successional hardwood forest   总被引:10,自引:0,他引:10  
Stemflow and throughfall from a regenerating (8-year-old) southern Appalachian hardwood forest were collected to examine the relative importance of tree bole nutrient leaching in response to acid deposition. Samples from nine (2 m2) stemflow collection plots were analyzed for four dormant season and 11 growing season rainstorm events. Results showed that, relative to throughfall fluxes, stemflow accounted, on average, for approximately 8.5% of total water reaching the forest floor during both dormant and growing season storms. Relative to foliar leaching, K-, SO4-, and PO4 ions appear to be the most easily leached ions from young tree stems. Proportional nitrate and base cation stemflow fluxes increased significantly (p<0.05) with growing-season storm-event duration, suggesting that the stemsurface nutrient pool is depleted by precipitation more slowly than the foliar pool. On average, proportional stemflow fluxes of SO4 (12%) and K (14%) were consistently higher than reported maximum values for more mature forest stands, which indicates that small-scale stemflow inputs of ions such as these to the forest floor may be important in early successional ecosystems.  相似文献   

14.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

15.
16.
Liming has been used to mitigate effects of acidic deposition in forest ecosystems. This study was designed to examine the effects of calcium (Ca) supply on the spatial patterns and the relations between soil and soil solution chemistry in a base-poor forest watershed. Watershed 1 at the Hubbard Brook Experimental Forest in New Hampshire, USA was experimentally treated with wollastonite (CaSiO3) in October, 1999. Exchangeable Ca (Ex-Ca), soil pHs (in 0.01 M CaCl2), effective cation exchange capacity (CECe), and effective base saturation (BSe) increased, while exchangeable acidity (Ex-Acid) decreased in organic soil horizons in 2000 and 2002. Mineral soils experienced either small increases in Ex-Ca, pHs, CECe, BSe, small decreases in Ex-Acid or no changes. Thus, most of the added Ca remained in the forest floor during the study period. Prior to the treatment the BSe decreased with increasing elevation in organic and mineral soil horizons. This spatial pattern changed significantly in the forest floor after the treatment, suggesting that soils at higher elevations were more responsive to the chemical addition than at lower elevations. Soil solutions draining the forest floor responded to the treatment by increases in concentrations of Ca, dissolved silica, pH, and acid neutralizing capacity (ANC), and a decrease in inorganic monomeric Al (Ali). Treatment effects diminished with increasing soil depth and decreasing elevation. Positive correlations between Ca/total monomeric Al (Alm) in soil solution and Ex-Ca/Ex-Al ratios in soil indicated that changes in the chemistry of soils significantly influenced the chemistry of soil water, and that Ca derived from the dissolution of wollastonite mitigated the mobilization of Al within the experimental watershed.  相似文献   

17.
In this special section of Biogeochemistry, we present results from asnow manipulation experiment in the northernhardwood forest ecosystem at the Hubbard BrookExperimental Forest in the White Mountains ofNew Hampshire, U.S.A. Snow is important as aninsulator of forest soils. Later developmentof snowpacks, as may occur in a warmer climate,may result in increases in soil freezing (i.e.colder soils in a warmer world) and could causechanges in fine root and microbial mortality,hydrologic and gaseous losses of nitrogen (N),and the acid-base status of drainage water. Inour study, we kept soils snow free by shovelinguntil early February during the mild winters of1997/1998 and 1998/1999. The treatment producedmild, but persistent soil freezing and inducedsurprisingly significant effects on rootmortality, soil nitrate (NO3 ) levelsand hydrologic fluxes of C, N and P. In thisspecial section we present four papersaddressing, (1) soil temperature and moistureresponse to our snow manipulation treatment(Hardy et al.), (2) theresponse of fine root dynamics to treatment(Tierney et al.), (3) theresponse of soil inorganic N levels, insitu N mineralization and nitrification,denitrification and microbial biomass to thetreatment (Groffman et al.)and (4) soil solution concentrations and fluxesof C, N and P (Fitzhugh et al.). In this introductory paper we: (1)review the literature on snow effects on forestbiogeochemistry, (2) introduce our manipulationexperiment and (3) summarize the resultspresented in the other papers in this issue.  相似文献   

18.
黄土高原水土保持林对土壤水分的影响   总被引:8,自引:0,他引:8  
张建军  李慧敏  徐佳佳 《生态学报》2011,31(23):7056-7066
黄土高原植被恢复的限制因素主要是土壤水分,植被与土壤水分关系的研究对黄土高原植被恢复具有重要意义.2008年7月1日至2009年10月31日间采用EnviroSMART土壤水分定位监测系统以每30min监测1次的频度,对晋西黄土区刺槐人工林地、油松人工林地、次生林地的土壤水分变化进行了研究.研究得出:次生林地0-150 cm土层中平均蓄水量为331.95mm,刺槐人工林地为233.85 mm,有整地措施的油松人工林地为314.85mm,刺槐人工林比次生林多消耗的98.10mm土壤水分主要来源于80 cm以下土层.次生林主要消耗0-80 cm土层的水分,而人工林不但对0-80 cm土层水分的消耗量大于次生林,对深层土壤的消耗也较次生林大,这将有可能导致人工林地深层土壤的“干化”.在土壤水分减少期(11-1月)刺槐人工林土壤水分的日均损耗量为0.86mm、油松人工林为0.82 mm、次生林为0.84 mm.土壤水分缓慢恢复期(2-5月)刺槐人工林地土壤水分的恢复速度0.90mm/d,油松人工林地为0.53 mm/d、次生林地为0.79 mm/d.土壤水分剧烈变化期(5-10月)刺槐人工林地土壤水分含量的极差为95.71mm,油松人工林地为179.1mm,次生林地为72.03mm.在干旱少雨的黄土高原进行植被恢复时,应多采取封山育林等方式,依靠自然力量形成能够与当地土壤水资源相协调的次生林,是防止人工植被过度耗水形成“干化层”、保障水土保持植被持续发挥生态服务功能的关键.  相似文献   

19.
Forest harvesting alters the organic matter cycle by changing litter inputs and the decomposition regime. We hypothesized that these changes would result in differences in organic matter chemistry between clear-cut and uncut watershed ecosystems. We studied the chemistry of soil organic matter (SOM), and dissolved organic carbon (DOC) in soil solutions and stream samples in clear-cut and uncut sites at the Hubbard Brook Experimental Forest in New Hampshire using DOC fractionation techniques and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy.Alkyl-C (aliphatic compounds) and O-alkyl-C (carbohydrates) were the largest C fractions in soil and dissolved organic matter at Hubbard Brook. Alkyl-C ranged from 29–48% of soil C, 25–42% of soil solution C, and 22–42% of streamwater DOC. Carbohydrates comprised 32–49%, 36–43%, and 29–60% of C in soils, solutions, and streamwater, respectively. In both soils and soil solutions, the carbohydrate fraction decreased with increasing soil depth, while the aromaticity of organic matter increased with depth. There were no significant differences in the structural chemistry of SOM between clear-cut and uncut watersheds.The aromatic-C fractions in soil solutions at the clear-cut site ranged from 12–16%, approximately 40% greater than at the uncut site (8.5–11%). Thus, clear-cutting has resulted in the leaching of more highly decomposed organic matter, and depletion of more aliphatic compounds in the soluble organic pool. Because DOC fluxes are small compared to the SOM pool, large differences in soil solution chemistry do not substantially alter the overall composition of SOM. While the organic chemistry of stream DOC varied greatly among 3 sampling dates, there were no obvious clear-cutting effects. Thus, temporal variations in flowpaths and/or in-stream processes appear to be more important than disturbance in regulating the organic carbon chemistry of these streams.  相似文献   

20.
煤矿复垦区土壤水动力学特性对下渗过程的影响   总被引:2,自引:0,他引:2  
杨永刚  苏帅  焦文涛 《生态学报》2018,38(16):5876-5882
煤矿复垦区土壤水对植物生长、溶质运移以及土壤环境的变化起着至关重要的作用。定量揭示煤矿复垦区土壤水下渗过程是亟待诠释的关键科学问题。本研究通过测定典型矿区不同深度土壤非饱和导水率、容重、总孔隙度和粒径等水动力学参数,结合染色示踪试验,刻画矿区非饱和带土壤水运移过程。染色示踪结果显示30、60 L和90 L这3种实验下渗水量条件下,水流沿X方向侧向扩散的最大距离分别为10、30 cm和35 cm,沿Y方向侧向扩散的最大距离分别为10、25 cm和30 cm。互相关函数显示随着下渗水量增大,水流扩散作用也在加强,但过多水量并没有明显增加下渗深度和扩散距离。吸力大于300 hpa时,0.01—0.05 mm土壤粒径含量和非饱和导水率呈负相关关系;吸力和非饱和导水率采用指数函数拟合效果较好(r~20.9),对拟合参数a、b和土壤容重(x)进行回归分析:a=0.0015x~2-0.00499x+0.0004,b=0.0583x~2+0.1234x-0.072。同一吸力下土壤容重大的土样非饱和导水率较小;吸力值为300 hpa是非饱和导水率的转折点;非饱和导水率和土壤容重呈现负相关关系,和总孔隙度呈现正相关关系,且二者的相关性随吸力的增加而降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号